Skip to content
2000
Volume 28, Issue 2
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Recent advances in science and technology have led to revolutions in many scientific and industrial fields. The term lab on a chip, or in other words, performing a variety of complex analyses in just a short time and a minimal space, is a term that has become very common in recent years, and what used to be a dream has now come to life in practice. In this paper, we tried to investigate a specific type of lab technology on a chip, which is, of course, one of the most common, namely the knowledge and technology of cell separation by using a microfluidic technique that can be separated based on size and deformation, adhesion and electrical properties. The tissue of the human body is degraded due to injury or aging. It is often tried to treat this tissue disorder by using drugs, but they are not always enough. Stem cell-based medicine is a novel form that promises the restoration or regeneration of tissues and functioning organs. Although many models of microfluidic systems have been designed for cell separation, choosing the appropriate device to achieve a reliable result is a challenge. Therefore, in this study, Fluorescence Activated Cell Sorting (FACS), Dielectrophoresis (DEP), Magnetic Activated Cell Sorting (MACS), and Acoustic microfluidic system are four distinct categories of active microfluidic systems explored. Also, the advantages, disadvantages, and the current status of the devices mentioned in these methods are reviewed.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073277130231110111933
2024-01-24
2025-04-02
Loading full text...

Full text loading...

References

  1. LawlisF. Healing Rhythms to Reset Wellness.Savio Republic2020
    [Google Scholar]
  2. AbtahiN.A. NaghibS.M. GhalekohnehS.J. MohammadpourZ. NazariH. MosaviS.M. GheibihayatS.M. HaghiralsadatF. RezaJ.Z. DoulabiB.Z. Multifunctional stimuli-responsive niosomal nanoparticles for co-delivery and co-administration of gene and bioactive compound: In vitro and in vivo studies.Chem. Eng. J.202242913209010.1016/j.cej.2021.132090
    [Google Scholar]
  3. Gooneh-FarahaniS. NaghibS.M. Naimi-JamalM.R. SeyfooriA. A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents.Sci. Rep.20211111740410.1038/s41598‑021‑97081‑1 34465842
    [Google Scholar]
  4. MazidiZ. JavanmardiS. NaghibS.M. MohammadpourZ. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials.Chem. Eng. J.202243313456910.1016/j.cej.2022.134569
    [Google Scholar]
  5. Gooneh-FarahaniS. Naimi-JamalM.R. NaghibS.M. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: A review.Expert Opin. Drug Deliv.2019161799910.1080/17425247.2019.1556257 30514124
    [Google Scholar]
  6. WangX. Rivera-BolanosN. JiangB. AmeerG.A. Advanced functional biomaterials for stem cell delivery in regenerative engineering and medicine.Adv. Funct. Mater.20192923180900910.1002/adfm.201809009
    [Google Scholar]
  7. MenacheryA. KumawatN. QasaimehM. Label-free microfluidic stem cell isolation technologies.Trends Analyt. Chem.20178911210.1016/j.trac.2017.01.008
    [Google Scholar]
  8. BaconK. LavoieA. RaoB.M. DanieleM. MenegattiS. Past, present, and future of affinity-based cell separation technologies.Acta Biomater.2020112295110.1016/j.actbio.2020.05.004 32442784
    [Google Scholar]
  9. KangD.K. LuJ. KangD.K. LuJ. ZhangW. ChangE. EckertM.A. AliM.M. ZhaoW. Microfluidic devices for stem cell analysis.Microfluidic Devices for Biomedical Applications. LiX. ZhouY. Woodhead Publishing201338844110.1533/9780857097040.3.388
    [Google Scholar]
  10. MummeryC.L. Van de StolpeA. RoelenB. CleversH. Stem cells: Scientific facts and fiction.Academic Press202110.1016/B978‑0‑12‑820337‑8.00003‑4
    [Google Scholar]
  11. MummeryC.L. van de StolpeA. RoelenB. CleversH. . Human stem cells for organs-on-chips: “Clinical trials” without patients? In: Stem Cells, 3rd ed.; Mummery, C.L.; van de Stolpe, A.; Roelen, B.; Clevers, H., Eds.; Academic Press: Boston,202132935110.1016/B978‑0‑12‑820337‑8.00013‑7
    [Google Scholar]
  12. TokeshiM. Applications of microfluidic systems in biology and medicine.Springer201910.1007/978‑981‑13‑6229‑3
    [Google Scholar]
  13. SonnenK.F. MertenC.A. Microfluidics as an emerging precision tool in developmental biology.Dev. Cell201948329331110.1016/j.devcel.2019.01.015 30753835
    [Google Scholar]
  14. SivaramakrishnanM. KothandanR. GovindarajanD.K. MeganathanY. KandaswamyK. Active microfluidic systems for cell sorting and separation.Curr. Opin. Biomed. Eng.202013606810.1016/j.cobme.2019.09.014
    [Google Scholar]
  15. ColuccioM.L. D’AttimoM.A. CristianiC.M. CandeloroP. ParrottaE. DattolaE. GuzziF. CudaG. LamannaE. CarboneE. KrühneU. Di FabrizioE. PerozzielloG. A passive microfluidic device for chemotaxis studies.Micromachines 201910855110.3390/mi10080551 31434220
    [Google Scholar]
  16. FarahiniaA. ZhangW. BadeaI. Recent developments in inertial and centrifugal microfluidic systems along with the involved forces for cancer cell separation: A review.Sensors 20232311530010.3390/s23115300 37300027
    [Google Scholar]
  17. ShenY. YalikunY. TanakaY. Recent advances in microfluidic cell sorting systems.Sens. Actuators B Chem.201928226828110.1016/j.snb.2018.11.025
    [Google Scholar]
  18. de WijsK. LiuC. DusaA. VercruysseD. MajeedB. TezcanD.S. BlaszkiewiczK. LooJ. LagaeL. Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting.Lab Chip20171771287129610.1039/C6LC01560C 28252674
    [Google Scholar]
  19. KimT.H. WangY. OliverC.R. ThammD.H. CoolingL. PaolettiC. SmithK.J. NagrathS. HayesD.F. A temporary indwelling intravascular aphaeretic system for in vivo enrichment of circulating tumor cells.Nat. Commun.2019101147810.1038/s41467‑019‑09439‑9 30932020
    [Google Scholar]
  20. ThomasR.S.W. MitchellP.D. OreffoR.O.C. MorganH. GreenN.G. Imagebased sorting and negative dielectrophoresis for high purity cell and particle separation.Electrophoresis201940202718272710.1002/elps.201800489 31206722
    [Google Scholar]
  21. YousuffC. HoE. Hussain KI. HamidN. Microfluidic platform for cell isolation and manipulation based on cell properties.Micromachines 2017811510.3390/mi8010015
    [Google Scholar]
  22. MurrayC. MiwaH. DharM. ParkD.E. PaoE. MartinezJ. KaanumaleS. LoghinE. GrafJ. RhaddassiK. KwokW.W. HaflerD. PuleoC. Di CarloD. Unsupervised capture and profiling of rare immune cells using multi-directional magnetic ratcheting.Lab Chip201818162396240910.1039/C8LC00518D 30039125
    [Google Scholar]
  23. OkumusB. BakerC.J. Arias-CastroJ.C. LaiG.C. LeonciniE. BakshiS. LuroS. LandgrafD. PaulssonJ. Single-cell microscopy of suspension cultures using a microfluidics-assisted cell screening platform.Nat. Protoc.201813117019410.1038/nprot.2017.127 29266097
    [Google Scholar]
  24. WitekM.A. FreedI.M. SoperS.A. Cell separations and sorting.Anal. Chem.202092110513110.1021/acs.analchem.9b05357 31808677
    [Google Scholar]
  25. MaghsoudiS. RabieeN. AhmadiS. RabieeM. BagherzadehM. KarimiM. An overview of microfluidic devices.In: Biomedical Applications of Microfluidic Devices. HamblinM.R. KarimiM. Academic Press202112210.1016/B978‑0‑12‑818791‑3.00005‑X
    [Google Scholar]
  26. RackusD.G. ShamsiM.H. WheelerA.R. Electrochemistry, biosensors and microfluidics: A convergence of fields.Chem. Soc. Rev.201544155320534010.1039/C4CS00369A 25962356
    [Google Scholar]
  27. GiouroudiI. KokkinisG. Recent advances in magnetic microfluidic biosensors.Nanomaterials 20177717110.3390/nano7070171 28684665
    [Google Scholar]
  28. Recent Advances in Magnetic Microfluidic BiosensorsNanomaterials. 201777171534010.3390/nano707017128684665
    [Google Scholar]
  29. StoneN.E. VoigtA.P. MullinsR.F. SulchekT. TuckerB.A. Microfluidic processing of stem cells for autologous cell replacement.Stem Cells Transl. Med.20211013841393
    [Google Scholar]
  30. LiF. ZhengZ. YangB. ZhangX. LiZ. LeiL. A laminar-flow based microfluidic microbial three-electrode cell for biosensing.Electrochim. Acta2016199455010.1016/j.electacta.2016.03.138
    [Google Scholar]
  31. ChenC. MehlB.T. MunshiA.S. TownsendA.D. SpenceD.M. MartinR.S. 3D-printed microfluidic devices: Fabrication, advantages and limitations-a mini review.Anal. Methods20168316005601210.1039/C6AY01671E 27617038
    [Google Scholar]
  32. KantK. ShahbaziM.A. DaveV.P. NgoT.A. ChidambaraV.A. ThanL.Q. BangD.D. WolffA. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.Biotechnol. Adv.20183641003102410.1016/j.biotechadv.2018.03.002 29534915
    [Google Scholar]
  33. JuangY.J. ChangJ.S. Applications of microfluidics in microalgae biotechnology: A review.Biotechnol. J.201611332733510.1002/biot.201500278 26807667
    [Google Scholar]
  34. AkyaziT. Basabe-DesmontsL. Benito-LopezF. Review on microfluidic paper-based analytical devices towards commercialisation.Anal. Chim. Acta2018100111710.1016/j.aca.2017.11.010 29291790
    [Google Scholar]
  35. XiaY. SiJ. LiZ. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review.Biosens. Bioelectron.20167777478910.1016/j.bios.2015.10.032 26513284
    [Google Scholar]
  36. AlmeidaM.I.G.S. JayawardaneB.M. KolevS.D. McKelvieI.D. Developments of microfluidic paper-based analytical devices (μ PADs) for water analysis: A review.Talanta201817717619010.1016/j.talanta.2017.08.072 29108573
    [Google Scholar]
  37. TetalaK.K.R. VijayalakshmiM.A. A review on recent developments for biomolecule separation at analytical scale using microfluidic devices.Anal. Chim. Acta201690672110.1016/j.aca.2015.11.037 26772122
    [Google Scholar]
  38. ChoS. YoonJ.Y. Organ-on-a-chip for assessing environmental toxicants.Curr. Opin. Biotechnol.201745344210.1016/j.copbio.2016.11.019 28088094
    [Google Scholar]
  39. BrzozkaZ. JastrzebskaE. Cardiac Cell Culture Technologies : Microfluidic and On-Chip Systems; ,2018
    [Google Scholar]
  40. FernandezR.E. RohaniA. FarmehiniV. SwamiN.S. Review: Microbial analysis in dielectrophoretic microfluidic systems.Anal. Chim. Acta2017966113310.1016/j.aca.2017.02.024 28372723
    [Google Scholar]
  41. MarkD. HaeberleS. RothG. Von StettenF. ZengerleR. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications.Microfluidics Based Microsys2010305376
    [Google Scholar]
  42. KimP. KwonK.W. ParkM.C. LeeS.H. KimS.M. SuhK.Y. Soft lithography for microfluidics: A review.Bio Chip J.2008211
    [Google Scholar]
  43. MarquesM.P.C. SzitaN. Microfluidic devices for the culture of stem cells.In: Stem Cell Manufacturing. CabralJ.M.S. Lobato de SilvaC. ChaseL.G. Margarida DiogoM. BostonElsevier201617119810.1016/B978‑0‑444‑63265‑4.00008‑X
    [Google Scholar]
  44. GouY. JiaY. WangP. SunC. Progress of inertial microfluidics in principle and application.Sensors 2018186176210.3390/s18061762 29857563
    [Google Scholar]
  45. JiaF. GaoY. WangH. Recent advances in drug delivery system fabricated by microfluidics for disease therapy.Bioengineering 202291162510.3390/bioengineering9110625 36354536
    [Google Scholar]
  46. RasooliR. ÇetinB. Assessment of Lagrangian modeling of particle motion in a spiral microchannel for inertial microfluidics.Micromachines 20189943310.3390/mi9090433 30424366
    [Google Scholar]
  47. Razavi BazazS. RouhiO. RaoufiM.A. EjeianF. AsadniaM. JinD. Ebrahimi WarkianiM. 3D printing of inertial microfluidic devices.Sci. Rep.20201015929592910.1038/s41598‑020‑62569‑9 32246111
    [Google Scholar]
  48. KwonT. YaoR. HamelJ.F.P. HanJ. Continuous removal of small nonviable suspended mammalian cells and debris from bioreactors using inertial microfluidics.Lab Chip201818182826283710.1039/C8LC00250A 30079919
    [Google Scholar]
  49. Selimović, Š.; Kaji, H.; Bae, H.; Khademhosseini, A. Microfluidic systems for controlling stem cell microenvironments. In: Microfluidic Cell Culture Systems, 2nd ed.; Borenstein, J.T.; Tandon, V.; Tao, S.L.; Charest, J.L., Eds.; Elsevier, 2019316310.1016/B978‑0‑12‑813671‑3.00002‑5
    [Google Scholar]
  50. HamblinM.R. KarimiM. Biomedical Applications of Microfluidic Devices.Elsevier2020
    [Google Scholar]
  51. NguyenN-T. WereleyS.T. ShaeghS.A.M. Fundamentals and applications of microfluidics.Artech house2019
    [Google Scholar]
  52. BohrA. ColomboS. JensenH. Future of microfluidics in research and in the market.Microfluidics for Pharmaceutical Applications.Elsevier201942546510.1016/B978‑0‑12‑812659‑2.00016‑8
    [Google Scholar]
  53. WuS. WangX. LiZ. ZhangS. XingF. Recent advances in the fabrication and application of graphene microfluidic sensors.Micromachines 20201112105910.3390/mi11121059 33265955
    [Google Scholar]
  54. NikoleliG-P. SiontorouC.G. NikolelisD.P. BratakouS. KarapetisS. TzamtzisN. Biosensors based on microfluidic devices lab-on-a-chip and microfluidic technology.Nanotechnology and Biosensors. NikolelisD.P. NikoleliG-P. Elsevier201837539410.1016/B978‑0‑12‑813855‑7.00013‑1
    [Google Scholar]
  55. BoobphahomS. Nguyet LyM. SoumV. PyunN. KwonO.S. RodthongkumN. ShinK. Recent advances in microfluidic paper-based analytical devices toward high-throughput screening.Molecules20202513297010.3390/molecules25132970 32605281
    [Google Scholar]
  56. ScottS. AliZ. Fabrication methods for microfluidic devices: An overview.Micromachines 202112331910.3390/mi12030319 33803689
    [Google Scholar]
  57. NiculescuA.G. ChircovC. Bîrcă A.C.; Grumezescu, A.M. Fabrication and applications of microfluidic devices: A review.Int. J. Mol. Sci.2021224201110.3390/ijms22042011 33670545
    [Google Scholar]
  58. Jigar PanchalH. KentN.J. KnoxA.J.S. HarrisL.F. Microfluidics in haemostasis: A review.Molecules202025483310.3390/molecules25040833 32075008
    [Google Scholar]
  59. CatarinoS.O. RodriguesR.O. PinhoD. MirandaJ.M. MinasG. LimaR. Blood cells separation and sorting techniques of passive microfluidic devices: From fabrication to applications.Micromachines 201910959310.3390/mi10090593 31510012
    [Google Scholar]
  60. BerlandaS.F. BreitfeldM. DietscheC.L. DittrichP.S. Recent advances in microfluidic technology for bioanalysis and diagnostics.Anal. Chem.202193131133110.1021/acs.analchem.0c04366 33170661
    [Google Scholar]
  61. ManzoorA.A. RomitaL. HwangD.K. A review on microwell and microfluidic geometric array fabrication techniques and its potential applications in cellular studies.Can. J. Chem. Eng.2021991619610.1002/cjce.23875
    [Google Scholar]
  62. GaleB. JafekA. LambertC. GoennerB. MoghimifamH. NzeU. KamarapuS. A review of current methods in microfluidic device fabrication and future commercialization prospects.Inventions 2018336010.3390/inventions3030060
    [Google Scholar]
  63. SongY. ChengD. ZhaoL. Microfluidics: Fundamentals, Devices, and Applications.John Wiley & Sons201810.1002/9783527800643
    [Google Scholar]
  64. MunshiA.S. ChenC. TownsendA.D. MartinR.S. Use of 3D printing and modular microfluidics to integrate cell culture, injections and electrochemical analysis.Anal. Methods201810273364337410.1039/C8AY00829A 30923580
    [Google Scholar]
  65. NieJ. GaoQ. QiuJ. SunM. LiuA. ShaoL. FuJ. ZhaoP. HeY. 3D printed Lego ® -like modular microfluidic devices based on capillary driving.Biofabrication201810303500110.1088/1758‑5090/aaadd3 29417931
    [Google Scholar]
  66. NielsenJ.B. HansonR.L. AlmughamsiH.M. PangC. FishT.R. WoolleyA.T. Microfluidics: Innovations in materials and their fabrication and functionalization.Anal. Chem.202092115016810.1021/acs.analchem.9b04986 31721565
    [Google Scholar]
  67. ChoeS. KimB. KimM. Progress of microfluidic continuous separation techniques for Micro-/nanoscale bioparticles.Biosensors 2021111146410.3390/bios11110464 34821680
    [Google Scholar]
  68. WuF. ChenS. ChenB. WangM. MinL. AlvarengaJ. JuJ. KhademhosseiniA. YaoY. ZhangY.S. AizenbergJ. HouX. Bioinspired universal flexible elastomerbased microchannels.Small20181418170217010.1002/smll.201702170 29325208
    [Google Scholar]
  69. SyedmoradiL. DaneshpourM. AlvandipourM. GomezF.A. HajghassemH. OmidfarK. Point of care testing: The impact of nanotechnology.Biosens. Bioelectron.20178737338710.1016/j.bios.2016.08.084 27589400
    [Google Scholar]
  70. YeF. YanZ. ZhangH. ChangH. NeuzilP. Microfabricated stem cell targeted differentiation systems.Trends Analyt. Chem.202012611585810.1016/j.trac.2020.115858
    [Google Scholar]
  71. FallahiH. ZhangJ. PhanH.P. NguyenN.T. Flexible microfluidics: Fundamentals, recent developments, and applications.Micromachines 2019101283010.3390/mi10120830 31795397
    [Google Scholar]
  72. KarimiM. BahramiS. MirshekariH. BasriS.M.M. NikA.B. ArefA.R. AkbariM. HamblinM.R. Microfluidic systems for stem cell-based neural tissue engineering.Lab Chip201616142551257110.1039/C6LC00489J 27296463
    [Google Scholar]
  73. NasiriR. ShamlooA. AhadianS. AmirifarL. AkbariJ. GoudieM.J. LeeK. AshammakhiN. DokmeciM.R. Di CarloD. KhademhosseiniA. Microfluidic based approaches in targeted cell/particle separation based on physical properties: Fundamentals and applications.Small20201629200017110.1002/smll.202000171 32529791
    [Google Scholar]
  74. TavakoliH. ZhouW. MaL. PerezS. IbarraA. XuF. ZhanS. LiX. Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy.Trends Analyt. Chem.2019117132610.1016/j.trac.2019.05.010 32831435
    [Google Scholar]
  75. XuH. XiaA. WangD. ZhangY. DengS. LuW. LuoJ. ZhongQ. ZhangF. ZhouL. ZhangW. WangY. YangC. ChangK. FuW. CuiJ. GanM. LuoD. ChenM. An ultraportable and versatile point-of-care DNA testing platform.Sci. Adv.2020617eaaz744510.1126/sciadv.aaz7445 32426466
    [Google Scholar]
  76. ZhangX. XuX. WangJ. WangC. YanY. WuA. RenY. Public-health-driven microfluidic technologies: From separation to detection.Micromachines 202112439110.3390/mi12040391 33918189
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073277130231110111933
Loading
/content/journals/cchts/10.2174/0113862073277130231110111933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test