Skip to content
2000
Volume 28, Issue 2
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Hepatocellular carcinoma is the sixth most common tumor and the third leading cause of cancer death worldwide. It ranks fourth in the spectrum of malignant tumor incidence and second in the order of death from major malignant tumors in China. Hepatocellular carcinoma is a complex ecosystem containing non-tumor cells (mainly immune-related cells), and its immunotherapy can stimulate the recognition of specific tumor antigens, inhibit the proliferation of cancer cells, and produce over-memory lymphocytes, which can prevent recurrence. So, immunotherapy of hepatocellular carcinoma is increasingly becoming a research hotspot in liver cancer treatment. With the intensive research in recent years, great progress has been made in immunotherapy for hepatocellular carcinoma, including immune checkpoint inhibitors, pericyte therapy, vaccination, and antiviral therapy. In addition, the study found that the therapeutic effect of combination therapy was enhanced compared to monotherapy. This review summarizes the most prominent immunotherapies currently available for the clinical treatment of patients with HCC and the main opportunities and challenges facing HCC research.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073255266231025111125
2023-11-29
2025-04-02
Loading full text...

Full text loading...

References

  1. MarengoA. RossoC. BugianesiE. Liver Cancer: Connections with obesity, fatty liver, and cirrhosis.Annu. Rev. Med.201667110311710.1146/annurev‑med‑090514‑013832 26473416
    [Google Scholar]
  2. LeeY.H. TaiD. YipC. ChooS.P. ChewV. Combinational immunotherapy for hepatocellular carcinoma: Radiotherapy, immune checkpoint blockade and beyond.Front. Immunol.20201156875910.3389/fimmu.2020.568759 33117354
    [Google Scholar]
  3. TorrecillaS. SiaD. HarringtonA.N. ZhangZ. CabellosL. CornellaH. MoeiniA. CampreciosG. LeowW.Q. FielM.I. HaoK. BassaganyasL. MahajanM. ThungS.N. VillanuevaA. FlormanS. SchwartzM.E. LlovetJ.M. Trunk mutational events present minimal intra- and inter-tumoral heterogeneity in hepatocellular carcinoma.J. Hepatol.20176761222123110.1016/j.jhep.2017.08.013 28843658
    [Google Scholar]
  4. VillanuevaA. Hepatocellular carcinoma.N. Engl. J. Med.2019380151450146210.1056/NEJMra1713263 30970190
    [Google Scholar]
  5. LevreroM. Zucman-RossiJ. Mechanisms of HBV-induced hepatocellular carcinoma.J. Hepatol.2016641S84S10110.1016/j.jhep.2016.02.021 27084040
    [Google Scholar]
  6. CenterM.M. JemalA. International trends in liver cancer incidence rates.Cancer Epidemiol. Biomarkers Prev.201120112362236810.1158/1055‑9965.EPI‑11‑0643 21921256
    [Google Scholar]
  7. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches.Biochim. Biophys. Acta Rev. Cancer20201873118831410.1016/j.bbcan.2019.188314 31682895
    [Google Scholar]
  8. FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview.Int. J. Cancer2021149477878910.1002/ijc.33588 33818764
    [Google Scholar]
  9. JelicS. SotiropoulosG.C. GroupE.G.W. Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201021v59v6410.1093/annonc/mdq166 20555104
    [Google Scholar]
  10. KaneR.C. FarrellA.T. MadabushiR. BoothB. ChattopadhyayS. SridharaR. JusticeR. PazdurR. Sorafenib for the treatment of unresectable hepatocellular carcinoma.Oncologist20091419510010.1634/theoncologist.2008‑0185 19144678
    [Google Scholar]
  11. ZhuY. ZhengB. WangH. ChenL. New knowledge of the mechanisms of sorafenib resistance in liver cancer.Acta Pharmacol. Sin.201738561462210.1038/aps.2017.5 28344323
    [Google Scholar]
  12. XuF. JinT. ZhuY. DaiC. Immune checkpoint therapy in liver cancer.J. Exp. Clin. Cancer Res.201837111010.1186/s13046‑018‑0777‑4 29843754
    [Google Scholar]
  13. CoffeltS.B. de VisserK.E. Revving up dendritic cells while braking PD-L1 to jump-start the cancer-immunity cycle motor.Immunity201644472272410.1016/j.immuni.2016.03.014 27096314
    [Google Scholar]
  14. BoonT. CoulieP.G. EyndeB.J.V. BruggenP. Human T cell responses against melanoma.Annu. Rev. Immunol.200624117520810.1146/annurev.immunol.24.021605.090733 16551247
    [Google Scholar]
  15. CrispeI.N. The liver as a lymphoid organ.Annu. Rev. Immunol.200927114716310.1146/annurev.immunol.021908.132629 19302037
    [Google Scholar]
  16. SangroB. SarobeP. Hervás-StubbsS. MeleroI. Advances in immunotherapy for hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.202118852554310.1038/s41575‑021‑00438‑0 33850328
    [Google Scholar]
  17. RabinovichG.A. GabrilovichD. SotomayorE.M. Immunosuppressive strategies that are mediated by tumor cells.Annu. Rev. Immunol.200725126729610.1146/annurev.immunol.25.022106.141609 17134371
    [Google Scholar]
  18. VelchetiV. SchalperK. Basic overview of current immunotherapy approaches in cancer.Am. Soc. Clin. Oncol. Educ. Book2016353629830810.1200/EDBK_156572 27249709
    [Google Scholar]
  19. RotteA. JinJ.Y. LemaireV. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy.Ann. Oncol.2018291718310.1093/annonc/mdx686 29069302
    [Google Scholar]
  20. BaumanJ.E. FerrisR.L. Integrating novel therapeutic monoclonal antibodies into the management of head and neck cancer.Cancer2014120562463210.1002/cncr.28380 24222079
    [Google Scholar]
  21. PardollD.M. The blockade of immune checkpoints in cancer immunotherapy.Nat. Rev. Cancer201212425226410.1038/nrc3239 22437870
    [Google Scholar]
  22. AndersonA.C. JollerN. KuchrooV.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation.Immunity2016445989100410.1016/j.immuni.2016.05.001 27192565
    [Google Scholar]
  23. GranierC. De GuillebonE. BlancC. RousselH. BadoualC. ColinE. SaldmannA. GeyA. OudardS. TartourE. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer.ESMO Open201722e00021310.1136/esmoopen‑2017‑000213 28761757
    [Google Scholar]
  24. LiY.M. LiuZ.Y. LiZ.C. WangJ.C. YuJ.M. YangH.J. ChenZ.N. TangJ. Alterations of the immunologic Co-stimulator B7 and TNFR families correlate with hepatocellular carcinoma prognosis and metastasis by inactivating STAT3.Int. J. Mol. Sci.201920115610.3390/ijms20010156 30609841
    [Google Scholar]
  25. TrehanpatiN. VyasA.K. Immune regulation by T regulatory cells in hepatitis b virus‐related inflammation and cancer.Scand. J. Immunol.201785317518110.1111/sji.12524 28109025
    [Google Scholar]
  26. LiuF. ZengG. ZhouS. HeX. SunN. ZhuX. HuA. Blocking Tim-3 or/and PD-1 reverses dysfunction of tumor-infiltrating lymphocytes in HBV-related hepatocellular carcinoma.Bull. Cancer2018105549350110.1016/j.bulcan.2018.01.018 29576222
    [Google Scholar]
  27. DuanM. GoswamiS. ShiJ.Y. WuL.J. WangX.Y. MaJ.Q. ZhangZ. ShiY. MaL.J. ZhangS. XiR.B. CaoY. ZhouJ. FanJ. ZhangX.M. GaoQ. Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma.Clin. Cancer Res.201925113304331610.1158/1078‑0432.CCR‑18‑3040 30723143
    [Google Scholar]
  28. ZhouG. SprengersD. BoorP.P.C. DoukasM. SchutzH. ManchamS. Pedroza-GonzalezA. PolakW.G. de JongeJ. GasperszM. DongH. ThielemansK. PanQ. IJzermansJ.N.M. BrunoM.J. KwekkeboomJ. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating t cells in hepatocellular carcinomas.Gastroenterology2017153411071119.e1010.1053/j.gastro.2017.06.017 28648905
    [Google Scholar]
  29. ChenY. RamjiawanR.R. ReibergerT. NgM.R. HatoT. HuangY. OchiaiH. KitaharaS. UnanE.C. ReddyT.P. FanC. HuangP. BardeesyN. ZhuA.X. JainR.K. DudaD.G. CXCR4 inhibition in tumor microenvironment facilitates anti‐programmed death receptor‐1 immunotherapy in sorafenib‐treated hepatocellular carcinoma in mice.Hepatology20156151591160210.1002/hep.27665 25529917
    [Google Scholar]
  30. OkazakiT. HonjoT. PD-1 and PD-1 ligands: From discovery to clinical application.Int. Immunol.200719781382410.1093/intimm/dxm057 17606980
    [Google Scholar]
  31. LatchmanY. WoodC.R. ChernovaT. ChaudharyD. BordeM. ChernovaI. IwaiY. LongA.J. BrownJ.A. NunesR. GreenfieldE.A. BourqueK. BoussiotisV.A. CarterL.L. CarrenoB.M. MalenkovichN. NishimuraH. OkazakiT. HonjoT. SharpeA.H. FreemanG.J. PD-L2 is a second ligand for PD-1 and inhibits T cell activation.Nat. Immunol.20012326126810.1038/85330 11224527
    [Google Scholar]
  32. GreenwaldR.J. FreemanG.J. SharpeA.H. The B7 family revisited.Annu. Rev. Immunol.200523151554810.1146/annurev.immunol.23.021704.115611 15771580
    [Google Scholar]
  33. OkazakiT. MaedaA. NishimuraH. KurosakiT. HonjoT. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine.Proc. Natl. Acad. Sci.20019824138661387110.1073/pnas.231486598 11698646
    [Google Scholar]
  34. ParryR.V. ChemnitzJ.M. FrauwirthK.A. LanfrancoA.R. BraunsteinI. KobayashiS.V. LinsleyP.S. ThompsonC.B. RileyJ.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms.Mol. Cell. Biol.200525219543955310.1128/MCB.25.21.9543‑9553.2005 16227604
    [Google Scholar]
  35. PatsoukisN. BrownJ. PetkovaV. LiuF. LiL. BoussiotisV.A. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation.Sci. Signal.20125230ra4610.1126/scisignal.2002796 22740686
    [Google Scholar]
  36. MaJ. ZhengB. GoswamiS. MengL. ZhangD. CaoC. LiT. ZhuF. MaL. ZhangZ. ZhangS. DuanM. ChenQ. GaoQ. ZhangX. PD1Hi CD8+ T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma.J. Immunother. Cancer20197133110.1186/s40425‑019‑0814‑7 31783783
    [Google Scholar]
  37. ChangH. JungW. KimA. KimH.K. KimW.B. KimJ.H. KimB. Expression and prognostic significance of programmed death protein 1 and programmed death ligand-1, and cytotoxic T lymphocyte-associated molecule-4 in hepatocellular carcinoma.Acta Pathol. Microbiol. Scand. Suppl.2017125869069810.1111/apm.12703 28493410
    [Google Scholar]
  38. JungH.I. JeongD. JiS. AhnT.S. BaeS.H. ChinS. ChungJ.C. KimH.C. LeeM.S. BaekM.J. Overexpression of PD-L1 and PD-L2 is associated with poor prognosis in patients with hepatocellular carcinoma.Cancer Res. Treat.201749124625410.4143/crt.2016.066 27456947
    [Google Scholar]
  39. LiaoH. ChenW. DaiY. RichardsonJ.J. GuoJ. YuanK. ZengY. XieK. Expression of programmed cell death-ligands in hepatocellular carcinoma: Correlation with immune microenvironment and survival outcomes.Front. Oncol.2019988310.3389/fonc.2019.00883 31572677
    [Google Scholar]
  40. AhnE. ArakiK. HashimotoM. LiW. RileyJ.L. CheungJ. SharpeA.H. FreemanG.J. IrvingB.A. AhmedR. Role of PD-1 during effector CD8 T cell differentiation.Proc. Natl. Acad. Sci. 2018115184749475410.1073/pnas.1718217115 29654146
    [Google Scholar]
  41. ChenL. AsheS. BradyW.A. HellströmI. HellströmK.E. LedbetterJ.A. McGowanP. LinsleyP.S. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4.Cell19927171093110210.1016/S0092‑8674(05)80059‑5 1335364
    [Google Scholar]
  42. ChambersC.A. KuhnsM.S. EgenJ.G. AllisonJ.P. CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy.Annu. Rev. Immunol.200119156559410.1146/annurev.immunol.19.1.565 11244047
    [Google Scholar]
  43. CollinsA.V. BrodieD.W. GilbertR.J.C. IaboniA. Manso-SanchoR. WalseB. StuartD.I. van der MerweP.A. DavisS.J. The interaction properties of costimulatory molecules revisited.Immunity200217220121010.1016/S1074‑7613(02)00362‑X 12196291
    [Google Scholar]
  44. WingK. OnishiY. Prieto-MartinP. YamaguchiT. MiyaraM. FehervariZ. NomuraT. SakaguchiS. CTLA-4 control over Foxp3+ regulatory T cell function.Science2008322589927127510.1126/science.1160062 18845758
    [Google Scholar]
  45. M, J. Immune checkpoint inhibitor-associated myocarditis: Manifestations and mechanisms.J. Clin. Invest.20211315
    [Google Scholar]
  46. FurnessA.J.S. VargasF.A. PeggsK.S. QuezadaS.A. Impact of tumour microenvironment and Fc receptors on the activity of immunomodulatory antibodies.Trends Immunol.201435729029810.1016/j.it.2014.05.002 24953012
    [Google Scholar]
  47. DasM. ZhuC. KuchrooV.K. Tim‐3 and its role in regulating anti‐tumor immunity.Immunol. Rev.201727619711110.1111/imr.12520 28258697
    [Google Scholar]
  48. LiuF. LiuY. ChenZ. Tim-3 expression and its role in hepatocellular carcinoma.J. Hematol. Oncol.201811112610.1186/s13045‑018‑0667‑4 30309387
    [Google Scholar]
  49. AndersonA.C. Tim-3: An emerging target in the cancer immunotherapy landscape.Cancer Immunol. Res.20142539339810.1158/2326‑6066.CIR‑14‑0039 24795351
    [Google Scholar]
  50. SakuishiK. ApetohL. SullivanJ.M. BlazarB.R. KuchrooV.K. AndersonA.C. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity.J. Exp. Med.2010207102187219410.1084/jem.20100643 20819927
    [Google Scholar]
  51. YanJ. ZhangY. ZhangJ.P. LiangJ. LiL. ZhengL. Tim-3 expression defines regulatory T cells in human tumors.PLoS One201383e5800610.1371/journal.pone.0058006 23526963
    [Google Scholar]
  52. LiF. LiN. SangJ. FanX. DengH. ZhangX. HanQ. LvY. LiuZ. Highly elevated soluble Tim-3 levels correlate with increased hepatocellular carcinoma risk and poor survival of hepatocellular carcinoma patients in chronic hepatitis B virus infection.Cancer Manag. Res.20181094195110.2147/CMAR.S162478 29760564
    [Google Scholar]
  53. GrossoJ.F. KelleherC.C. HarrisT.J. MarisC.H. HipkissE.L. De MarzoA. AndersR. NettoG. GetnetD. BrunoT.C. GoldbergM.V. PardollD.M. DrakeC.G. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems.J. Clin. Invest.2007117113383339210.1172/JCI31184 17932562
    [Google Scholar]
  54. BruecklW.M. FickerJ.H. ZeitlerG. Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC).BMC Cancer2020201118510.1186/s12885‑020‑07690‑8 33272262
    [Google Scholar]
  55. LiuJ.F. Safety, clinical activity and bio-marker assessments of atezolizumab from a phase I study in ad-vanced/recurrent ovarian and uterine cancers.Gynecol. Oncol.201915431432210.1016/j.ygyno.2019.05.021 31204078
    [Google Scholar]
  56. HornL. Nivolumabversus Docetaxel in previously treated patients with advanced non-small-cell lung Cancer: Two-year outcomes from two randomized, open-label,phase III trials (CheckMate 017 and CheckMate 057).J. Clin. Oncol.201735353924393310.1200/JCO.2017.74.3062 29023213
    [Google Scholar]
  57. ReckM. Docetaxel plus nintedanib versus docetaxel plus placebo in patients withpreviously treated non-small-cell lung cancer (LUME-lung 1): A phase 3,double-blind, randomised controlled trial.Lancet Oncol.20141521410.1016/S1470‑2045(13)70586‑2 24411639
    [Google Scholar]
  58. BarlesiF. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomisedcontrolled trial.Lancet20173891006625526510.1016/S0140‑6736(16)32517‑X 27979383
    [Google Scholar]
  59. GretenT.F. Abou-AlfaG.K. ChengA.L. DuffyA.G. El-KhoueiryA.B. FinnR.S. GalleP.R. GoyalL. HeA.R. KasebA.O. KelleyR.K. LencioniR. LujambioA. Mabry HronesD. PinatoD.J. SangroB. TroisiR.I. Wilson WoodsA. YauT. ZhuA.X. MeleroI. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of hepatocellular carcinoma.J. Immunother. Cancer202199e00279410.1136/jitc‑2021‑002794 34518290
    [Google Scholar]
  60. TopalianS.L. SznolM. McDermottD.F. KlugerH.M. CarvajalR.D. SharfmanW.H. BrahmerJ.R. LawrenceD.P. AtkinsM.B. PowderlyJ.D. LemingP.D. LipsonE.J. PuzanovI. SmithD.C. TaubeJ.M. WiggintonJ.M. KolliaG.D. GuptaA. PardollD.M. SosmanJ.A. HodiF.S. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab.J. Clin. Oncol.201432101020103010.1200/JCO.2013.53.0105 24590637
    [Google Scholar]
  61. LanitisT. ProskorovskyI. AmbavaneA. HungerM. ZhengY. BharmalM. PhatakH. Survival analysis in patients with metastatic merkel cell carcinoma treated with avelumab.Adv. Ther.20193692327234110.1007/s12325‑019‑01034‑0 31350728
    [Google Scholar]
  62. WangP.F. ChenY. SongS.Y. WangT.J. JiW.J. LiS.W. LiuN. YanC.X. immune-related adverse events associated with anti-PD-1/PD-L1 Treatment for Malignancies: A meta-analysis.Front. Pharmacol.2017873010.3389/fphar.2017.00730 29093678
    [Google Scholar]
  63. TangL. WangJ. LinN. ZhouY. HeW. LiuJ. MaX. Immune checkpoint inhibitor-associated colitis: From mechanism to management.Front. Immunol.20211280087910.3389/fimmu.2021.800879 34992611
    [Google Scholar]
  64. WangH. GuoX. ZhouJ. LiY. DuanL. SiX. ZhangL. LiuX. WangM. ShiJ. ZhangL. Clinical diagnosis and treatment of immune checkpoint inhibitor‐associated pneumonitis.Thorac. Cancer202011119119710.1111/1759‑7714.13240 31762218
    [Google Scholar]
  65. IllouzF. BrietC. RodienP. Immune checkpoint inhibitor-related thyroid dysfunction.Ann. Endocrinol. 202384334635010.1016/j.ando.2023.03.005 36963755
    [Google Scholar]
  66. DowE.R. YungM. TsuiE. Immune checkpoint inhibitor-associated uveitis: Review of treatments and outcomes.Ocul. Immunol. Inflamm.202129120321110.1080/09273948.2020.1781902 32815757
    [Google Scholar]
  67. WangZ. CaoY.J. Adoptive cell therapy targeting neoantigens: A frontier for cancer research.Front. Immunol.20201117610.3389/fimmu.2020.00176 32194541
    [Google Scholar]
  68. RosenbergS.A. RestifoN.P. Adoptive cell transfer as personalized immunotherapy for human cancer.Science20153486230626810.1126/science.aaa4967 25838374
    [Google Scholar]
  69. HendricksonP.G. OlsonM. LuetkensT. WestonS. HanT. AtanackovicD. FineG.C. The promise of adoptive cellular immunotherapies in hepatocellular carcinoma.OncoImmunology202091167312910.1080/2162402X.2019.1673129 32002284
    [Google Scholar]
  70. HayK.A. HanafiL.A. LiD. GustJ. LilesW.C. WurfelM.M. LópezJ.A. ChenJ. ChungD. Harju-BakerS. CherianS. ChenX. RiddellS.R. MaloneyD.G. TurtleC.J. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor–modified T-cell therapy.Blood2017130212295230610.1182/blood‑2017‑06‑793141 28924019
    [Google Scholar]
  71. RathJ.A. ArberC. Engineering strategies to Enhance TCR-based adoptive T cell therapy.Cells202096148510.3390/cells9061485 32570906
    [Google Scholar]
  72. JiangX. XuJ. LiuM. XingH. WangZ. HuangL. MellorA.L. WangW. WuS. Adoptive CD8+ T cell therapy against cancer:Challenges and opportunities.Cancer Lett.2019462233210.1016/j.canlet.2019.07.017 31356845
    [Google Scholar]
  73. TudorT. BinderZ.A. O’RourkeD.M. CellsC.A.R.T. CAR T Cells.Neurosurg. Clin. N. Am.202132224926310.1016/j.nec.2020.12.005 33781506
    [Google Scholar]
  74. WatanabeK. NishikawaH. Engineering strategies for broad application of TCR-T- and CAR-T-cell therapies.Int. Immunol.2021331155156210.1093/intimm/dxab052 34374779
    [Google Scholar]
  75. LiuZ. LiuX. LiangJ. LiuY. HouX. ZhangM. LiY. JiangX. Immunotherapy for hepatocellular carcinoma: Current status and future prospects.Front. Immunol.20211276510110.3389/fimmu.2021.765101 34675942
    [Google Scholar]
  76. RosenbergS.A. PackardB.S. AebersoldP.M. SolomonD. TopalianS.L. ToyS.T. SimonP. LotzeM.T. YangJ.C. SeippC.A. SimpsonC. CarterC. BockS. SchwartzentruberD. WeiJ.P. WhiteD.E. Use tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma.N. Engl. J. Med.1988319251676168010.1056/NEJM198812223192527 3264384
    [Google Scholar]
  77. JuneC.H. SadelainM. Chimeric antigen receptor therapy.N. Engl. J. Med.20183791647310.1056/NEJMra1706169 29972754
    [Google Scholar]
  78. RosenbergS.A. PackardB.S. AebersoldP.M. SolomonD. TopalianS.L. ToyS.T. SimonP. LotzeM.T. YangJ.C. SeippC.A. SimpsonC. CarterC. BockS. SchwartzentruberD. WeiJ.P. WhiteD.E. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report.N. Engl. J. Med.1988319251676168010.1056/NEJM198812223192527 3264384
    [Google Scholar]
  79. RosenbergS.A. SpiessP. LafreniereR. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes.Science198623347701318132110.1126/science.3489291 3489291
    [Google Scholar]
  80. StevanovićS. DraperL.M. LanghanM.M. CampbellT.E. KwongM.L. WunderlichJ.R. DudleyM.E. YangJ.C. SherryR.M. KammulaU.S. RestifoN.P. RosenbergS.A. HinrichsC.S. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells.J. Clin. Oncol.201533141543155010.1200/JCO.2014.58.9093 25823737
    [Google Scholar]
  81. StraathofK.C. PulèM.A. YotndaP. DottiG. VaninE.F. BrennerM.K. HeslopH.E. SpencerD.M. RooneyC.M. An inducible caspase 9 safety switch for T-cell therapy.Blood2005105114247425410.1182/blood‑2004‑11‑4564 15728125
    [Google Scholar]
  82. KoboldS. SteffenJ. ChaloupkaM. GrassmannS. HenkelJ. CastoldiR. ZengY. ChmielewskiM. SchmollingerJ.C. SchnurrM. RothenfußerS. SchendelD.J. AbkenH. SustmannC. NiederfellnerG. KleinC. BourquinC. EndresS. Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer.J. Natl. Cancer Inst.20141071364 25424197
    [Google Scholar]
  83. GrecoR. OliveiraG. StanghelliniM.T.L. VagoL. BondanzaA. PeccatoriJ. CieriN. MarktelS. MastaglioS. BordignonC. BoniniC. CiceriF. Improving the safety of cell therapy with the TK-suicide gene.Front. Pharmacol.201569510.3389/fphar.2015.00095 25999859
    [Google Scholar]
  84. DavisM.M. BonifaceJ.J. ReichZ. LyonsD. HamplJ. ArdenB. ChienY. Ligand recognition by αβ t cell receptors.Annu. Rev. Immunol.199816152354410.1146/annurev.immunol.16.1.523 9597140
    [Google Scholar]
  85. CaoY. RodgersD.T. DuJ. AhmadI. HamptonE.N. MaJ.S.Y. MazagovaM. ChoiS. YunH.Y. XiaoH. YangP. LuoX. LimR.K.V. PughH.M. WangF. KazaneS.A. WrightT.M. KimC.H. SchultzP.G. YoungT.S. Design of switchable chimeric antigen receptor T cells targeting breast cancer.Angew. Chem. Int. Ed.201655267520752410.1002/anie.201601902 27145250
    [Google Scholar]
  86. RodgersD.T. MazagovaM. HamptonE.N. CaoY. RamadossN.S. HardyI.R. SchulmanA. DuJ. WangF. SingerO. MaJ. NunezV. ShenJ. WoodsA.K. WrightT.M. SchultzP.G. KimC.H. YoungT.S. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies.Proc. Natl. Acad. Sci. 20161134E459E46810.1073/pnas.1524155113 26759369
    [Google Scholar]
  87. HuZ. OttP.A. WuC.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer.Nat. Rev. Immunol.201818316818210.1038/nri.2017.131 29226910
    [Google Scholar]
  88. LongJ. WangA. BaiY. LinJ. YangX. WangD. YangX. JiangY. ZhaoH. Development and validation of a TP53-associated immune prognostic model for hepatocellular carcinoma.EBioMedicine20194236337410.1016/j.ebiom.2019.03.022 30885723
    [Google Scholar]
  89. De ReV. TorneselloM.L. De ZorziM. CaggiariL. PezzutoF. LeoneP. RacanelliV. LaulettaG. GragnaniL. BuonadonnaA. VaccherE. ZignegoA.L. SteffanA. BuonaguroF.M. Clinical significance of polymorphisms in immune response genes in hepatitis c-related hepatocellular carcinoma.Front. Microbiol.20191047510.3389/fmicb.2019.00475 30930876
    [Google Scholar]
  90. ZongyiY. XiaowuL. Immunotherapy for hepatocellular carcinoma.Cancer Lett.202047081710.1016/j.canlet.2019.12.002 31811905
    [Google Scholar]
  91. NeldeA. RammenseeH.G. WalzJ.S. The peptide vaccine of the future.Mol. Cell. Proteomics20212010002210.1074/mcp.R120.002309 33583769
    [Google Scholar]
  92. SantosP.M. ButterfieldL.H. Dendritic cell-based cancer vaccines.J. Immunol.2018200244344910.4049/jimmunol.1701024 29311386
    [Google Scholar]
  93. TianY. XieD. YangL. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy.Signal Transduct. Target. Ther.20227111710.1038/s41392‑022‑00951‑x 35387984
    [Google Scholar]
  94. HirayamaM. NishimuraY. The present status and future prospects of peptide-based cancer vaccines.Int. Immunol.201628731932810.1093/intimm/dxw027 27235694
    [Google Scholar]
  95. NakamotoY. MizukoshiE. KitaharaM. AriharaF. SakaiY. KakinokiK. FujitaY. MarukawaY. AraiK. YamashitaT. MukaidaN. MatsushimaK. MatsuiO. KanekoS. Prolonged recurrence-free survival following OK432-stimulated dendritic cell transfer into hepatocellular carcinoma during transarterial embolization.Clin. Exp. Immunol.2011163216517710.1111/j.1365‑2249.2010.04246.x 21087443
    [Google Scholar]
  96. ButterfieldL.H. RibasA. DissetteV.B. LeeY. YangJ.Q. De la RochaP. DuranS.D. HernandezJ. SejaE. PotterD.M. McBrideW.H. FinnR. GlaspyJ.A. EconomouJ.S. A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides.Clin. Cancer Res.20061292817282510.1158/1078‑0432.CCR‑05‑2856 16675576
    [Google Scholar]
  97. HollingdaleM.R. SedegahM. Development of whole sporozoite malaria vaccines.Expert Rev. Vaccines2017161455410.1080/14760584.2016.1203784 27327875
    [Google Scholar]
  98. CabillicF. ToutiraisO. LavouéV. de La PintièreC.T. DanielP. Rioux-LeclercN. TurlinB. MönkkönenH. MönkkönenJ. BoudjemaK. CatrosV. Bouet-ToussaintF. Aminobisphosphonate-pretreated dendritic cells trigger successful Vγ9Vδ2 T cell amplification for immunotherapy in advanced cancer patients.Cancer Immunol. Immunother.201059111611161910.1007/s00262‑010‑0887‑0 20582413
    [Google Scholar]
  99. WangX. WangQ. Alpha-fetoprotein and hepatocellular carcinoma immunity.Can. J. Gastroenterol. Hepatol.201820181810.1155/2018/9049252 29805966
    [Google Scholar]
  100. GaoF. ZhuH.K. ZhuY.B. ShanQ.N. LingQ. WeiX.Y. XieH.Y. ZhouL. XuX. ZhengS.S. Predictive value of tumor markers in patients with recurrent hepatocellular carcinoma in different vascular invasion pattern.Hepatobiliary Pancreat. Dis. Int.201615437137710.1016/S1499‑3872(16)60095‑4 27498576
    [Google Scholar]
  101. BuendiaM.A. Hepatocellular carcinoma. Cold Spring Haebor Persp. Med20155
    [Google Scholar]
  102. ZhuM. LuY. LiW. GuoJ. DongX. LinB. ChenY. XieX. LiM. HepatitisB. VirusX. Hepatitis b virus x protein driven alpha fetoprotein expression to promote malignant behaviors of normal liver cells and hepatoma cells.J. Cancer20167893594610.7150/jca.13628 27313784
    [Google Scholar]
  103. MengW. LiX. BaiZ. LiY. YuanJ. LiuT. YanJ. ZhouW. ZhuK. ZhangH. LiY. Silencing alpha-fetoprotein inhibits VEGF and MMP-2/9 production in human hepatocellular carcinoma cell.PLoS One201492e9066010.1371/journal.pone.0090660 24587407
    [Google Scholar]
  104. LiM. LiH. LiC. ZhouS. GuoL. LiuH. JiangW. LiuX. LiP. McNuttM.A. LiG. Alpha fetoprotein is a novel protein-binding partner for caspase-3 and blocks the apoptotic signaling pathway in human hepatoma cells.Int. J. Cancer2009124122845285410.1002/ijc.24272 19267404
    [Google Scholar]
  105. MengW. BaiB. BaiZ. LiY. YueP. LiX. QiaoL. The immunosuppression role of alpha-fetoprotein in human hepatocellular carcinoma.Discov. Med.201621118489494 27448785
    [Google Scholar]
  106. SongW. SongC. ChenY. DuM. HuP. LiuA. LuW. Polysaccharide-induced apoptosis in H22 cells through G2/M arrest and BCL2/BAX caspase-activated Fas pathway.Cell. Mol. Biol.20156178895 26612738
    [Google Scholar]
  107. SchmidtN. Neumann-HaefelinC. ThimmeR. Cellular immune responses to hepatocellular carcinoma: Lessons for immunotherapy.Dig. Dis.201230548349110.1159/000341697 23108304
    [Google Scholar]
  108. TadaF. AbeM. HirookaM. IkedaY. HiasaY. LeeY. JungN.C. LeeW.B. LeeH.S. BaeY.S. OnjiM. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma.Int. J. Oncol.20124151601160910.3892/ijo.2012.1626 22971679
    [Google Scholar]
  109. ZoulimF. SaputelliJ. SeegerC. Woodchuck hepatitis virus X protein is required for viral infection in vivo.J. Virol.19946832026203010.1128/jvi.68.3.2026‑2030.1994 8107266
    [Google Scholar]
  110. YangJ.D. HainautP. GoresG.J. AmadouA. PlymothA. RobertsL.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management.Nat. Rev. Gastroenterol. Hepatol.2019161058960410.1038/s41575‑019‑0186‑y 31439937
    [Google Scholar]
  111. PolS. LagayeS. The remarkable history of the hepatitis C virus.Genes Immun.201920543644610.1038/s41435‑019‑0066‑z 31019253
    [Google Scholar]
  112. BlumbergB.S. Hepatitis B virus, the vaccine, and the control of primary cancer of the liver.Proc. Natl. Acad. Sci. USA199794147121712510.1073/pnas.94.14.7121 9207053
    [Google Scholar]
  113. BoschF.X. RibesJ. ClériesR. DíazM. Epidemiology of hepatocellular carcinoma.Clin. Liver Dis.200592191211v.10.1016/j.cld.2004.12.00915831268
    [Google Scholar]
  114. LagiouP. KuperH. StuverS.O. TzonouA. TrichopoulosD. AdamiH.O. Role of diabetes mellitus in the etiology of hepatocellular carcinoma.J. Natl. Cancer Inst.200092131096109910.1093/jnci/92.13.1096 10880555
    [Google Scholar]
  115. WideroffL. GridleyG. ChowW-H. LinetM. MellemkjaerL. OlsenJ.H. KeehnS. Borch-JohnsenK. Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark.J. Natl. Cancer Inst.199789181360136510.1093/jnci/89.18.1360 9308706
    [Google Scholar]
  116. AdamiH.O. ChowW.H. NyrénO. BerneC. LinetM.S. EkbomA. WolkA. McLaughlinJ.K. FraumeniJ.F.Jr Excess risk of primary liver cancer in patients with diabetes mellitus.J. Natl. Cancer Inst.199688201472147710.1093/jnci/88.20.1472 8841022
    [Google Scholar]
  117. El-seragH.B. TranT. EverhartJ.E. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma.Gastroenterology2004126246046810.1053/j.gastro.2003.10.065 14762783
    [Google Scholar]
  118. LinC.L. KaoJ.H. HepatitisB. HepatitisB. Gastroenterol. Clin. North Am.202049220121410.1016/j.gtc.2020.01.010 32389359
    [Google Scholar]
  119. BoschF.X. RibesJ. DíazM. ClériesR. Primary liver cancer: Worldwide incidence and trends.Gastroenterology20041275S5S1610.1053/j.gastro.2004.09.011 15508102
    [Google Scholar]
  120. KanwalF. KramerJ. AschS.M. ChayanupatkulM. CaoY. El-SeragH.B. Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents.Gastroenterology201715349961005.e110.1053/j.gastro.2017.06.012 28642197
    [Google Scholar]
  121. LiawY.F. SungJ.J.Y. ChowW.C. FarrellG. LeeC.Z. YuenH. TanwandeeT. TaoQ.M. ShueK. KeeneO.N. DixonJ.S. GrayD.F. SabbatJ. Lamivudine for patients with chronic hepatitis B and advanced liver disease.N. Engl. J. Med.2004351151521153110.1056/NEJMoa033364 15470215
    [Google Scholar]
  122. ChienY.C. JanC.F. ChiangC.J. KuoH.S. YouS.L. ChenC.J. Incomplete hepatitis B immunization, maternal carrier status, and increased risk of liver diseases: A 20-year cohort study of 3.8 million vaccinees.Hepatology201460112513210.1002/hep.27048 24497203
    [Google Scholar]
  123. MiyakeY. KobashiH. YamamotoK. Meta-analysis: The effect of interferon on development of hepatocellular carcinoma in patients with chronic hepatitis B virus infection.J. Gastroenterol.200944547047510.1007/s00535‑009‑0024‑z 19308310
    [Google Scholar]
  124. YangY.F. ZhaoW. ZhongY.D. XiaH.M. ShenL. ZhangN. Interferon therapy in chronic hepatitis B reduces progression to cirrhosis and hepatocellular carcinoma: A meta-analysis.J. Viral Hepat.200916426527110.1111/j.1365‑2893.2009.01070.x 19220736
    [Google Scholar]
  125. WongG.L.H. YiuK.K.L. WongV.W.S. TsoiK.K.F. ChanH.L.Y. Meta-analysis: Reduction in hepatic events following interferon-alfa therapy of chronic hepatitis B.Aliment. Pharmacol. Ther.20103291059106810.1111/j.1365‑2036.2010.04447.x 20807216
    [Google Scholar]
  126. BruixJ. HanK.H. GoresG. LlovetJ.M. MazzaferroV. Liver cancer: Approaching a personalized care.J. Hepatol.2015621S144S15610.1016/j.jhep.2015.02.007 25920083
    [Google Scholar]
  127. LlovetJ.M. De BaereT. KulikL. HaberP.K. GretenT.F. MeyerT. LencioniR. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.202118529331310.1038/s41575‑020‑00395‑0 33510460
    [Google Scholar]
  128. WebbH. LubnerM.G. HinshawJ.L. Thermal Ablation.Semin. Roentgenol.201146213314110.1053/j.ro.2010.08.002 21338838
    [Google Scholar]
  129. HaenS.P. PereiraP.L. SalihH.R. RammenseeH.G. GouttefangeasC. More than just tumor destruction: Immunomodulation by thermal ablation of cancer.Clin. Dev. Immunol.2011201111910.1155/2011/160250 22242035
    [Google Scholar]
  130. LlovetJ.M. RealM.I. MontañaX. PlanasR. CollS. AponteJ. AyusoC. SalaM. MuchartJ. SolàR. RodésJ. BruixJ. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: A randomised controlled trial.Lancet200235993191734173910.1016/S0140‑6736(02)08649‑X 12049862
    [Google Scholar]
  131. LlovetJ. BruixJ. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival.Hepatology200337242944210.1053/jhep.2003.50047 12540794
    [Google Scholar]
  132. LencioniR. de BaereT. SoulenM.C. RillingW.S. GeschwindJ.F.H. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: A systematic review of efficacy and safety data.Hepatology201664110611610.1002/hep.28453 26765068
    [Google Scholar]
  133. HanG. BerhaneS. ToyodaH. BettingerD. ElshaarawyO. ChanA.W.H. KirsteinM. MosconiC. HuckeF. PalmerD. PinatoD.J. SharmaR. OttavianiD. JangJ.W. LabeurT.A. van DeldenO.M. PirisiM. SternN. SangroB. MeyerT. FateenW. García-FiñanaM. GomaaA. WakedI. RewishaE. AithalG.P. TravisS. KudoM. CucchettiA. Peck-RadosavljevicM. TakkenbergR.B. ChanS.L. VogelA. JohnsonP.J. Prediction of survival among patients receiving transarterial chemoembolization for hepatocellular carcinoma: A response‐based approach.Hepatology202072119821210.1002/hep.31022 31698504
    [Google Scholar]
  134. PalmerD.H. MalagariK. KulikL.M. Role of locoregional therapies in the wake of systemic therapy.J. Hepatol.202072227728710.1016/j.jhep.2019.09.023 31954492
    [Google Scholar]
  135. PereiraP.L. Actual role of radiofrequency ablation of liver metastases.Eur. Radiol.20071782062207010.1007/s00330‑007‑0587‑0 17429644
    [Google Scholar]
  136. ClasenS. KroberS.M. KosanB. AebertH. FendF. BomchesA. ClaussenC.D. PereiraP.L. Pathomorphologic evaluation of pulmonary radiofrequency ablation.Cancer2008113113121312910.1002/cncr.23882 18973180
    [Google Scholar]
  137. BreenD.J. LencioniR. Image-guided ablation of primary liver and renal tumours.Nat. Rev. Clin. Oncol.201512317518610.1038/nrclinonc.2014.237 25601446
    [Google Scholar]
  138. RocourtD.V. ShielsW.E. HammondS. BesnerG.E. Contemporary management of benign hepatic adenoma using percutaneous radiofrequency ablation.J. Pediatr. Surg.20064161149115210.1016/j.jpedsurg.2006.01.064 16769351
    [Google Scholar]
  139. BoyvatF. Local ablation for hepatocellular carcinoma.Exp. Clin. Transplant.201412Suppl. 1555910.6002/ect.25Liver.L52 24635794
    [Google Scholar]
  140. WrightA.S. SampsonL.A. WarnerT.F. MahviD.M. LeeF.T. Radiofrequency versus microwave ablation in a hepatic porcine model.Radiology2005236113213910.1148/radiol.2361031249 15987969
    [Google Scholar]
  141. R, L. Early stage hepatocellular carcinoma in patients with cirrhosis: Long-term results of percutaneous image-guided.Radiology2005234396196710.1148/radiol.2343040350 15665226
    [Google Scholar]
  142. ZemlyakA. MooreW.H. BilfingerT.V. Comparison of survival after sublobar resections and ablative therapies for stage I non-small cell lung cancer.J. Am. Coll. Surg.20102111687210.1016/j.jamcollsurg.2010.03.020 20610251
    [Google Scholar]
  143. GuenetteJ.P. DupuyD.E. Radiofrequency ablation of colorectal hepatic metastases.J. Surg. Oncol.2010102897898710.1002/jso.21658 21166002
    [Google Scholar]
  144. LeungE.Y. RoxburghC.S. LeenE. HorganP.G. Combined resection and radiofrequency ablation for bilobar colorectal cancer liver metastases.Hepatogastroenterology201057974146 20422869
    [Google Scholar]
  145. CheungT.T. NgK.K. ChokK.S. ChanS.C. PoonR.T. LoC.M. FanS.T. Combined resection and radiofrequency ablation for multifocal hepatocellular carcinoma: Prognosis and outcomes.World J. Gastroenterol.201016243056306210.3748/wjg.v16.i24.3056 20572310
    [Google Scholar]
  146. DengM. LiS.H. GuoR.P. Recent advances in local thermal ablation therapy for hepatocellular carcinoma.Am. Surg.202131348211054532 34743609
    [Google Scholar]
  147. XuY. ShenQ. WangN. WuP.P. HuangB. KuangM. QianG.J. Microwave ablation is as effective as radiofrequency ablation for very-early-stage hepatocellular carcinoma.Chin. J. Cancer20173611410.1186/s40880‑017‑0183‑x 28103953
    [Google Scholar]
  148. Van LeendersG.J.L.H. BeerlageH.P. RuijterE.T. de la RosetteJ.J. van de KaaC.A. Histopathological changes associated with high intensity focused ultrasound (HIFU) treatment for localised adenocarcinoma of the prostate.J. Clin. Pathol.200053539139410.1136/jcp.53.5.391 10889823
    [Google Scholar]
  149. FischerK. GedroycW. JoleszF.A. Focused ultrasound as a local therapy for liver cancer.Cancer J.201016211812410.1097/PPO.0b013e3181db7c32 20404608
    [Google Scholar]
  150. KennedyJ.E. High-intensity focused ultrasound in the treatment of solid tumours.Nat. Rev. Cancer20055432132710.1038/nrc1591 15776004
    [Google Scholar]
  151. KramerG. SteinerG.E. GröblM. HrachowitzK. ReithmayrF. PauczL. NewmanM. MadersbacherS. GruberD. SusaniM. MarbergerM. Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells.Prostate200458210912010.1002/pros.10314 14716736
    [Google Scholar]
  152. LuP. ZhuX.Q. XuZ.L. ZhouQ. ZhangJ. WuF. Increased infiltration of activated tumor-infiltrating lymphocytes after high intensity focused ultrasound ablation of human breast cancer.Surgery2009145328629310.1016/j.surg.2008.10.010 19231581
    [Google Scholar]
  153. WuF. WangZ.B. CaoY.D. ZhouQ. ZhangY. XuZ.L. ZhuX.Q. Expression of tumor antigens and heat-shock protein 70 in breast cancer cells after high-intensity focused ultrasound ablation.Ann. Surg. Oncol.20071431237124210.1245/s10434‑006‑9275‑6 17187168
    [Google Scholar]
  154. SabelM.S. SuG. GriffithK.A. ChangA.E. Rate of freeze alters the immunologic response after cryoablation of breast cancer.Ann. Surg. Oncol.20101741187119310.1245/s10434‑009‑0846‑1 20033323
    [Google Scholar]
  155. HoffmannN.E. BischofJ.C. The cryobiology of cryosurgical injury.Urology2002602404910.1016/S0090‑4295(02)01683‑7 12206847
    [Google Scholar]
  156. SabelM.S. Cryo-immunology: A review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses.Cryobiology200958111110.1016/j.cryobiol.2008.10.126 19007768
    [Google Scholar]
  157. ChiuD. NiuL. MuF. PengX. ZhouL. LiH. LiR. NiJ. JiangN. HuY. HaoZ. XuK. The experimental study for efficacy and safety of pancreatic cryosurgery.Cryobiology201060328128610.1016/j.cryobiol.2010.01.006 20152824
    [Google Scholar]
  158. SeifertJ.K. MorrisD.L. World survey on the complications of hepatic and prostate cryotherapy.World J. Surg.199923210911410.1007/PL00013173 9880417
    [Google Scholar]
  159. SeifertJ.K. FranceM.P. ZhaoJ. BoltonE.J. FinlayI. JungingerT. MorrisD.L. Large volume hepatic freezing: Association with significant release of the cytokines interleukin-6 and tumor necrosis factor a in a rat model.World J. Surg.200226111333134110.1007/s00268‑002‑6139‑5 12297923
    [Google Scholar]
  160. ChapmanW.C. DebelakJ.P. BlackwellT.S. GainerK.A. ChristmanJ.W. PinsonC.W. BrighamK.L. ParkerR.E. Hepatic cryoablation-induced acute lung injury: Pulmonary hemodynamic and permeability effects in a sheep model.Arch. Surg.2000135666767210.1001/archsurg.135.6.667 10843362
    [Google Scholar]
  161. JansenM.C. van HillegersbergR. SchootsI.G. LeviM. BeekJ.F. CrezeeH. van GulikT.M. Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model.Surgery2010147568669510.1016/j.surg.2009.10.053 20042207
    [Google Scholar]
  162. GravanteG. SconocchiaG. OngS.L. DennisonA.R. LloydD.M. Immunoregulatory effects of liver ablation therapies for the treatment of primary and metastatic liver malignancies.Liver Int.2009291182410.1111/j.1478‑3231.2008.01915.x 19018971
    [Google Scholar]
  163. StaffordR.J. FuentesD. ElliottA.A. WeinbergJ.S. AhrarK. Laser-induced thermal therapy for tumor ablation.Crit. Rev. Biomed. Eng.20103817910010.1615/CritRevBiomedEng.v38.i1.70 21175405
    [Google Scholar]
  164. AliM.Y. GrimmC.F. RitterM. MohrL. AllgaierH.P. WethR. BocherW.O. EndrulatK. BlumH.E. GeisslerM. Activation of dendritic cells by local ablation of hepatocellular carcinoma.J. Hepatol.200543581782210.1016/j.jhep.2005.04.016 16087270
    [Google Scholar]
  165. ZerbiniA. PilliM. PennaA. PelosiG. SchianchiC. MolinariA. SchivazappaS. ZiberaC. FagnoniF.F. FerrariC. MissaleG. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses.Cancer Res.20066621139114610.1158/0008‑5472.CAN‑05‑2244 16424051
    [Google Scholar]
  166. ZerbiniA. PilliM. FagnoniF. PelosiG. PizziM.G. SchivazappaS. Increased immunostimulatory activity conferred to antigen-presentingcells by exposure to antigen extract from hepatocellular carcinomaafter radiofrequency thermal ablation.J. Immunother. Cancer200831327182
    [Google Scholar]
  167. NaultC. Dynamic of systemic immunity and its impact on tumor recurrence afterradiofrequency ablation of hepatocellular carcinoma.OncoImmunology201988
    [Google Scholar]
  168. ShiL. PD-1 Blockade BoostsRadiofrequency Ablation-Elicited Adaptive Immune Responses Againsttumor.Clin. Cancer Res.20162251173118410.1158/1078‑0432.CCR‑15‑1352 26933175
    [Google Scholar]
  169. FeiQ. High-dimensional single-cell analysis delineates radiofrequency ablation induced immunemicroenvironmental remodeling in pancreatic cancer.Cell Death Dis.202011710.1038/s41419‑020‑02787‑1 32719347
    [Google Scholar]
  170. LeuchteK. Microwaveablation enhances tumor-specific immune response in patients withhepatocellular carcinoma.Cancer Immunol. Immunother.202170489390710.1007/s00262‑020‑02734‑1 33006650
    [Google Scholar]
  171. ZhouL. Upregulationof circulating PD-L1/PD-1 is associated with poor post-cryoablationprognosis in patients with hbv-related hepatocellular carcinoma.PLoS One201169
    [Google Scholar]
  172. DaiZ. WangZ. LeiK. LiaoJ. PengZ. LinM. LiangP. YuJ. PengS. ChenS. KuangM. Irreversible electroporation induces CD8+ T cell immune response against post-ablation hepatocellular carcinoma growth.Cancer Lett.202150311010.1016/j.canlet.2021.01.001 33444692
    [Google Scholar]
  173. WolchokJ.D. Chiarion-SileniV. GonzalezR. RutkowskiP. GrobJ.J. CoweyC.L. LaoC.D. WagstaffJ. SchadendorfD. FerrucciP.F. SmylieM. DummerR. HillA. HoggD. HaanenJ. CarlinoM.S. BechterO. MaioM. Marquez-RodasI. GuidoboniM. McArthurG. LebbéC. AsciertoP.A. LongG.V. CebonJ. SosmanJ. PostowM.A. CallahanM.K. WalkerD. RollinL. BhoreR. HodiF.S. LarkinJ. Overall survival with combined nivolumab and ipilimumab in advanced melanoma.N. Engl. J. Med.2017377141345135610.1056/NEJMoa1709684 28889792
    [Google Scholar]
  174. XingR. GaoJ. CuiQ. WangQ. Strategies to improve the antitumor effect of immunotherapy for hepatocellular carcinoma.Front. Immunol.20211278323610.3389/fimmu.2021.783236 34899747
    [Google Scholar]
  175. FifeB.T. BluestoneJ.A. Control of peripheral T‐cell tolerance and autoimmunity via the CTLA‐4 and PD‐1 pathways.Immunol. Rev.2008224116618210.1111/j.1600‑065X.2008.00662.x 18759926
    [Google Scholar]
  176. DasR. VermaR. SznolM. BoddupalliC.S. GettingerS.N. KlugerH. CallahanM. WolchokJ.D. HalabanR. DhodapkarM.V. DhodapkarK.M. Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.J. Immunol.2015194395095910.4049/jimmunol.1401686 25539810
    [Google Scholar]
  177. LarkinJ. Chiarion-SileniV. GonzalezR. GrobJ.J. CoweyC.L. LaoC.D. SchadendorfD. DummerR. SmylieM. RutkowskiP. FerrucciP.F. HillA. WagstaffJ. CarlinoM.S. HaanenJ.B. MaioM. Marquez-RodasI. McArthurG.A. AsciertoP.A. LongG.V. CallahanM.K. PostowM.A. GrossmannK. SznolM. DrenoB. BastholtL. YangA. RollinL.M. HorakC. HodiF.S. WolchokJ.D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma.N. Engl. J. Med.20153731233410.1056/NEJMoa1504030 26027431
    [Google Scholar]
  178. PostowM.A. Nivolumab and ipilimumab versus ipili-mumab in untreated melanoma.N. Engl. J. Med.20153722006201710.1056/NEJMoa1414428 25891304
    [Google Scholar]
  179. LarkinJ. Chiarion-SileniV. GonzalezR. GrobJ.J. RutkowskiP. LaoC.D. CoweyC.L. SchadendorfD. WagstaffJ. DummerR. FerrucciP.F. SmylieM. HoggD. HillA. Márquez-RodasI. HaanenJ. GuidoboniM. MaioM. SchöffskiP. CarlinoM.S. LebbéC. McArthurG. AsciertoP.A. DanielsG.A. LongG.V. BastholtL. RizzoJ.I. BaloghA. MoshykA. HodiF.S. WolchokJ.D. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma.N. Engl. J. Med.2019381161535154610.1056/NEJMoa1910836 31562797
    [Google Scholar]
  180. ShigetaK. DattaM. HatoT. KitaharaS. ChenI.X. MatsuiA. KikuchiH. MamessierE. AokiS. RamjiawanR.R. OchiaiH. BardeesyN. HuangP. CobboldM. ZhuA.X. JainR.K. DudaD.G. Dual Programmed Death Receptor‐1 and Vascular Endothelial Growth Factor Receptor‐2 Blockade Promotes Vascular Normalization and Enhances Antitumor Immune Responses in Hepatocellular Carcinoma.Hepatology20207141247126110.1002/hep.30889 31378984
    [Google Scholar]
  181. YakesF.M. ChenJ. TanJ. YamaguchiK. ShiY. YuP. QianF. ChuF. BentzienF. CancillaB. OrfJ. YouA. LairdA.D. EngstS. LeeL. LeschJ. ChouY.C. JolyA.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth.Mol. Cancer Ther.201110122298230810.1158/1535‑7163.MCT‑11‑0264 21926191
    [Google Scholar]
  182. BergerotP. LambP. WangE. PalS.K. Cabozantinib in combination with immunotherapy for advanced renal cell carcinoma and urothelial carcinoma: Rationale and clinical evidence.Mol. Cancer Ther.201918122185219310.1158/1535‑7163.MCT‑18‑1399 31792125
    [Google Scholar]
  183. AkaluY.T. RothlinC.V. GhoshS. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy.Immunol. Rev.2017276116517710.1111/imr.12522 28258690
    [Google Scholar]
  184. CE W. Cabozantinib enhances the efficacy and immune modulatory activity of anti-PD1 therapy in a syngeneic mouse model of hepatocellular carcinoma.Digit. Int. Liver Cong.20202729
    [Google Scholar]
  185. El-KhoueiryA.B. HannaD.L. LlovetJ. KelleyR.K. Cabozantinib: An evolving therapy for hepatocellular carcinoma.Cancer Treat. Rev.20219810222110.1016/j.ctrv.2021.102221 34029957
    [Google Scholar]
  186. YounJ.W. HurS.Y. WooJ.W. KimY.M. LimM.C. ParkS.Y. SeoS.S. NoJ.H. KimB.G. LeeJ.K. ShinS.J. KimK. ChaneyM.F. ChoiY.J. SuhY.S. ParkJ.S. SungY.C. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: Interim results of a single-arm, phase 2 trial.Lancet Oncol.202021121653166010.1016/S1470‑2045(20)30486‑1 33271094
    [Google Scholar]
  187. SvaneI-M. KjeldsenJ.W. LorentzenC.L. MartinenaiteE. AndersenM.H. LBA48 Clinical efficacy and immunity of combination therapy with nivolumab and IDO/PD-L1 peptide vaccine in patients with metastatic melanoma: A phase I/II trial.Ann. Oncol.2020314S117610.1016/j.annonc.2020.08.2278
    [Google Scholar]
  188. OttP.A. Hu-LieskovanS. ChmielowskiB. GovindanR. NaingA. BhardwajN. MargolinK. AwadM.M. HellmannM.D. LinJ.J. FriedlanderT. BushwayM.E. BaloghK.N. SciutoT.E. KohlerV. TurnbullS.J. BesadaR. CurranR.R. TrappB. SchererJ. PoranA. HarjantoD. BarthelmeD. TingY.S. DongJ.Z. WareY. HuangY. HuangZ. WanamakerA. ClearyL.D. MolesM.A. MansonK. GreshockJ. KhondkerZ.S. FritschE. RooneyM.S. DeMarioM. GaynorR.B. SrinivasanL. A phase ib trial of personalized neoantigen therapy plus anti-pd-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer.Cell20201832347362.e2410.1016/j.cell.2020.08.053 33064988
    [Google Scholar]
  189. YuW.D. SunG. LiJ. XuJ. WangX. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy.Cancer Lett.2019452667010.1016/j.canlet.2019.02.048 30902563
    [Google Scholar]
  190. BockampE. RosigkeitS. SieglD. SchuppanD. Nano-enhanced cancer immunotherapy: Immunology encounters nanotechnology.Cells202099210210.3390/cells9092102 32942725
    [Google Scholar]
  191. WangC. YeY. HochuG.M. SadeghifarH. GuZ. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-pd1 antibody.Nano Lett.20161642334234010.1021/acs.nanolett.5b05030 26999507
    [Google Scholar]
  192. SmithT.T. StephanS.B. MoffettH.F. McKnightL.E. JiW. ReimanD. BonagofskiE. WohlfahrtM.E. PillaiS.P.S. StephanM.T. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers.Nat. Nanotechnol.201712881382010.1038/nnano.2017.57 28416815
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073255266231025111125
Loading
/content/journals/cchts/10.2174/0113862073255266231025111125
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; clinical treatment; HCC; Hepatocellular carcinoma; immunotherapy; malignant tumor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test