Skip to content
2000
Volume 28, Issue 4
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The Shoutai pill (STP) is a classic formulation in traditional Chinese medicine. Preliminary experimental observations from our study suggest that it is effective in enhancing endometrial receptivity. However, the underlying mechanisms by which STP influences endometrial receptivity remain to be elucidated.

Objective

The objective of this study is to investigate the effects and mechanisms of the STP formulation in enhancing endometrial receptivity in controlled ovarian hyperstimulation (COH) model mice.

Methods

The network pharmacology analysis identified target proteins associated with the reduction of endometrial receptivity by STP. The COH mouse model was established using the GnRHa+PMSG+HCG protocol. The levels of MHC-1 and MHC-2 in mouse serum were measured using the ELISA method, while the levels of IL-1β, IL-4, IL-10, IP-10, IL-1a, IL-2, IL-17, TNF-a, and IFN-y were measured using liquid chip technology.

Results

STP exhibited a significant improvement in the immune environment of COH model mice. The major active components of STP were identified as beta-sitosterol and quercetin, among others. Furthermore, AKT1, VEGFA, and several immune factors, such as TNF, IFN, IL-1β, and IL-10, were identified as key targets for regulating endometrial receptivity. STP enhanced the expression of IL-10, IL-4, and IP-10 in the mice while reducing the expression levels of IL-2, IL-17, TNF-α, and IFN-γ in COH mice. These effects led to the modulation of early high expression of IL-1β and an improvement in endometrial receptivity.

Conclusion

This study demonstrates that STP can modulate immune factors throughout the COH process, subsequently restoring the immune equilibrium within the endometrium, thereby enhancing the endometrial receptivity in the COH model mice.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073274708231028185333
2023-10-31
2025-03-29
Loading full text...

Full text loading...

References

  1. Infertility prevalence estimates: 1990–2021; World Health Organization2023
    [Google Scholar]
  2. HuC. LiuH. PangB. WuH. LinX. ZhenY. YiH. Supraphysiological estradiol promotes human T follicular helper cell differentiation and favours humoural immunity during in vitro fertilization.J. Cell. Mol. Med.202125146524653410.1111/jcmm.16651 34032001
    [Google Scholar]
  3. BerntsenS. Söderström-AnttilaV. WennerholmU.B. LaivuoriH. LoftA. OldereidN.B. RomundstadL.B. BerghC. PinborgA. The health of children conceived by ART: ‘the chicken or the egg?’.Hum. Reprod. Update201925213715810.1093/humupd/dmz001 30753453
    [Google Scholar]
  4. HaasJ. ZilberbergE. MachtingerR. KedemA. HourvitzA. OrvietoR. Do poor-responder patients benefit from increasing the daily gonadotropin dose during controlled ovarian hyperstimulation for IVF?Gynecol. Endocrinol.2015311798210.3109/09513590.2014.959919
    [Google Scholar]
  5. SaharN. MuharamR. PradhitaA.D. ThuffiR. ZulhulaifahW.O. BirowoP. Expression of E-Cadherin in Pig-Tailed Monkey (Macaca nemestrina) endometrium after controlled ovarian hyperstimulation.BioMed Res. Int.2021202111010.1155/2021/8824614 33708995
    [Google Scholar]
  6. MouannessM. Ali-BynomS. JackmanJ. SeckinS. MerhiZ. Use of intra-uterine injection of platelet-rich plasma (PRP) for endometrial receptivity and thickness: A literature review of the mechanisms of action.Reprod. Sci.20212861659167010.1007/s43032‑021‑00579‑2 33886116
    [Google Scholar]
  7. ZhuM. YiS. HuangX. MengJ. SunH. ZhouJ. Human chorionic gonadotropin improves endometrial receptivity by increasing the expression of homeobox A10.Mol. Hum. Reprod.202026641342410.1093/molehr/gaaa026 32502249
    [Google Scholar]
  8. GaoR. DingY. LiuX. ChenX. WangY. LongC. LiS. GuoL. HeJ. Effect of folate deficiency on promoter methylation and gene expression of Esr1, Cdh1 and Pgr, and its influence on endometrial receptivity and embryo implantation.Hum. Reprod.20122792756276510.1093/humrep/des187 22706342
    [Google Scholar]
  9. ZhangY. FuY. HanF. KuangH. HuM. WuX. The effect of complementary and alternative medicine on subfertile women with in vitro fertilization.Evid. Based Complement. Alternat. Med.2014201441942510.1155/2014/419425
    [Google Scholar]
  10. MaY.C. HaoG.M. ZhaoZ.M. CuiN. FanY.L. ZhangS.C. ChenJ.W. CaoY.C. GuanF.L. GengJ.R. GaoB.L. DuH.L. Effects of Bushen-Tiaojing-Fang on the pregnancy outcomes of infertile patients with repeated controlled ovarian stimulation.Sci. Rep.20211111523310.1038/s41598‑021‑94366‑3 34635680
    [Google Scholar]
  11. YouF. DuX. ZhangT. WangY. LvY. ZengL. TJZYF improves endometrial receptivity through regulating VEGF and PI3K/AKT signaling pathway.BioMed Res. Int.2022202211610.1155/2022/9212561 36193314
    [Google Scholar]
  12. DuY. ZhaoY. MaY. BaiH. LiX. Clinical observation on treatment of 2,062 cases of immune infertility with integration of traditional Chinese medicine and western medicine.J. Tradit. Chin. Med.2005254278281
    [Google Scholar]
  13. ZhangX. Yi Xue Zhong Zhong Can Xi Lu.TianjinXinhua Printing House1909
    [Google Scholar]
  14. LiH. ShenQ. LiX. FengZ. ChenW. QianJ. ShenL. YuL. YangY. The efficacy of traditional chinese medicine shoutai pill combined with western medicine in the first trimester of pregnancy in women with unexplained recurrent spontaneous abortion: A systematic review and meta-analysis.BioMed Res. Int.2020202011310.1155/2020/7495161 32851085
    [Google Scholar]
  15. ZengL. YangK. LiuL. ZhangT. LiuH. TanZ. LeiL. Systematic biological and proteomics strategies to explore the regulation mechanism of Shoutai Wan on recurrent spontaneous Abortion’s biological network.J. Ethnopharmacol.202026311315610.1016/j.jep.2020.113156 32763414
    [Google Scholar]
  16. WeiZ. Clinical efficacy evaluation and mechanism of Shoutai Pill in treating Kidney Deficiency syndrome in in-vitro fertilization-embryo transfer.Hunan University of Chinese Medicine2017
    [Google Scholar]
  17. HuangH. TanY. ZouY. Clinical study on the effect of Shoutai Pill in assisting pregnancy during assisted reproductive stimulation cycle.Chin. J. Mater. Child Health Care2014292134833486
    [Google Scholar]
  18. YinQ. LiL. NingN. Study on the effects of Shoutai Pill on endometrial vascular endothelial growth factor and its receptors in controlled ovarian hyperstimulation rats.Chin. J. Family Plann. Gynecol.20168054650
    [Google Scholar]
  19. YinQ. LiL. NingN. The effect of Shoutai Pill on endometrial receptivity in rats under controlled ovarian stimulation.Zhongguo Jihua Shengyuxue Zazhi20162428589
    [Google Scholar]
  20. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  21. UniProt Consortium UniProt: A worldwide hub of protein knowledge.Nucleic Acids Res.201947D1D506D51510.1093/nar/gky1049 30395287
    [Google Scholar]
  22. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  23. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards Version 3: the human gene integrator.Database20102010baq02010.1093/database/baq020
    [Google Scholar]
  24. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  25. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level] datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  26. GuanF. ZhangS. FanL. SunY. MaY. CaoC. ZhangY. HeM. DuH. Kunling Wan improves oocyte quality by regulating the PKC/Keap1/Nrf2 pathway to inhibit oxidative damage caused by repeated controlled ovarian hyperstimulation.J. Ethnopharmacol.202330111577710.1016/j.jep.2022.115777 36191663
    [Google Scholar]
  27. GaoL. WangX. NiuY. DuanD. YangX. HaoJ. ZhuC. ChenD. WangK. QinX. WuX. Molecular targets of Chinese herbs: A clinical study of hepatoma based on network pharmacology.Sci. Rep.2016612494410.1038/srep24944 27143508
    [Google Scholar]
  28. CoughlanC. LedgerW. WangQ. LiuF. DemirolA. GurganT. CuttingR. OngK. SallamH. LiT.C. Recurrent implantation failure: Definition and management.Reprod. Biomed. Online2014281143810.1016/j.rbmo.2013.08.011 24269084
    [Google Scholar]
  29. SmithA.D.A.C. TillingK. NelsonS.M. LawlorD.A. Live-birth rate associated with repeat in vitro fertilization treatment] cycles.JAMA2015314242654266210.1001/jama.2015.17296 26717030
    [Google Scholar]
  30. SunY. ZhangY. MaX. JiaW. SuY. Determining Diagnostic criteria of unexplained recurrent implantation failure: A retrospective study of two vs. three or more implantation failure.Front. Endocrinol.20211261943710.3389/fendo.2021.619437 34367060
    [Google Scholar]
  31. CimadomoD. CraciunasL. VermeulenN. VomsteinK. TothB. Definition, diagnostic and therapeutic options in recurrent implantation failure: an international survey of clinicians and embryologists.Hum. Reprod.202136230531710.1093/humrep/deaa317 33313697
    [Google Scholar]
  32. ShiC. ShenH. FanL.J. GuanJ. ZhengX.B. ChenX. LiangR. ZhangX.W. CuiQ.H. SunK.K. ZhaoZ.R. HanH.J. Endometrial MicroRNA signature during the window of implantation changed in patients with repeated implantation failure.Chin. Med. J.2017130556657310.4103/0366‑6999.200550 28229988
    [Google Scholar]
  33. KolanskaK. BendifallahS. CohenJ. PlacaisL. SelleretL. JohanetC. SunerL. DelhommeauF. Chabbert-BuffetN. DaraiE. AntoineJ.M. KayemG. FainO. Mathieu d’ArgentE. MekinianA. Unexplained recurrent implantation failures: Predictive factors of pregnancy and therapeutic management from a French multicentre study.J. Reprod. Immunol.202114510331310.1016/j.jri.2021.103313 33774529
    [Google Scholar]
  34. ChenX. MarieeN. JiangL. LiuY. WangC.C. LiT.C. LairdS. Measurement of uterine natural killer cell percentage in the periimplantation endometrium from fertile women and women with recurrent reproductive failure: Establishment of a reference range.Am. J. Obstet. Gynecol.20172176680.e1680.e610.1016/j.ajog.2017.09.010 28935491
    [Google Scholar]
  35. LédéeN. PetitbaratM. ChevrierL. VitouxD. VezmarK. RahmatiM. DubanchetS. GahéryH. BensussanA. ChaouatG. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization.Am. J. Reprod. Immunol.201675338840110.1111/aji.12483
    [Google Scholar]
  36. LesseyB.A. YoungS.L. What exactly is endometrial receptivity?Fertil. Steril.2019111461161710.1016/j.fertnstert.2019.02.009 30929718
    [Google Scholar]
  37. BrosensJ.J. PijnenborgR. BrosensI.A. The myometrial junctional zone spiral arteries in normal and abnormal pregnancies.Am. J. Obstet. Gynecol.200218751416142310.1067/mob.2002.127305 12439541
    [Google Scholar]
  38. MuterJ. LynchV.J. McCoyR.C. BrosensJ.J. Human embryo implantation.Development202315010dev20150710.1242/dev.201507 37254877
    [Google Scholar]
  39. MurakamiK. LeeY.H. LucasE.S. ChanY.W. DurairajR.P. TakedaS. MooreJ.D. TanB.K. QuenbyS. ChanJ.K.Y. GargettC.E. BrosensJ.J. Decidualization induces a secretome switch in perivascular niche cells of the human endometrium.Endocrinology2014155114542455310.1210/en.2014‑1370 25116707
    [Google Scholar]
  40. BirchJ. GilJ. Senescence and the SASP: Many therapeutic avenues.Genes Dev.20203423-241565157610.1101/gad.343129.120 33262144
    [Google Scholar]
  41. AmjadiF. ZandiehZ. MehdizadehM. AghajanpourS. RaoufiE. AghamajidiA. AflatoonianR. The uterine immunological changes may be responsible for repeated implantation failure.J. Reprod. Immunol.202013810308010.1016/j.jri.2020.103080 32120158
    [Google Scholar]
  42. ChaouatG. DubanchetS. LedéeN. Cytokines: Important for implantation?J. Assist. Reprod. Genet.2007241149150510.1007/s10815‑007‑9142‑9 18044017
    [Google Scholar]
  43. SinghM. ChaudhryP. AsselinE. Bridging endometrial receptivity and implantation: Network of hormones, cytokines, and growth factors.J. Endocrinol.2011210151410.1530/JOE‑10‑0461 21372150
    [Google Scholar]
  44. DekelN. GnainskyY. GranotI. MorG. Inflammation and implantation.Am. J. Reprod. Immunol.2010631172110.1111/j.1600‑0897.2009.00792.x
    [Google Scholar]
  45. MorG. CardenasI. AbrahamsV. GullerS. Inflammation and pregnancy: The role of the immune system at the implantation site.Ann. N. Y. Acad. Sci.201112211808710.1111/j.1749‑6632.2010.05938.x 21401634
    [Google Scholar]
  46. TilburgsT. ScherjonS.A. ClaasF.H.J. Major histocompatibility complex (MHC)-mediated immune regulation of decidual leukocytes at the fetal–maternal interface.J. Reprod. Immunol.2010851586210.1016/j.jri.2010.01.005 20347157
    [Google Scholar]
  47. Rapacz-LeonardA. DąbrowskaM. JanowskiT. Major histocompatibility complex I mediates immunological tolerance of the trophoblast during pregnancy and may mediate rejection during parturition.Mediators Inflamm.2014201411110.1155/2014/579279 24812442
    [Google Scholar]
  48. PiccinniM.P. RaghupathyR. SaitoS. Szekeres-BarthoJ. Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction.Front. Immunol.20211271780810.3389/fimmu.2021.717808 34394125
    [Google Scholar]
  49. JiaN. LiJ. Human uterine decidual NK cells in women with a history of early pregnancy enhance angiogenesis and trophoblast invasion.BioMed Res. Int.202020201710.1155/2020/6247526 32149117
    [Google Scholar]
  50. JainM. MladovaE. ShichaninaA. KirillovaK. PovarovaA. ScherbakovaL. SamokhodskayaL. PaninaO. Microbiological and cytokine profiling of menstrual blood for the assessment of endometrial receptivity: A pilot study.Biomedicines2023115128410.3390/biomedicines11051284 37238954
    [Google Scholar]
  51. RaghupathyR. MakhseedM. AziziehF. OmuA. GuptaM. FarhatR. Cytokine production by maternal lymphocytes during normal human pregnancy and in unexplained recurrent spontaneous abortion.Hum. Reprod.200015371371810.1093/humrep/15.3.713 10686225
    [Google Scholar]
  52. MassimianiM. LacconiV. La CivitaF. TicconiC. RagoR. CampagnoloL. Molecular signaling regulating endometrium–blastocyst crosstalk.Int. J. Mol. Sci.20192112310.3390/ijms21010023 31861484
    [Google Scholar]
  53. WhiteC.A. DimitriadisE. SharkeyA.M. StoikosC.J. SalamonsenL.A. Interleukin 1 beta is induced by interleukin 11 during decidualization of human endometrial stromal cells, but is not released in a bioactive form.J. Reprod. Immunol.2007731283810.1016/j.jri.2006.05.003 16860880
    [Google Scholar]
  54. BourdiecA. AkoumA. Embryo implantation: Role of interleukin 1 family members.Med. Sci.2014306-764465010.1051/medsci/20143006014 25014455
    [Google Scholar]
  55. GeisertR. FazleabasA. LucyM. MathewD. Interaction of the conceptus and endometrium to establish pregnancy in mammals: Role of interleukin 1β.Cell Tissue Res.2012349382583810.1007/s00441‑012‑1356‑1 22382391
    [Google Scholar]
  56. Nadeau-ValléeM. ObariD. PalaciosJ. BrienM.È. DuvalC. ChemtobS. GirardS. Sterile inflammation and pregnancy complications.A review Reproduction20161526R277R29210.1530/REP‑16‑0453 27679863
    [Google Scholar]
  57. YangJ.H. ChenC.D. ChouC.H. WenW.F. TsaoP.N. LeeH. ChenS.U. Intentional endometrial injury increases embryo implantation potentials through enhanced endometrial angiogenesis†.Biol. Reprod.2019100238138910.1093/biolre/ioy205 30247509
    [Google Scholar]
  58. PantosK. GrigoriadisS. MaziotisE. PistolaK. XystraP. PantouA. KokkaliG. PappasA. LambropoulouM. SfakianoudisK. SimopoulouM. The role of interleukins in recurrent implantation failure: A comprehensive review of the literature.Int. J. Mol. Sci.2022234219810.3390/ijms23042198 35216313
    [Google Scholar]
  59. KoushaeianL. GhorbaniF. AhmadiM. Eghbal-FardS. ZamaniM. DanaiiS. YousefiB. Jadidi-NiaraghF. HamdiK. YousefiM. The role of IL-10-producing B cells in repeated implantation failure patients with cellular immune abnormalities.Immunol. Lett.2019214162210.1016/j.imlet.2019.08.002 31442543
    [Google Scholar]
  60. FukuiA. Kwak-KimJ. NtrivalasE. Gilman-SachsA. LeeS.K. BeamanK. Intracellular cytokine expression of peripheral blood natural killer cell subsets in women with recurrent spontaneous abortions and implantation failures.Fertil. Steril.200889115716510.1016/j.fertnstert.2007.02.012 17482605
    [Google Scholar]
  61. MurphyS.P. TayadeC. AshkarA.A. HattaK. ZhangJ. CroyB.A. Interferon gamma in successful pregnancies.Biol. Reprod.200980584885910.1095/biolreprod.108.073353 19164174
    [Google Scholar]
  62. Calleja-AgiusJ. JauniauxE. PizzeyA.R. MuttukrishnaS. Investigation of systemic inflammatory response in first trimester pregnancy failure.Hum. Reprod.201227234935710.1093/humrep/der402 22131390
    [Google Scholar]
  63. HaimoviciF. HillJ.A. AndersonD.J. The effects of soluble products of activated lymphocytes and macrophages on blastocyst implantation events in vitro.Biol. Reprod.1991441697510.1095/biolreprod44.1.69 2015353
    [Google Scholar]
  64. OtunH.A. LashG.E. InnesB.A. BulmerJ.N. NaruseK. HannonT. SearleR.F. RobsonS.C. Effect of tumour necrosis factor-α in combination with interferon-γ on first trimester extravillous trophoblast invasion.J. Reprod. Immunol.201188111110.1016/j.jri.2010.10.003 21112094
    [Google Scholar]
  65. ZengW. LiuZ. LiuX. ZhangS. KhannicheA. ZhengY. MaX. YuT. TianF. LiuX.R. FanJ. LinY. Distinct transcriptional and alternative splicing signatures of decidual CD4+ T cells in early human pregnancy.Front. Immunol.2017868210.3389/fimmu.2017.00682 28659920
    [Google Scholar]
  66. WangW. SungN. Gilman-SachsA. Kwak-KimJ. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells.Front. Immunol.202011202510.3389/fimmu.2020.02025 32973809
    [Google Scholar]
  67. LeeJ. ChoiB.C. ChoC. HillJ.A. BaekK.H. KimJ.W. Trophoblast apoptosis is increased in women with evidence of TH1 immunity.Fertil. Steril.20058341047104910.1016/j.fertnstert.2004.07.979 15820826
    [Google Scholar]
  68. PiccinniM.P. LombardelliL. LogiodiceF. KullolliO. RomagnaniS. Le BouteillerP. T helper cell mediated-tolerance towards fetal allograft in successful pregnancy.Clin. Mol. Allergy2015131910.1186/s12948‑015‑0015‑y 26064081
    [Google Scholar]
  69. BanerjeeP. JanaS.K. PasrichaP. GhoshS. ChakravartyB. ChaudhuryK. Proinflammatory cytokines induced altered expression of cyclooxygenase-2 gene results in unreceptive endometrium in women with idiopathic recurrent spontaneous miscarriage.Fertil. Steril.2013991179187.e210.1016/j.fertnstert.2012.08.034 22999790
    [Google Scholar]
  70. KedzierskaA.E. LorekD. SlawekA. GrabowskiT. Chelmonska-SoytaA. CD91 derived treg epitope modulates regulatory t lymphocyte response, regulates expression of costimulatory molecules on antigen-presenting cells, and rescues pregnancy in mouse pregnancy loss model.Int. J. Mol. Sci.20212214729610.3390/ijms22147296 34298914
    [Google Scholar]
  71. BalzarS. Self-centered function of adaptive immunity in regulation of immune responses and in tolerance.J. Immunol. Res.2021202111010.1155/2021/7507459 34950737
    [Google Scholar]
  72. ClementsC.S. Kjer-NielsenL. KostenkoL. HoareH.L. DunstoneM.A. MosesE. FreedK. BrooksA.G. RossjohnJ. McCluskeyJ. Crystal structure of HLA-G: A nonclassical MHC class I molecule expressed at the fetal–maternal interface.Proc. Natl. Acad. Sci. USA200510293360336510.1073/pnas.0409676102 15718280
    [Google Scholar]
  73. MoffettA. LokeC. Implantation, embryo-maternal interactions, immunology and modulation of the uterine environment-a workshop report.Placenta27Suppl. AS54S5510.1016/j.placenta.2006.01.021
    [Google Scholar]
  74. LoiselD.A. BillstrandC. MurrayK. PattersonK. ChaiworapongsaT. RomeroR. OberC. The maternal HLA-G 1597 C null mutation is associated with increased risk of pre-eclampsia and reduced HLA-G expression during pregnancy in African-American women.Mol. Hum. Reprod.201319314415210.1093/molehr/gas041 23002110
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073274708231028185333
Loading
/content/journals/cchts/10.2174/0113862073274708231028185333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test