Skip to content
2000
Volume 28, Issue 4
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

The efficacy of chemotherapy in treating Kidney Renal Clear Cell Carcinoma (KIRC) is limited, whereas immunotherapy has shown some promising clinical outcomes. In this context, KIF4A is considered a potential therapeutic target for various cancers. Therefore, identifying the mechanism of KIF4A that can predict the prognosis and immunotherapy response of KIRC would be of significant importance.

Methods

Based on the TCGA Pan-Cancer dataset, the prognostic significance of the KIF4A expression across 33 cancer types was analyzed by univariate Cox algorithm. Furthermore, overlapping differentially expressed genes (DEGs1) between the KIF4A high- and low-expression groups and DEGs2 between the KIRC and normal groups were also analyzed. Machine learning and Cox regression algorithms were performed to obtain biomarkers and construct a prognostic model. Finally, the role of KIF4A in KIRC was analyzed using quantitative real-time PCR, transwell assay, and EdU experiment.

Results

Our analysis revealed that KIF4A was significant for the prognosis of 13 cancer types. The highest correlation with KIF4A was found for KICH among the tumour mutation burden (TMB) indicators. Subsequently, a prognostic model developed with UBE2C, OTX1, PPP2R2C, and RFLNA was obtained and verified with the Renal Cell Cancer-EU/FR dataset. There was a positive correlation between risk score and immunotherapy. Furthermore, the experiment results indicated that KIF4A expression was considerably increased in the KIRC group. Besides, the proliferation, migration, and invasion abilities of KIRC tumor cells were significantly weakened after KIF4A was knocked out.

Conclusion

We identified four KIF4A-related biomarkers that hold potential for prognostic assessment in KIRC. Specifically, early implementation of immunotherapy targeting these biomarkers may yield improved outcomes for patients with KIRC.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073296897240212114403
2024-02-14
2025-03-29
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.2165433433946
    [Google Scholar]
  2. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  3. LalaniA.K.A. McGregorB.A. AlbigesL. ChoueiriT.K. MotzerR. PowlesT. WoodC. BexA. Systemic Treatment of Metastatic Clear Cell Renal Cell Carcinoma in 2018: Current Paradigms, Use of Immunotherapy, and Future Directions.Eur. Urol.201975110011010.1016/j.eururo.2018.10.01030327274
    [Google Scholar]
  4. LiS.C. JiaZ.K. YangJ.J. NingX. Telomere-related gene risk model for prognosis and drug treatment efficiency prediction in kidney cancer.Front. Immunol.2022131397505710.3389/fimmu.2022.97505736189312
    [Google Scholar]
  5. ShibasakiN. YamasakiT. KannoT. ArakakiR. SakamotoH. UtsunomiyaN. InoueT. TsuruyamaT. NakamuraE. OgawaO. KambaT. Role of IL13RA2 in Sunitinib Resistance in Clear Cell Renal Cell Carcinoma.PLoS One2015106e013098010.1371/journal.pone.013098026114873
    [Google Scholar]
  6. SalamaM.F. CarrollB. AdadaM. Pulkoski-GrossM. HannunY.A. ObeidL.M. A novel role of sphingosine kinase‐1 in the invasion and angiogenesis of VHL mutant clear cell renal cell carcinoma.FASEB J.20152972803281310.1096/fj.15‑27041325805832
    [Google Scholar]
  7. ZhangD. LuW. SamadiN. KIF4A knockdown inhibits tumor progression and promotes chemo‐sensitivity via induction of P21 in lung cancer cells.Chem. Biol. Drug Des.202310151042104710.1111/cbdd.1415336217900
    [Google Scholar]
  8. SunX. ChenP. ChenX. YangW. ChenX. ZhouW. HuangD. ChengY. KIF4A enhanced cell proliferation and migration via Hippo signaling and predicted a poor prognosis in esophageal squamous cell carcinoma.Thorac. Cancer202112451252410.1111/1759‑7714.1378733350074
    [Google Scholar]
  9. ZhangJ. AnL. ZhaoR. ShiR. ZhouX. WeiS. ZhangQ. ZhangT. FengD. YuZ. WangH. KIF4A promotes genomic stability and progression of endometrial cancer through regulation of TPX2 protein degradation.Mol. Carcinog.202362330331810.1002/mc.2348736468837
    [Google Scholar]
  10. YangZ. ShenX. LuoS. LiY. Prognostic value and immune-infiltration pattern of kif4a in patients with endometrial carcinoma.Dis Markers20222022962170110.1155/2022/9621701
    [Google Scholar]
  11. GuY. LuL. WuL. ChenH. ZhuW. HeY. Identification of prognostic genes in kidney renal clear cell carcinoma by RNA-seq data analysis.Mol. Med. Rep.20171541661166710.3892/mmr.2017.619428260099
    [Google Scholar]
  12. Cortes-CirianoI. LeeS. ParkW.Y. KimT.M. ParkP.J. A molecular portrait of microsatellite instability across multiple cancers.Nat Commun201781518010.1038/ncomms15180
    [Google Scholar]
  13. ThorssonV. GibbsD.L. BrownS.D. WolfD. BortoneD.S. Ou YangT.H. Porta-PardoE. GaoG.F. PlaisierC.L. EddyJ.A. ZivE. CulhaneA.C. PaullE.O. SivakumarI.K.A. GentlesA.J. MalhotraR. FarshidfarF. ColapricoA. ParkerJ.S. MoseL.E. VoN.S. LiuJ. LiuY. RaderJ. DhankaniV. ReynoldsS.M. BowlbyR. CalifanoA. CherniackA.D. AnastassiouD. BedognettiD. MokrabY. NewmanA.M. RaoA. ChenK. KrasnitzA. HuH. MaltaT.M. NoushmehrH. PedamalluC.S. BullmanS. OjesinaA.I. LambA. ZhouW. ShenH. ChoueiriT.K. WeinsteinJ.N. GuinneyJ. SaltzJ. HoltR.A. RabkinC.S. LazarA.J. SerodyJ.S. DemiccoE.G. DisisM.L. VincentB.G. ShmulevichI. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbrotE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. GonzalezA.M.A. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. Stretch, SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. PineroE.M.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. The Immune Landscape of Cancer.Immunity201951241141210.1016/j.immuni.2019.08.00431433971
    [Google Scholar]
  14. YeY. DaiQ. QiH. A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer.Cell Death Discov.2021717110.1038/s41420‑021‑00451‑x33828074
    [Google Scholar]
  15. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.333725822800
    [Google Scholar]
  16. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  17. WuT. HuE. XuS. ChenM. GuoP. DaiZ. FengT. ZhouL. TangW. ZhanL. FuX. LiuS. BoX. YuG. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation20212310014110.1016/j.xinn.2021.10014134557778
    [Google Scholar]
  18. RobinX. TurckN. HainardA. TibertiN. LisacekF. SanchezJ.C. MüllerM. pROC: An open-source package for R and S+ to analyze and compare ROC curves.BMC Bioinformat.2011127710.1186/1471‑2105‑12‑77
    [Google Scholar]
  19. LiL. GaoH. WangD. JiangH. WangH. YuJ. JiangX. HuangC. Metabolism-relevant molecular classification identifies tumor immune microenvironment characterization and immunotherapeutic effect in cervical cancer.Front Mol Biosci2021862495110.3389/fmolb.2021.624951
    [Google Scholar]
  20. WangY. LiuS. ChenY. ZhuB. XingQ. Survival prognosis, tumor immune landscape, and immune responses of PPP1R18 in kidney renal clear cell carcinoma and its potentially double mechanisms.World J. Oncol.2022131273710.14740/wjon144635317332
    [Google Scholar]
  21. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.Methods200125440240810.1006/meth.2001.126211846609
    [Google Scholar]
  22. CardenasL.M. DeluceJ.E. KhanS. GulamO. Maleki VarekiS. FernandesR. LalaniA.K.A. Next wave of targets in the treatment of advanced renal cell carcinoma.Curr. Oncol.20222985426544110.3390/curroncol2908042936005167
    [Google Scholar]
  23. ZhangG. ChenX. FangJ. TaiP. ChenA. CaoK. Cuproptosis status affects treatment options about immunotherapy and targeted therapy for patients with kidney renal clear cell carcinoma.Front. Immunol.2022131395444010.3389/fimmu.2022.95444036059510
    [Google Scholar]
  24. SunZ. TaoW. GuoX. JingC. ZhangM. WangZ. KongF. SuoN. JiangS. WangH. Construction of a lactate-related prognostic signature for predicting prognosis, tumor microenvironment, and immune response in kidney renal clear cell carcinoma.Front. Immunol.2022131381898410.3389/fimmu.2022.81898435250999
    [Google Scholar]
  25. LinG. YangY. FengQ. ZhanF. SunC. NiuY. LiG. Prognostic implication and immunotherapy response prediction of a costimulatory molecule signature in kidney renal clear cell carcinoma.Immunogenetics202274328530110.1007/s00251‑021‑01246‑135119508
    [Google Scholar]
  26. TangF. PanM.H. LuY. WanX. ZhangY. SunS.C. Involvement of Kif4a in spindle formation and chromosome segregation in mouse oocytes.Aging Dis.20189462363310.14336/AD.2017.090130090651
    [Google Scholar]
  27. ZhangH. MengS. ChuK. ChuS. FanY.C. BaiJ. YuZ.Q. KIF4A drives gliomas growth by transcriptional repression of Rac1/Cdc42 to induce cytoskeletal remodeling in glioma cells.J. Cancer2022a13153640365110.7150/jca.7723836606197
    [Google Scholar]
  28. ZhangM. RenZ. WangX. LiuC. ZhengZ. ZhaoJ. LiuH. Aspirin exerts its antitumor effect in esophageal squamous cell carcinoma by downregulating the expression of ATAD2 and KIF4A.Anal Cell Pathol20222022700532810.1155/2022/7005328
    [Google Scholar]
  29. HandinR.I. The history of antithrombotic therapy.Hematol. Oncol. Clin. North Am.201630598799310.1016/j.hoc.2016.06.00227637302
    [Google Scholar]
  30. ElwoodP. ProttyM. MorganG. PickeringJ. DelonC. WatkinsJ. Aspirin and cancer: Biological mechanisms and clinical outcomes.Open Biol.202212922012410.1098/rsob.22012436099932
    [Google Scholar]
  31. DrewD.A. ChanA.T. Aspirin in the prevention of colorectal neoplasia.Annu. Rev. Med.202172141543010.1146/annurev‑med‑060319‑12091333035431
    [Google Scholar]
  32. WuG. ZhouL. KhidrL. GuoX.E. KimW. LeeY.M. KrasievaT. ChenP.L. A novel role of the chromokinesin Kif4A in DNA damage response.Cell Cycle20087132013202010.4161/cc.7.13.613018604178
    [Google Scholar]
  33. HouP.F. JiangT. ChenF. ShiP.C. LiH.Q. BaiJ. SongJ. KIF4A facilitates cell proliferation via induction of p21-mediated cell cycle progression and promotes metastasis in colorectal cancer.Cell Death Dis.20189547710.1038/s41419‑018‑0550‑929706624
    [Google Scholar]
  34. MelssenM. SlingluffC.L.Jr Vaccines targeting helper T cells for cancer immunotherapy.Curr. Opin. Immunol.201747859210.1016/j.coi.2017.07.00428755541
    [Google Scholar]
  35. SpeiserD.E. ChijiokeO. SchaeubleK. MünzC. CD4+ T cells in cancer.Nat. Can.20234331732910.1038/s43018‑023‑00521‑236894637
    [Google Scholar]
  36. OhD.Y. FongL. Cytotoxic CD4+ T cells in cancer: Expanding the immune effector toolbox.Immunity202154122701271110.1016/j.immuni.2021.11.01534910940
    [Google Scholar]
  37. XiaoM. XieL. CaoG. LeiS. WangP. WeiZ. LuoY. FangJ. YangX. HuangQ. XuL. GuoJ. WenS. WangZ. WuQ. TangJ. WangL. ChenX. ChenC. ZhangY. YaoW. YeJ. HeR. HuangJ. YeL. CD4 + T-cell epitope-based heterologous prime-boost vaccination potentiates anti-tumor immunity and PD-1/PD-L1 immunotherapy.J. Immunother. Cancer2022105e00402210.1136/jitc‑2021‑00402235580929
    [Google Scholar]
  38. BorstJ. AhrendsT. BąbałaN. MeliefC.J.M. KastenmüllerW. CD4+ T cell help in cancer immunology and immunotherapy.Nat. Rev. Immunol.2018181063564710.1038/s41577‑018‑0044‑030057419
    [Google Scholar]
  39. KruseB. BuzzaiA.C. ShridharN. BraunA.D. GellertS. KnauthK. PozniakJ. PetersJ. DittmannP. MengoniM. van der SluisT.C. HöhnS. AntoranzA. KroneA. FuY. YuD. EssandM. GeffersR. MougiakakosD. KahlfußS. KashkarH. GaffalE. BosisioF.M. BechterO. RambowF. MarineJ.C. KastenmüllerW. MüllerA.J. TütingT. CD4+ T cell-induced inflammatory cell death controls immune-evasive tumours.Nature202361879671033104010.1038/s41586‑023‑06199‑x37316667
    [Google Scholar]
  40. LesterD.K. BurtonC. GardnerA. InnamaratoP. KodumudiK. LiuQ. AdhikariE. MingQ. WilliamsonD.B. FrederickD.T. SharovaT. WhiteM.G. MarkowitzJ. CaoB. NguyenJ. JohnsonJ. BeattyM. Mockabee-MaciasA. MercurioM. WatsonG. ChenP.L. McCarthyS. MoranSeguraC. MessinaJ. ThomasK.L. DarvilleL. IzumiV. KoomenJ.M. Pilon-ThomasS.A. RuffellB. LucaV.C. HaltiwangerR.S. WangX. WargoJ.A. BolandG.M. LauE.K. Fucosylation of HLA-DRB1 regulates CD4+ T cell-mediated anti-melanoma immunity and enhances immunotherapy efficacy.Nat. Can.20234222223910.1038/s43018‑022‑00506‑736690875
    [Google Scholar]
  41. CachotA. BilousM. LiuY.C. LiX. SaillardM. CenerentiM. RockingerG.A. WyssT. GuillaumeP. SchmidtJ. GenoletR. ErcolanoG. ProttiM.P. ReithW. IoannidouK. de LevalL. TrapaniJ.A. CoukosG. HarariA. SpeiserD.E. MathisA. GfellerD. AltugH. RomeroP. JandusC. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer.Sci. Adv.202179eabe334810.1126/sciadv.abe334833637530
    [Google Scholar]
  42. WangB. HuS. FuX. LiL. CD4 + Cytotoxic T lymphocytes in cancer immunity and immunotherapy.Adv. Biol.202374220016910.1002/adbi.20220016936193961
    [Google Scholar]
  43. BrightmanS.E. BeckerA. ThotaR.R. NaradikianM.S. ChihabL. ZavalaK.S. Ramamoorthy PremlalA.L. GriswoldR.Q. DolinaJ.S. CohenE.E.W. MillerA.M. PetersB. SchoenbergerS.P. Neoantigen-specific stem cell memory-like CD4+ T cells mediate CD8+ T cell-dependent immunotherapy of MHC class II-negative solid tumors.Nat. Immunol.20232481345135710.1038/s41590‑023‑01543‑937400675
    [Google Scholar]
  44. ShanF. SomasundaramA. BrunoT.C. WorkmanC.J. VignaliD.A.A. Therapeutic targeting of regulatory T cells in cancer.Trends Cancer202281194496110.1016/j.trecan.2022.06.00835853825
    [Google Scholar]
  45. TogashiY. ShitaraK. NishikawaH. Regulatory T cells in cancer immunosuppression — implications for anticancer therapy.Nat. Rev. Clin. Oncol.201916635637110.1038/s41571‑019‑0175‑730705439
    [Google Scholar]
  46. TieY. TangF. WeiY. WeiX. Immunosuppressive cells in cancer: Mechanisms and potential therapeutic targets.J. Hematol. Oncol.20221516110.1186/s13045‑022‑01282‑835585567
    [Google Scholar]
  47. MiggelbrinkA.M. JacksonJ.D. LorreyS.J. SrinivasanE.S. Waibl-PolaniaJ. WilkinsonD.S. FecciP.E. CD4 T-cell exhaustion: Does it exist and what are its roles in cancer?Clin. Cancer Res.202127215742575210.1158/1078‑0432.CCR‑21‑020634127507
    [Google Scholar]
  48. YanY. HuangL. LiuY. YiM. ChuQ. JiaoD. WuK. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: Implications for antitumor immunity.J. Hematol. Oncol.202215110410.1186/s13045‑022‑01322‑335948909
    [Google Scholar]
  49. HegdeS. KrisnawanV.E. HerzogB.H. ZuoC. BredenM.A. KnolhoffB.L. HoggG.D. TangJ.P. BaerJ.M. MpoyC. LeeK.B. AlexanderK.A. RogersB.E. MurphyK.M. HawkinsW.G. FieldsR.C. DeSelmC.J. SchwarzJ.K. DeNardoD.G. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer.Cancer Cell2020373289307.e910.1016/j.ccell.2020.02.00832183949
    [Google Scholar]
  50. BrightmanS.E. NaradikianM.S. MillerA.M. SchoenbergerS.P. Harnessing neoantigen specific CD4 T cells for cancer immunotherapy.J. Leukoc. Biol.2020107462563310.1002/JLB.5RI0220‑603RR32170883
    [Google Scholar]
  51. McLaneL.M. Abdel-HakeemM.S. WherryE.J. CD8 T cell exhaustion during chronic viral infection and cancer.Annu. Rev. Immunol.201937145749510.1146/annurev‑immunol‑041015‑05531830676822
    [Google Scholar]
  52. RyanN. AndersonK. VolpedoG. HamzaO. VarikutiS. SatoskarA.R. OghumuS. STAT1 inhibits T‐cell exhaustion and myeloid derived suppressor cell accumulation to promote antitumor immune responses in head and neck squamous cell carcinoma.Int. J. Cancer202014661717172910.1002/ijc.3278131709529
    [Google Scholar]
  53. Sasidharan NairV. ToorS.M. TahaR.Z. AhmedA.A. KurerM.A. MurshedK. SoofiM.E. OuararhniK. AlajezN.M. Abu NadaM. ElkordE. Transcriptomic profiling of tumor-infiltrating CD4+TIM-3+ T cells reveals their suppressive, exhausted, and metastatic characteristics in colorectal cancer patients.Vaccines2020817110.3390/vaccines801007132041340
    [Google Scholar]
  54. MelenhorstJ.J. ChenG.M. WangM. PorterD.L. ChenC. CollinsM.A. GaoP. BandyopadhyayS. SunH. ZhaoZ. LundhS. Pruteanu-MaliniciI. NoblesC.L. MajiS. FreyN.V. GillS.I. LorenA.W. TianL. KulikovskayaI. GuptaM. AmbroseD.E. DavisM.M. FraiettaJ.A. BrogdonJ.L. YoungR.M. ChewA. LevineB.L. SiegelD.L. AlanioC. WherryE.J. BushmanF.D. LaceyS.F. TanK. JuneC.H. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells.Nature2022602789750350910.1038/s41586‑021‑04390‑635110735
    [Google Scholar]
  55. SchürchC.M. BhateS.S. BarlowG.L. PhillipsD.J. NotiL. ZlobecI. ChuP. BlackS. DemeterJ. McIlwainD.R. KinoshitaS. SamusikN. GoltsevY. NolanG.P. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front.Cell2020182513411359.e1910.1016/j.cell.2020.07.00532763154
    [Google Scholar]
  56. FagetD.V. LuoX. InkmanM.J. RenQ. SuX. DingK. WatersM.R. RautG.K. PandeyG. DodhiawalaP.B. Ramalho-OliveiraR. YeJ. ColeT. MuraliB. ZheleznyakA. ShokeenM. WeissK.R. MonahanJ.B. DeSelmC.J. LeeA.V. OesterreichS. WeilbaecherK.N. ZhangJ. DeNardoD.G. StewartS.A. p38MAPKα stromal reprogramming sensitizes metastatic breast cancer to immunotherapy.Cancer Discov.20231361454147710.1158/2159‑8290.CD‑22‑090736883955
    [Google Scholar]
  57. AllahmoradiE. TaghilooS. TehraniM. Hossein-NattajH. JanbabaeiG. ShekarrizR. Asgarian-OmranH. CD4+ T cells are exhausted and show functional defects in chronic lymphocytic leukemia.Iran. J. Immunol.201714425726929276179
    [Google Scholar]
  58. NakanoM. ItoM. TanakaR. YamaguchiK. AriyamaH. MitsugiK. YoshihiroT. OhmuraH. TsurutaN. HanamuraF. SagaraK. OkumuraY. NioK. TsuchihashiK. AritaS. KusabaH. AkashiK. BabaE. PD ‐1+ TIM ‐3+ T cells in malignant ascites predict prognosis of gastrointestinal cancer.Cancer Sci.201810992986299210.1111/cas.1372330187676
    [Google Scholar]
  59. EscorsD. BocanegraA. ChocarroL. BlancoE. Piñeiro-HermidaS. GarnicaM. Fernandez-RubioL. VeraR. ArasanzH. KochanG. Systemic CD4 immunity and PD-L1/PD-1 blockade immunotherapy.Int. J. Mol. Sci.202223211324110.3390/ijms23211324136362027
    [Google Scholar]
  60. ShibataH. XuN. SaitoS. ZhouL. OzgencI. WebbJ. FuC. ZolkindP. EgloffA.M. UppaluriR. Integrating CD4 + T cell help for therapeutic cancer vaccination in a preclinical head and neck cancer model.OncoImmunology2021101195858910.1080/2162402X.2021.195858934408919
    [Google Scholar]
  61. FinckA.V. BlanchardT. RoselleC.P. GolinelliG. JuneC.H. Engineered cellular immunotherapies in cancer and beyond.Nat. Med.202228467868910.1038/s41591‑022‑01765‑835440724
    [Google Scholar]
  62. GouQ. ZhaoQ. DongM. LiangL. YouH. Diagnostic potential of energy metabolism-related genes in heart failure with preserved ejection fraction.Front. Endocrinol.202314129654710.3389/fendo.2023.129654738089628
    [Google Scholar]
  63. LiuJ. XuJ. ZhangT. XuK. BaoP. ZhangZ. XueK. HeR. MaL. WangY. Decoding the immune microenvironment of clear cell renal cell carcinoma by single-cell profiling to aid immunotherapy.Front Immunol20221379115810.3389/fimmu.2022.791158
    [Google Scholar]
  64. ZhangS. YouX. ZhengY. ShenY. XiongX. SunY. The UBE2C/CDH1/DEPTOR axis is an oncogene and tumor suppressor cascade in lung cancer cells.J. Clin. Invest.20231334e16243410.1172/JCI16243436548081
    [Google Scholar]
  65. DomenteanS. PaisanaE. CascãoR. FariaC.C. Role of UBE2C in brain cancer invasion and dissemination.Int. J. Mol. Sci.202324211579210.3390/ijms24211579237958776
    [Google Scholar]
  66. LvZ. WangM. HouH. TangG. XuH. WangX. LiY. WangJ. LiuM. FOXM1-regulated ZIC2 promotes the malignant phenotype of renal clear cell carcinoma by activating UBE2C/mTOR signaling pathway.Int. J. Biol. Sci.202319113293330610.7150/ijbs.8406737496990
    [Google Scholar]
  67. ZhouL. LiH. ZhangD. ChenL. DongH. YuanY. WangT. OTX1 promotes tumorigenesis and progression of cervical cancer by regulating the Wnt signaling pathway.Oncol. Rep.202248520410.3892/or.2022.841936177903
    [Google Scholar]
  68. QinS.C. ZhaoZ. ShengJ.X. XuX.H. YaoJ. LuJ.J. ChenB. ZhaoG.D. WangX.Y. YangY.D. Dowregulation of OTX1 attenuates gastric cancer cell proliferation, migration and invasion.Oncol. Rep.20184041907191610.3892/or.2018.659630066897
    [Google Scholar]
  69. LiJ. ZhaoL. ZhangC. LiM. GaoB. HuX. CaoJ. WangG. The lncRNA FEZF1-AS1 promotes the progression of colorectal cancer through regulating OTX1 and targeting miR-30a-5p.Oncol. Res.2020281516310.3727/096504019X1561978396470031270006
    [Google Scholar]
  70. JiangL. ZuoZ. LinJ. YangC. Orthodenticle homeobox OTX1 is a potential prognostic biomarker for bladder cancer.Bioengineered20211216559657110.1080/21655979.2021.197464634559577
    [Google Scholar]
  71. TerrematteP. AndradeD. JustinoJ. StranskyB. de AraújoD. NetoD.A. A novel machine learning 13-gene signature: Improving risk analysis and survival prediction for clear cell renal cell carcinoma patients.Cancers2022149211110.3390/cancers1409211135565241
    [Google Scholar]
  72. LeeK.K. RishishwarL. BanD. NagarS.D. Mariño-RamírezL. McDonaldJ.F. JordanI.K. Association of genetic ancestry and molecular signatures with cancer survival disparities: A pan-cancer analysis.Cancer Res.20228271222123310.1158/0008‑5472.CAN‑21‑210535064017
    [Google Scholar]
  73. ShaoF. LingL. LiC. HuangX. YeY. ZhangM. HuangK. PanJ. ChenJ. WangY. Establishing a metastasis-related diagnosis and prognosis model for lung adenocarcinoma through CRISPR library and TCGA database.J. Cancer Res. Clin. Oncol.2023149288589910.1007/s00432‑022‑04495‑z36574046
    [Google Scholar]
  74. FanY. ChenL. WangJ. YaoQ. WanJ. Over expression of PPP2R2C inhibits human glioma cells growth through the suppression of mTOR pathway.FEBS Lett.2013587243892389710.1016/j.febslet.2013.09.02924126060
    [Google Scholar]
  75. MaX. RenH. PengR. LiY. MingL. Identification of key genes associated with progression and prognosis for lung squamous cell carcinoma.Peer J20208e908610.7717/peerj.9086
    [Google Scholar]
  76. HaJ. ParkC. ParkC. ParkS. IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization.J. Biomed. Inform.202010210210335810.1016/j.jbi.2019.10335831857202
    [Google Scholar]
  77. HaJ. MDMF: Predicting miRNA–disease association based on matrix factorization with disease similarity constraint.J. Pers. Med.202212688510.3390/jpm1206088535743670
    [Google Scholar]
  78. HaJ. ParkS. NCMD: Node2vec-based neural collaborative filtering for predicting MiRNA-disease association.IEEE/ACM Trans Comput Biol Bioinform20232021257126810.1109/TCBB.2022.3191972
    [Google Scholar]
  79. HaJ. SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association.Knowl. Base. Syst.2023263C11029510.1016/j.knosys.2023.110295
    [Google Scholar]
  80. HaJ. ParkC. MLMD: Metric learning for predicting MiRNA-disease associations.IEEE Access20219788477885810.1109/ACCESS.2021.3084148
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073296897240212114403
Loading
/content/journals/cchts/10.2174/0113862073296897240212114403
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. Lists of 65 differentially expressed genes (DEGs1) between the high- and low-expression groups according to the median values of KIF4A expression. Lists of 252 Gene Ontology (GO) functions enriched to 65 DEGs1. Results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched to 65 DEGs1. Lists of 4718 DEGs2 between the KIRC and normal groups. Results of multivariate Cox analyses for four biomarkers. Lists of Tumor Immune Dysfunction and Exclusion (TIDE) scores of each patient within the TCGA-KIRC dataset.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test