Skip to content
2000
Volume 28, Issue 4
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background and Objectives

Premature Ovarian Insufficiency (POI) is a disease suffered by women under the age of 40 when ovarian function has declined, seriously affecting both the physical and mental health of women. Guiluoshi Anzang decoction (GLSAZD) has been used for a long time and has a unique therapeutic effect on improving ovarian function. This study aims to investigate the mechanism of GLSAZD in treating POI through network pharmacology, molecular docking, and experimental verification.

Methods

In this study, the active ingredients of Guiluoshi Anzang Decoction and the targets of POI were obtained from TCMSP, BATMANN-TCM, Uniprot, GeneCards, and other databases, and network pharmacology analysis was performed. Molecular docking was conducted to validate the affinity of the main active ingredient of GLSAZD to key POI targets. A POI SD rat model was established, and HE staining, ELISA, Real-time PCR, and Western blot experiments were performed to verify the predicted core targets and the therapeutic effects.

Results

10 core targets and the top 5 ingredients were screened out. Molecular docking showed core targets AKT1, CASP3, TNF, TP53, and IL6 had stable binding with the core 5 ingredients quercetin, kaempferol, beta-sitosterol, luteolin, and Stigmasterol. GO and KEGG enrichment analysis demonstrated the mechanism involved in the positive regulation of gene expression, PI3K-AKT signaling pathway, and apoptosis signaling pathways. Animal experiments indicated GLSAZD could up-regulate the protein expression of p-PI3K and p-AKT1 and the mRNA expression of STAT3 and VEGF, down-regulate TP53 and Cleaved Caspase-3 protein expression in rat`s ovarian tissues and serum TNF-α and IL-6 protein levels, activate PI3K-AKT signaling pathway and inhibit the apoptosis signaling pathway.

Conclusion

GLSAZD treats POI through multi-component, multi-target, and multi-pathway approaches. This study provided evidence for its clinical application in treating POI and shed light on the study of traditional medicine of the Guangxi Zhuang Autonomous Region in China.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073291139240506114446
2024-05-16
2025-03-29
Loading full text...

Full text loading...

References

  1. MeczekalskiB. NiwczykO. BalaG. SzeligaA. Managing early onset osteoporosis: The impact of premature ovarian insufficiency on bone health.J. Clin. Med.20231212404210.3390/jcm12124042 37373735
    [Google Scholar]
  2. van LennepR.J.E. HeidaK.Y. BotsM.L. HoekA. Cardiovascular disease risk in women with premature ovarian insufficiency: A systematic review and meta-analysis.Eur. J. Prev. Cardiol.201623217818610.1177/2047487314556004 25331207
    [Google Scholar]
  3. ChonS.J. UmairZ. YoonM.S. Premature ovarian insufficiency: Past, present, and future.Front. Cell Dev. Biol.2021967289010.3389/fcell.2021.672890 34041247
    [Google Scholar]
  4. XiD. ChenB. TaoH. XuY. ChenG. The risk of depressive and anxiety symptoms in women with premature ovarian insufficiency: A systematic review and meta-analysis.Arch. Women Ment. Health202326111010.1007/s00737‑022‑01289‑7 36705738
    [Google Scholar]
  5. TorrealdayS. KodamanP. PalL. Premature ovarian insufficiency - An update on recent advances in understanding and management.F1000 Res.20176206910.12688/f1000research.11948.1 29225794
    [Google Scholar]
  6. RudnickaE. KruszewskaJ. KlickaK. KowalczykJ. GrymowiczM. SkórskaJ. PiętaW. SmolarczykR. Premature ovarian insufficiency – Aetiopathology, epidemiology, and diagnostic evaluation.Przegl. Menopauz.201817310510810.5114/pm.2018.78550 30357004
    [Google Scholar]
  7. PellicerN. CozzolinoM. GarcíaD.C. GallianoD. CoboA. PellicerA. HerraizS. Ovarian rescue in women with premature ovarian insufficiency: Facts and fiction.Reprod. Biomed. Online202346354356510.1016/j.rbmo.2022.12.011 36710157
    [Google Scholar]
  8. DomnizN. MeirowD. Premature ovarian insufficiency and autoimmune diseases.Reprod. Biomed. Online20196014255 31495598
    [Google Scholar]
  9. Dhanushi FernandoW. VincentA. MagraithK. Premature ovarian insufficiency and infertility.Aust. J. Gen. Pract.2023521-23238 36796766
    [Google Scholar]
  10. NelsonS.M. AndersonR.A. Prediction of premature ovarian insufficiency: Foolish fallacy or feasible foresight?Climacteric202124543844310.1080/13697137.2020.1868426 33522318
    [Google Scholar]
  11. MachuraP. GrymowiczM. RudnickaE. PiętaW. KsepkaC.A. SkórskaJ. SmolarczykR. Premature ovarian insufficiency - hormone replacement therapy and management of long-term consequences.Przegl. Menopauz.201817316438876
    [Google Scholar]
  12. CaiR. WangH. LinQ. ZhouJ. ZhangJ. IqhrammullahM. Network pharmacology analysis and molecular docking to identify the mechanism of kuntai capsules: Brief research on its action in premature ovarian insufficiency.J. Clin. Pharm. Ther.2024202411110.1155/2024/1617405
    [Google Scholar]
  13. LiL. YangL. YangL. HeC. HeY. ChenL. DongQ. ZhangH. ChenS. LiP. Network pharmacology: A bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine.Chin. Med.202318114610.1186/s13020‑023‑00853‑2 37941061
    [Google Scholar]
  14. PanossianA.A.O. EfferthT.A.O. Network pharmacology of adaptogens in the assessment of their pleiotropic therapeutic activity.Pharmaceuticals2022159105110.3390/ph15091051
    [Google Scholar]
  15. JiaoX. JinX. MaY. YangY. LiJ. LiangL. LiuR. LiZ. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based Chinese medicine.Comput. Biol. Chem.202190110740210.1016/j.compbiolchem.2020.107402 33338839
    [Google Scholar]
  16. LingW. LiX. LiuX. WuQ. WangW. MengJ. SunB. LvB.A-O. Mechanism of the anti-influenza functions of guizhi granules based on network pharmacology, molecular docking, and in vitro experiments.Chem. Biodivers.2023205e202201228
    [Google Scholar]
  17. LiX. LiuZ. LiaoJ. ChenQ. LuX. FanX. Network pharmacology approaches for research of Traditional Chinese Medicines.Chin. J. Nat. Med.202321532333210.1016/S1875‑5364(23)60429‑7 37245871
    [Google Scholar]
  18. WangX. WangZ.Y. ZhengJ.H. LiS. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches.Chin. J. Nat. Med.202119111110.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  19. ZhaoR. LiX. ZhangH. ChenX. WangY. Network pharmacology study on the mechanism of gastrodin reversing depressive symptoms in traumatically stressed rats.J. Tradit. Chin. Med.202326917551765
    [Google Scholar]
  20. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  21. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.2023309111630610.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  22. ZhangP. ZhangD. ZhouW. WangL. WangB. ZhangT. LiS. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine.Brief. Bioinform.2023251bbad51810.1093/bib/bbad518 38197310
    [Google Scholar]
  23. JiashuoW.U. FangqingZ. ZhuangzhuangL.I. WeiyiJ. YueS. Integration strategy of network pharmacology in Traditional Chinese medicine: A narrative review.J. Tradit. Chin. Med.2022423479486 35610020
    [Google Scholar]
  24. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional chinese medicine: Review and assessment.Front. Pharmacol.201910112310.3389/fphar.2019.00123 30846939
    [Google Scholar]
  25. YuanZ. PanY. LengT. ChuY. ZhangH. MaJ. MaX. Progress and prospects of research ideas and methods in the network pharmacology of traditional chinese medicine.J. Pharm. Pharm. Sci.202225218226
    [Google Scholar]
  26. YouJ.S. HeS.C. ChenL. GuoZ.H. GaoF. ZhangM.Y. DanL. ChenW. Analysis of pharmacological activities and mechanisms of essential oil in leaves of C. grandis ‘Tomentosa’ by GC-MS/MS and network pharmacology.Comb. Chem. High Throughput Screen.20232691689170010.2174/1386207325666220610182644 35702766
    [Google Scholar]
  27. ZhangW. TianW. WangY. JinX. GuoH. WangY. TangY. YaoX. Explore the mechanism and substance basis of Mahuang FuziXixin Decoction for the treatment of lung cancer based on network pharmacology and molecular docking.Comput. Biol. Med.2022151(Pt A)10629310.1016/j.compbiomed.2022.10629336399857
    [Google Scholar]
  28. JuS. HeJ. WangH. YangL. GuoA. GuoY. QiM. WangH. AiL. Potential therapeutic drug targets and pathways prediction for premature ovarian insufficiency —Based on network pharmacologic method.J. Ethnopharmacol.2023304111605410.1016/j.jep.2022.116054 36526095
    [Google Scholar]
  29. SongZ. SongK. ZhaoH. HeY. HuJ. Network analysis and experimental approach to investigate the potential therapeutic mechanism of zishen yutai pills on premature ovarian insufficiency.Heliyon202399e2002510.1016/j.heliyon.2023.e20025 37809603
    [Google Scholar]
  30. LiuH. MohammedS.A-O. LuF. ChenP. WangY. LiuS.A-O. Network pharmacology and molecular docking-based mechanism study to reveal antihypertensive effect of gedan jiangya decoction.BioMed Res. Int.202220223353464
    [Google Scholar]
  31. KitchenD.B. DecornezH. Docking and scoring in virtual screening for drug discovery: methods and applications.Nat. Rev. Drug Discov.2004311935949
    [Google Scholar]
  32. ChenY.C. Beware of docking!Trends Pharmacol. Sci.2015362789510.1016/j.tips.2014.12.001 25543280
    [Google Scholar]
  33. TorresP.H.M. SoderoA.C.R. JofilyP. Silva-JrF.P. Key topics in molecular docking for drug design.Int. J. Mol. Sci.20192018457410.3390/ijms20184574 31540192
    [Google Scholar]
  34. WangW. LiM. SiH. JiangZ. Network pharmacology and integrated molecular docking study on the mechanism of the therapeutic effect of fangfeng decoction in osteoarthritis.Curr. Pharm. Des.2023295379392
    [Google Scholar]
  35. LiuJ. WeiB. MaQ. ShiD. PanX. LiuZ. LiJ. ZhaoP. Network pharmacology and experimental validation on yangjing zhongyu decoction against diminished ovarian reserve.J. Ethnopharmacol.2023318Pt B11702337567422
    [Google Scholar]
  36. ChenY. HanS. KangA. FuR. ChenL. GuoJ. WangQ. Integration of LC-LTQ-Orbitrap-MS and network pharmacology to analyze the active components of sijunzi decoction and their mechanism of action against cytotoxicity-associated premature ovarian insufficiency.Comb. Chem. High Throughput Screen.202326142437245110.2174/1386207326666230303094247 36872360
    [Google Scholar]
  37. LuoZ. WuJ. WuY. ZhouY. HuangH. OuY. YangJ. GaoJ. WangD. Comparative study on the clinical efficacy of Anzang Decoction and Tibolone Tablets in the treatment of menopausal syndrome.Lishizhen Med. Mater. Med. Res.20142501128129
    [Google Scholar]
  38. ZhongY. Influence of Guiluoshi Anzang Decoction on Bcl-2 and Bax protein expression and granulosa cell apoptosis in rats with premature ovarian failure.Guangxi University of Chinese Medicine2022
    [Google Scholar]
  39. LongY. ZhongY. WuY. ChenQ.D.U. Research on the mechanism of the efficacy of Dao Di Tong Guan decoction on rats with premature ovarian failure.J. Hainan Med. Coll.20232912899904
    [Google Scholar]
  40. ZongK. XuK. ZhangX. WangP. WangZ. YangS. LiH. KeH. HeS. HuY. GoY. ChanX.H.F. WuJ. HuangQ. Explorating the mechanism of Huangqin Tang against skin lipid accumulation through network pharmacology and experimental validation.J. Ethnopharmacol.2023313111658110.1016/j.jep.2023.116581 37142143
    [Google Scholar]
  41. FanW. JiangZ.Z. WanS.A-O. Based on network pharmacology and molecular docking to explore the molecular mechanism of Ginseng and Astragalus decoction against postmenopausal osteoporosis.Medicine202210246e35887 37986389
    [Google Scholar]
  42. LiS. ZhangB. Traditional Chinese medicine network pharmacology: Theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  43. ShiB. LuC. LiuX. ZhouL. WangK. TaoX. Pharmacological mechanisms underlying the androgen-reducing effects of Shaoyao Gancao decoction determined by network pharmacology and molecular docking.Minerva Med.2022113473573710.23736/S0026‑4806.21.07878‑2 34825814
    [Google Scholar]
  44. MuhammadJ. KhanA. AliA. FangL. YanjingW. XuQ. WeiD.Q. Network pharmacology: Exploring the resources and methodologies.Curr. Top. Med. Chem.2018181294996410.2174/1568026618666180330141351 29600765
    [Google Scholar]
  45. WangY. DengY. ZhangS. LiuD. LuoB. WangX. DengM. MaR. SunA. Efficacy and mechanism of buxue yimu pills on Gynecological Anemia: A combination of clinical and network pharmacology study.Chin. J. Integr. Med.202228121072108010.1007/s11655‑021‑3296‑7 34241801
    [Google Scholar]
  46. YangL.N. WuZ.L. YangZ.J. LiS.G. OuyangC.S. Exploring mechanism of key chinese herbal medicine on breast cancer by data mining and network pharmacology methods.Chin. J. Integr. Med.20212712919926
    [Google Scholar]
  47. CaoY. ChenY. WangP. LuJ. HanX. SheJ. Network pharmacology and experimental validation to explore the molecular mechanisms of Bushen Huoxue for the treatment of premature ovarian insufficiency.Bioengineered2021122103451036210.1080/21655979.2021.1996317 34753385
    [Google Scholar]
  48. LiuJ. LiZ. LaoY. JinX. WangY. JiangB. HeR. YangS. Network pharmacology, molecular docking, and experimental verification reveal the mechanism of San-Huang decoction in treating acute kidney injury.Front. Pharmacol.2023141106046410.3389/fphar.2023.1060464 36814499
    [Google Scholar]
  49. LiuH. HuY. QiB. YanC. WangL. ZhangY. ChenL. Network pharmacology and molecular docking to elucidate the mechanism of pulsatilla decoction in the treatment of colon cancer.Front. Pharmacol.202213194050810.3389/fphar.2022.940508 36003525
    [Google Scholar]
  50. CuiY. HuJ. LiY. AuR. FangY. ChengC. XuF. LiW. WuY. ZhuL. ShenH. Integrated network pharmacology, molecular docking and animal experiment to explore the efficacy and potential mechanism of baiyu decoction against Ulcerative colitis by enema.Drug Des. Devel. Ther.20231734533472
    [Google Scholar]
  51. LiuK. XuY. ZhangG. XiangZ. Therapeutic effect and mechanism prediction of Fuzi-Gancao Herb couple on non-alcoholic fatty liver disease (NAFLD) based on network pharmacology and molecular docking.Comb. Chem. High Throughput Screen.202337317908
    [Google Scholar]
  52. ZhangZ. XuJ. MaS. LinN. HouM. WeiM. LiT. ShiJ. Integration of network pharmacology and molecular docking technology reveals the mechanism of the therapeutic effect of xixin decoction on alzheimer’s disease.Comb. Chem. High Throughput Screen.2022251017851804
    [Google Scholar]
  53. BabuS. JayaramanS. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management.Biomed. Pharmacother.202013111070210.1016/j.biopha.2020.110702
    [Google Scholar]
  54. PanayotisN. FreundP.A. MarvaldiL. ShalitT. BrandisA. MehlmanT. TsooryM.M. FainzilberM. β-sitosterol reduces anxiety and synergizes with established anxiolytic drugs in mice.Cell Rep. Med.20212510028110.1016/j.xcrm.2021.100281 34095883
    [Google Scholar]
  55. ChenY. ZhaoY. MiaoC. YangL. WangR. ChenB. ZhangQ. Quercetin alleviates cyclophosphamide-induced premature ovarian insufficiency in mice by reducing mitochondrial oxidative stress and pyroptosis in granulosa cells.J. Ovarian Res.202215113810.1186/s13048‑022‑01080‑3 36572950
    [Google Scholar]
  56. TarkoA. ŠtochmaľováA. HarrathA.H. KotwicaJ. BalážiA. SirotkinA.V. Quercetin can affect porcine ovarian cell functions and to mitigate some of the effects of the environmental contaminant toluene.Res. Vet. Sci.2023154899610.1016/j.rvsc.2022.12.005 36516587
    [Google Scholar]
  57. SantosJ.M.S. LinsT.L.B.G. BarberinoR.S. MenezesV.G. GouveiaB.B. MatosM.H.T. Kaempferol promotes primordial follicle activation through the phosphatidylinositol 3‐kinase/protein kinase B signaling pathway and reduces DNA fragmentation of sheep preantral follicles cultured in vitro.Mol. Reprod. Dev.201986331932910.1002/mrd.23107 30624818
    [Google Scholar]
  58. LiD. JiaY. HouY. ChenD. ZhengC. ChenL. ZhouL. SunZ. Qilin Pill exerts therapeutic effect on resection-induced premature ovarian insufficiency rats by inhibiting the MAPK and PI3K-AKT signaling pathways.Drug Des. Devel. Ther.20211513331334510.2147/DDDT.S321010 34354343
    [Google Scholar]
  59. FrumanD.A. ChiuH. HopkinsB.D. BagrodiaS. CantleyL.C. AbrahamR.T. The PI3K pathway in human disease.Cell2017170460563510.1016/j.cell.2017.07.029 28802037
    [Google Scholar]
  60. LiL. ShiX. ShiY. WangZ. The signaling pathways involved in ovarian follicle development.Front. Physiol.20211273019610.3389/fphys.2021.730196 34646156
    [Google Scholar]
  61. LiY. ZhuJ. TangJ. Computational systems pharmacology and molecular docking reveal an anti-apoptosis and anti-inflammatory mechanism of compound Angelica Ligusticum Wallichii Granules in the treatment of endometriosis.Drug Des. Devel. Ther.202317174375910.2147/DDDT.S392500 36923106
    [Google Scholar]
  62. ShiX.Y. GuanZ.Q. YuJ.N. LiuH.L. Follicle stimulating hormone inhibits the expression of p53 up-regulated modulator of apoptosis induced by reactive oxygen species through PI3K/Akt in mouse granulosa cells.Physiol. Res.202069468769410.33549/physiolres.934421 32584135
    [Google Scholar]
  63. LiN. LiuL. Mechanism of resveratrol in improving ovarian function in a rat model of premature ovarian insufficiency.J. Obstet. Gynaecol. Res.20184481431143810.1111/jog.13680 29851197
    [Google Scholar]
  64. SongA. ZhangS. ZhaoX. WuS. QiX. GaoS. QiJ. LiP. TanJ. Exosomes derived from menstrual blood stromal cells ameliorated premature ovarian insufficiency and granulosa cell apoptosis by regulating SMAD3/AKT/MDM2/P53 pathway via delivery of thrombospondin-1.Biomed. Pharmacother.202316611531910.1016/j.biopha.2023.115319 37573658
    [Google Scholar]
  65. LiuH. YangH. QinZ. ChenY. YuH. LiW. ZhuX. CaiJ. ChenJ. ZhangM. Exploration of the danggui buxue decoction mechanism regulating the balance of ESR and AR in the TP53-AKT signaling pathway in the prevention and treatment of POF.Evid. Based Complement. Alternat. Med.20212021111610.1155/2021/4862164 35003302
    [Google Scholar]
  66. MorrisonL.J. MarcinkiewiczJ.L. Tumor necrosis factor alpha enhances oocyte/follicle apoptosis in the neonatal rat ovary.Biol. Reprod.200266245045710.1095/biolreprod66.2.450 11804962
    [Google Scholar]
  67. YamamotoY. KuwaharaA. TaniguchiY. YamasakiM. TanakaY. MukaiY. YamashitaM. MatsuzakiT. YasuiT. IraharaM. Tumor necrosis factor alpha inhibits ovulation and induces granulosa cell death in rat ovaries.Reprod. Med. Biol.201514310711510.1007/s12522‑014‑0201‑5 26161038
    [Google Scholar]
  68. LliberosC. LiewS.H. MansellA. HuttK.J. The inflammasome contributes to depletion of the ovarian reserve during aging in mice.Front. Cell Dev. Biol.20218162847310.3389/fcell.2020.628473 33644037
    [Google Scholar]
  69. ChenJ. WuS. WangM. ZhangH. CuiM. A review of autoimmunity and immune profiles in patients with primary ovarian insufficiency.Medicine202210151e3250010.1097/MD.0000000000032500 36595863
    [Google Scholar]
  70. YangZ. DuX. WangC. ZhangJ. LiuC. LiY. JiangH. Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice.Stem Cell Res. Ther.201910125010.1186/s13287‑019‑1327‑5 31412919
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073291139240506114446
Loading
/content/journals/cchts/10.2174/0113862073291139240506114446
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test