Skip to content
2000
Volume 27, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Aims

Cnidii Fructus (CF) is known for its antibacterial, anti-inflammatory, and antitumor properties, as well as its activities against kidney deficiency and impotence. In this study, we aimed to explore the anti-CRC cancer effect and molecular mechanism of CF network pharmacology and antitumor experiments.

Methods

Network pharmacology was used to investigate the anti-CRC mechanism of CF. First, a series of databases was used to screen the active phytochemical targets and anti-CRC core targets. Then, the GO and KEGG pathways were analyzed to predict possible mechanisms. Molecular docking analysis explore core targets-phytochemicals interactions. antitumor experiments were carried on verifying anti-CRC mechanism of CF.

Results

In this study, 20 active ingredient targets and 50 intersecting targets were analyzed by Cytoscape software 3.9.1 to obtain the core genes and phytochemicals. Then, the GO and KEGG pathways of 50 intersecting targets were analyzed to predict possible mechanisms. The results from GO and KEGG indicated that CF has significant antitumor efficacy, which involves many signaling pathways, such as PI3K/AKT and p53. The five core targets and five core phytochemicals were screened for molecular docking to show protein-ligand interactions. According to the results of molecular docking, the compound O-acetylcolumbianetin was selected for the anti-CRC functional verification . MTT assay showed that O-acetylcolumbianetin significantly inhibited the proliferation of colorectal HCT116 cells in a time- and quantity-dependent manner. O-acetylcolumbianetin can promote the expression of CASP3 protein, induce HCT116 cells apoptosis, thus exert anti-CRC effect.

Conclusion

This study preliminarily verified the anti-CRC effect and molecular mechanism of CF and provided a reference for Traditional Chinese Medicine anti-tumor subsequent research.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073273396231010102606
2023-10-11
2025-01-12
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  2. DekkerE. TanisP.J. VleugelsJ.L.A. KasiP.M. WallaceM.B. Colorectal cancer.Lancet2019394102071467148010.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  3. ArnoldM. SierraM.S. LaversanneM. SoerjomataramI. JemalA. BrayF. Global patterns and trends in colorectal cancer incidence and mortality.Gut201766468369110.1136/gutjnl‑2015‑310912 26818619
    [Google Scholar]
  4. SiegelR.L. MillerK.D. FedewaS.A. AhnenD.J. MeesterR.G.S. BarziA. JemalA. Colorectal cancer statistics, 2017.CA Cancer J. Clin.201767317719310.3322/caac.21395 28248415
    [Google Scholar]
  5. WeiJ. GeX. TangY. QianY. LuW. JiangK. FangY. HwangM. FuD. XiaoQ. DingK. An autophagy-related long noncoding RNA signature contributes to poor prognosis in colorectal cancer.J. Oncol.2020202011310.1155/2020/4728947 33149738
    [Google Scholar]
  6. SatoH. KotakeK. SugiharaK. TakahashiH. MaedaK. UyamaI. Clinicopathological factors associated with recurrence and prognosis after R0 resection for stage IV colorectal cancer with peritoneal metastasis.Dig. Surg.201633538239110.1159/000444097 27119565
    [Google Scholar]
  7. PatyP.B. Garcia-AguilarJ. Colorectal cancer.J. Surg. Oncol.2022126588188710.1002/jso.27079 36087081
    [Google Scholar]
  8. KRASG12D Promotes Immunosuppression in Colorectal Cancer.Cancer Discov.20199557310.1158/2159‑8290.CD‑RW2019‑043
    [Google Scholar]
  9. HaJ. SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association.Knowl. Base. Syst.202326311029510.1016/j.knosys.2023.110295
    [Google Scholar]
  10. HaJ. ParkS. NCMD: Node2vec-based neural collaborative filtering for predicting MiRNA-disease association. IEEE/ACM Trans.Comput. Biol. Bioinformat.20232021257126810.1109/TCBB.2022.3191972 35849666
    [Google Scholar]
  11. HaJ. ParkC. ParkC. ParkS. Improved prediction of miRNA-disease associations based on matrix completion with network regularization.Cells20209488110.3390/cells9040881 32260218
    [Google Scholar]
  12. HaJ. MDMF: Predicting miRNA–disease association based on matrix factorization with disease similarity constraint.J. Pers. Med.202212688510.3390/jpm12060885 35743670
    [Google Scholar]
  13. HaJ. ParkC. MLMD: Metric learning for predicting MiRNA-disease associations.IEEE Access20219788477885810.1109/ACCESS.2021.3084148
    [Google Scholar]
  14. WuX.Y. ZhaiJ. HuanX.K. XuW.W. TianJ. FarhoodB. A systematic review of the therapeutic potential of resveratrol during colorectal cancer chemotherapy.Mini Rev. Med. Chem.202323101137115210.2174/1389557522666220907145153 36173048
    [Google Scholar]
  15. SałagaM. ZatorskiH. SobczakM. ChenC. FichnaJ. Chinese herbal medicines in the treatment of IBD and colorectal cancer: A review.Curr. Treat. Options Oncol.201415340542010.1007/s11864‑014‑0288‑2 24792017
    [Google Scholar]
  16. Chinese Pharmacopoeia.Available from: http://wp.chp.org.cn/front/chpint/en/ (Accessed on: 20 March 2022).
  17. WangK. ChenQ. ShaoY. YinS. LiuC. LiuY. WangR. WangT. QiuY. YuH. Anticancer activities of TCM and their active components against tumor metastasis.Biomed. Pharmacother.202113311104410.1016/j.biopha.2020.111044 33378952
    [Google Scholar]
  18. WangS. LongS. DengZ. WuW. Positive role of chinese herbal medicine in cancer immune regulation.Am. J. Chin. Med.20204871577159210.1142/S0192415X20500780 33202152
    [Google Scholar]
  19. ChangJ. XavierH.W. ChenD. LiuY. LiH. BianZ. Potential role of traditional Chinese medicines by Wnt/β-catenin pathway compared with targeted small molecules in colorectal cancer therapy.Front. Pharmacol.20211269050110.3389/fphar.2021.690501 34381360
    [Google Scholar]
  20. SunY. YangA.W.H. LenonG.B. Phytochemistry, ethnopharmacology, pharmacokinetics and toxicology of Cnidium monnieri (L.) cusson.Int. J. Mol. Sci.20202131006105710.3390/ijms21031006 32028721
    [Google Scholar]
  21. ZhangQ. QinL. HeW. Van PuyveldeL. MaesD. AdamsA. ZhengH. De KimpeN. Coumarins from Cnidium monnieri and their antiosteoporotic activity.Planta Med.2007731131910.1055/s‑2006‑951724 17315308
    [Google Scholar]
  22. ChenG. XuQ. DaiM. LiuX. Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways.Biochem. Biophys. Res. Commun.2019509232933410.1016/j.bbrc.2018.12.112
    [Google Scholar]
  23. ShaoM. YeC. BaylissG. ZhuangS. New insights into the effects of individual chinese herbal medicines on chronic kidney disease.Front. Pharmacol.20211277441410.3389/fphar.2021.774414 34803715
    [Google Scholar]
  24. LiY.M. JiaM. LiH.Q. ZhangN.D. WenX. RahmanK. ZhangQ.Y. QinL.P. Cnidium monnieri: A review of traditional uses, phytochemical and ethnopharmacological properties.Am. J. Chin. Med.201543583587710.1142/S0192415X15500500 26243582
    [Google Scholar]
  25. LimE.G. KimG.T. KimB.M. KimE.J. KimS.Y. KimY.M. Ethanol extract from Cnidium monnieri (L.) Cusson induces cell cycle arrest and apoptosis via regulation of the p53 independent pathway in HepG2 and Hep3B hepatocellular carcinoma cells.Mol. Med. Rep.201817225722580 29207130
    [Google Scholar]
  26. PanZ. FangZ. LuW. LiuX. ZhangY. Osthole, a coumadin analog from Cnidium monnieri (L.) Cusson, stimulates corticosterone secretion by increasing steroidogenic enzyme expression in mouse Y1 adrenocortical tumor cells.J. Ethnopharmacol.201517545646210.1016/j.jep.2015.10.009 26456364
    [Google Scholar]
  27. JiangG. LiuJ. RenB. TangY. OwusuL. LiM. ZhangJ. LiuL. LiW. Anti-tumor effects of osthole on ovarian cancer cells in vitro.J. Ethnopharmacol.201619336837610.1016/j.jep.2016.08.045 27566206
    [Google Scholar]
  28. KhanS.A. LeeT.K.W. Network-pharmacology-based study on active phytochemicals and molecular mechanism of cnidium monnieri in treating hepatocellular carcinoma.Int. J. Mol. Sci.202223105400541910.3390/ijms23105400 35628212
    [Google Scholar]
  29. GaoR. ZhangX-B. Pharmacological mechanism of Ganlu Powder in the treatment of NASH based on network pharmacology and molecular docking.Dis. Markers20222022112
    [Google Scholar]
  30. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  31. JiangN. LiH. SunY. ZengJ. YangF. KantawongF. WuJ. Network pharmacology and pharmacological evaluation reveals the mechanism of the sanguisorba officinalis in suppressing hepatocellular carcinoma.Front. Pharmacol.202112618522
    [Google Scholar]
  32. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  33. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  34. LopesC.T. FranzM. KaziF. DonaldsonS.L. MorrisQ. BaderG.D. Cytoscape Web: An interactive web-based network browser.Bioinformatics201026182347234810.1093/bioinformatics/btq430 20656902
    [Google Scholar]
  35. TianS. WangJ. LiY. LiD. XuL. HouT. The application of in silico drug-likeness predictions in pharmaceutical research.Adv. Drug Deliv. Rev.20158621010.1016/j.addr.2015.01.009 25666163
    [Google Scholar]
  36. ZhangX. ZhaoY. KongP. HanM. LiB. Expression of circZNF609 is down-regulated in colorectal cancer tissue and promotes apoptosis in colorectal cancer cells by upregulating p53.Med. Sci. Monit.2019255977598510.12659/MSM.915926 31401644
    [Google Scholar]
  37. CuiD. ZhaoD. WangB. LiuB. YangL. XieH. WangZ. ChengL. QiuX. MaZ. YuM. WuD. LongH. Safflower (Carthamus tinctorius L.) polysaccharide attenuates cellular apoptosis in steroid-induced avascular necrosis of femoral head by targeting caspase-3-dependent signaling pathway.Int. J. Biol. Macromol.201811610611210.1016/j.ijbiomac.2018.04.181 29729342
    [Google Scholar]
  38. LeeJ.H. YunC.W. LeeS.H. Cellular prion protein enhances drug resistance of colorectal cancer cells via regulation of a survival signal pathway.Biomol. Ther.201826331332110.4062/biomolther.2017.033 28822989
    [Google Scholar]
  39. BhardwajM. ChoH.J. PaulS. JakharR. KhanI. LeeS.J. KimB.Y. KrishnanM. KhaketT.P. LeeH.G. KangS.C. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells.Oncotarget2018933278329110.18632/oncotarget.22890 29423046
    [Google Scholar]
  40. ZhouM. LiuX. LiZ. HuangQ. LiF. LiC.Y. Caspase‐3 regulates the migration, invasion and metastasis of colon cancer cells.Int. J. Cancer2018143492193010.1002/ijc.31374 29524226
    [Google Scholar]
  41. JinX. GeL.P. LiD.Q. ShaoZ.M. DiG.H. XuX.E. JiangY.Z. LncRNA TROJAN promotes proliferation and resistance to CDK4/6 inhibitor via CDK2 transcriptional activation in ER+ breast cancer.Mol. Cancer20201918710.1186/s12943‑020‑01210‑9 32393270
    [Google Scholar]
  42. LiJ.Q. MikiH. OhmoriM. WuF. FunamotoY. Expression of cyclin E and cyclin-dependent kinase 2 correlates with metastasis and prognosis in colorectal carcinoma.Hum. Pathol.200132994595310.1053/hupa.2001.27116 11567224
    [Google Scholar]
  43. FrumR.A. GrossmanS.R. Mechanisms of mutant p53 stabilization in cancer.Subcell. Biochem.20148518719710.1007/978‑94‑017‑9211‑0_10 25201195
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073273396231010102606
Loading
/content/journals/cchts/10.2174/0113862073273396231010102606
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test