Skip to content
2000
Volume 27, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Buckwheat, a member of the genus in the Polygonaceae family, is an ancient pseudocereal with noteworthy nutraceutical properties that have been relatively less explored. This crop holds great promise for the future due to its gluten-free protein, well-balanced amino acid profile, and the presence of bioactive flavonoids that promote good health. With its gluten-free nature and a combination of beneficial nutritional components, buckwheat shows significant potential for a variety of health benefits. The objective of the present review aims to explore various nutritional and pharmacological properties of buckwheat. With the help of various search engines such as, Pubmed, Google and Semantic Scholar, research and review papers were carefully investigated and summarized in a comprehensive review. A fascinating spectrum of nutritional and pharmacological activities of common buckwheat and Tartary buckwheat were explored such as antidiabetic, anti-inflammatory, neurological disorders, antiobesity, anticancer, cardiovascular agents and many more. This review provides a concise overview of the current understanding of the chemical composition of both common buckwheat and Tartary buckwheat and the captivating spectrum of pharmacological activity and also underscoring their immense potential for future advancements.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073265824231004115334
2023-10-10
2025-01-12
Loading full text...

Full text loading...

References

  1. KumarN. WaniZ.A. DhyaniS. Ethanobotanical study of the plants used by local people of Gulmarg and its allied areas, Jammu & Kashmir, India.Int. J. Curr. Res. Biosci. Plant Biol.2015291623
    [Google Scholar]
  2. ShakhyaA.K. Medicinal plants: future source of new drugs.Int. J. Hebrs Med.2016445964
    [Google Scholar]
  3. FabricantD.S. FarnsworthN.R. The value of plants used in traditional medicine for drug discovery.Environ. Health Perspect.2001109Suppl 1697510.1289/ehp.01109s16911250806
    [Google Scholar]
  4. HajiagaheeR. AkhondzadehS. Herbal Medicine in treatment of Alzehimer’s disease.J. Med. Plant.2012114117
    [Google Scholar]
  5. MehtaS. SharmaA.K. SinghR.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020).Mini Rev. Med. Chem.202121192976299510.2174/138955752166621040109002833797375
    [Google Scholar]
  6. MehtaS. SharmaA.K. SinghR.K. Therapeutic journey of Andrographis paniculata (Burm.f.) nees from natural to synthetic and nanoformulations.Mini Rev. Med. Chem.202121121556157710.2174/138955752166621031516235433719961
    [Google Scholar]
  7. MehtaS. SharmaA.K. SinghR.K. Pharmacological activities and molecular mechanisms of pure and crude extract of Andrographis paniculata: An update.Phytomedicine Plus202114100085
    [Google Scholar]
  8. MehtaS. SharmaA.K. SinghR.K. Development and validation of HPTLC method for simultaneous estimation of bioactive components in combined extracts of three hepatoprotective plants.J. Liq. Chromatogr. Relat. Technol.2021447-837538110.1080/10826076.2021.1939046
    [Google Scholar]
  9. BodekerC. BodekerG. OngC.K. GrundyC.K. BurfordG. SheinK. WHO Global Atlas of Traditional, Complementary and Alternative Medicine.Geneva, SwitzerlandWorld Health Organisation2005
    [Google Scholar]
  10. PengL. ZhangQ. ZhangY. YaoZ. SongP. WeiL. ZhaoG. YanZ. Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake.Food Sci. Nutr.20208119921310.1002/fsn3.129131993146
    [Google Scholar]
  11. HanL. WangH. CaoJ. LiY. JinX. HeC. WangM. Inhibition mechanism of α-glucosidase inhibitors screened from Tartary buckwheat and synergistic effect with acarbose.Food Chem.202342013610210.1016/j.foodchem.2023.13610237060666
    [Google Scholar]
  12. KumarA. MetwalM. KaurS. GuptaA.K. PuranikS. SinghS. SinghM. GuptaS. BabuB.K. SoodS. YadavR. Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using Omics approaches.Front. Plant Sci.2016793410.3389/fpls.2016.0093427446162
    [Google Scholar]
  13. LiW. ZhangX. HeX. LiF. ZhaoJ. YinR. MingJ. Effects of steam explosion pretreatment on the composition and biological activities of tartary buckwheat bran phenolics.Food Funct.20201154648465810.1039/D0FO00493F32401260
    [Google Scholar]
  14. LeeC.C. ShenS.R. LaiY.J. WuS.C. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury.Food Funct.20134579480210.1039/c3fo30389f23584161
    [Google Scholar]
  15. WangH. LiuS. CuiY. WangY. GuoY. WangX. LiuJ. PiaoC. Hepatoprotective effects of flavonoids from common buckwheat hulls in type 2 diabetic rats and HepG2 cells.Food Sci. Nutr.2021994793480210.1002/fsn3.239034531992
    [Google Scholar]
  16. OhsakoT. OhnishiO. Intra- and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA.Am. J. Bot.200087457358210.2307/265660110766729
    [Google Scholar]
  17. SharmaS. Rehman AnsariM.H. SharmaK. SinghR.K. AliS. AlamM.M. ZamanM.S. AlamP. AkhterM. Pyrazoline scaffold: hit identification to lead synthesis and biological evaluation as antidiabetic agents.Future Med. Chem.202315192410.4155/fmc‑2022‑014136655571
    [Google Scholar]
  18. SharmaS. SrivastavaS. ShrivastavaA. MalikR. AlmalkiF. SaifullahK. AlamM.M. ShaqiquzzamanM. AliS. AkhterM. Mining of potential dipeptidyl peptidase-IV inhibitors as anti-diabetic agents using integrated in silico approaches.J. Biomol. Struct. Dyn.202038185349536110.1080/07391102.2019.170155331813365
    [Google Scholar]
  19. Facts & FiguresAvailable from: https://worlddiabetesday.org/about/facts (Accessed on 20th June 2023).
  20. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  21. SkrabanjaV. Liljeberg ElmståhlH.G.M. KreftI. BjörckI.M.E. Nutritional properties of starch in buckwheat products: studies in vitro and in vivo.J. Agric. Food Chem.200149149049610.1021/jf000779w11170616
    [Google Scholar]
  22. CurranJ.M. StringerD.M. WrightB. TaylorC.G. PrzybylskiR. ZahradkaP. Biological response of hepatomas to an extract of Fagopyrum esculentum M. (buckwheat) is not mediated by inositols or rutin.J. Agric. Food Chem.20105853197320410.1021/jf903890c20128593
    [Google Scholar]
  23. HanG. YaoG. LinQ. ZhaiG. FanY. Effect of extracts of buckwheat seed on blood glucose in type 2 diabetes mellitus rat.Mod. Prev. Med.2008354677467810.17221/1602‑CJFS
    [Google Scholar]
  24. LeeC.C. LeeB.H. LaiY.J. Antioxidation and antiglycation of Fagopyrum tataricum ethanol extract.J. Food Sci. Technol.20155221110111610.1007/s13197‑013‑1098‑425694726
    [Google Scholar]
  25. LeeC.C. HsuW.H. ShenS.R. ChengY.H. WuS.C. Fagopyrum tataricum (buckwheat) improved high-glucose-induced insulin resistance in mouse hepatocytes and diabetes in fructose-rich diet-induced mice.Exp. Diabetes Res.2012201211010.1155/2012/37567322548048
    [Google Scholar]
  26. CaiE.P. LinJ.K. Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic beta cells.J. Agric. Food Chem.200957209817982710.1021/jf902618v19803520
    [Google Scholar]
  27. HosakaT. NiiY. TomotakeH. ItoT. TamanahaA. YamasakaY. SasagaS. EdazawaK. TsutsumiR. ShutoE. OkahisaN. IwataS. SakaiT. Extracts of common buckwheat bran prevent sucrose digestion.J. Nutr. Sci. Vitaminol. (Tokyo)201157644144510.3177/jnsv.57.44122472288
    [Google Scholar]
  28. BaoT. WangY. LiY. GowdV. NiuX. YangH. ChenL. ChenW. SunC. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion.J. Zhejiang Univ. Sci. B2016171294195110.1631/jzus.B160024327921399
    [Google Scholar]
  29. WuW. WangL. QiuJ. LiZ. The analysis of fagopyritols from tartary buckwheat and their anti-diabetic effects in KK-Ay type 2 diabetic mice and HepG2 cells.J. Funct. Foods20185013714610.1016/j.jff.2018.09.032
    [Google Scholar]
  30. SteadmanK.J. BurgoonM.S. SchusterR.L. LewisB.A. EdwardsonS.E. ObendorfR.L. Fagopyritols, D-chiro-inositol, and other soluble carbohydrates in buckwheat seed milling fractions.J. Agric. Food Chem.20004872843284710.1021/jf990709t10898633
    [Google Scholar]
  31. ObendorfR.L. HorbowiczM. UedaT. SteadmanK.J. Fagopyritols occurrence, biosynthesis, analyses and possible role.Eur. J. Plant Sci. Biotechnol.2012622736
    [Google Scholar]
  32. World Obesity Day 2022 – Accelerating action to stop obesity.Available from: https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity#:~:text=WHO%20estimates%20that%20by%202025,predictable%20and%20preventable%20health%20crisis 2022
  33. Đurendić - BreneselM. PopovićT. PilijaV. ArsićA. MilićM. KojićD. JojićN. MilićN. Hypolipidemic and antioxidant effects of buckwheat leaf and flower mixture in hyperlipidemic rats.Bosn. J. Basic Med. Sci.201313210010810.17305/bjbms.2013.238923725506
    [Google Scholar]
  34. NishimuraM. OhkawaraT. SatoY. SatohH. SuzukiT. IshiguroK. NodaT. MorishitaT. NishihiraJ. Effectiveness of rutin-rich Tartary buckwheat ( Fagopyrum tataricum Gaertn.) ‘Manten-Kirari’ in body weight reduction related to its antioxidant properties: A randomised, double-blind, placebo-controlled study.J. Funct. Foods20162646046910.1016/j.jff.2016.08.004
    [Google Scholar]
  35. ZhouY. ZhaoS. JiangY. WeiY. ZhouX. Regulatory function of buckwheat-resistant starch supplementation on lipid profile and gut microbiota in mice fed with a high-fat diet.J. Food Sci.20198492674268110.1111/1750‑3841.1474731441507
    [Google Scholar]
  36. LeeM.S. ShinY. JungS. KimS.Y. JoY.H. KimC.T. YunM.K. LeeS.J. SohnJ. YuH.J. KimY. The inhibitory effect of tartary buckwheat extracts on adipogenesis and inflammatory response.Molecules2017227116010.3390/molecules2207116028704952
    [Google Scholar]
  37. KimS.Y. LeeM.S. ChangE. JungS. KoH. LeeE. LeeS. KimC.T. KimI.H. KimY. Tartary buckwheat extract attenuated the obesity-induced inflammation and increased muscle PGC-1a/SIRT1 expression in high fat diet-induced obese rats.Nutrients201911365410.3390/nu1103065430889894
    [Google Scholar]
  38. BaeH.G. KimM.J. Antioxidant and anti-obesity effects of in vitro digesta of germinated buckwheat.Food Sci. Biotechnol.202231787989210.1007/s10068‑022‑01086‑z35720456
    [Google Scholar]
  39. WuS.C. LeeB.H. Buckwheat polysaccharide exerts antiproliferative effects in THP-1 human leukemia cells by inducing differentiation.J. Med. Food2011141-2263310.1089/jmf.2010.125221138372
    [Google Scholar]
  40. BaiC.Z. FengM.A.L.I. HaoX.L. ZhaoZ.J. LiY.Y. WangZ.H. Anti-tumoral effects of a trypsin inhibitor derived from buckwheat in vitro and in vivo. Mol. Med. Rep.2015b1221777178210.3892/mmr.2015.364925901645
    [Google Scholar]
  41. LiuW. LiS. HuangX. CuiJ. ZhaoT. ZhangH. Inhibition of tumor growth in vitro by a combination of extracts from Rosa ruxburghii Tratt and Fagopyrum cymosum.Asian. Pac. J. Cancer. Prev.20121352409241410.7314/apjcp.2012.13.5.2409
    [Google Scholar]
  42. ZhengC. HuC. MaX. PengC. ZhangH. QinL. Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.) Gaertn.Food Chem.2012132143343810.1016/j.foodchem.2011.11.01726434312
    [Google Scholar]
  43. SunG.J. CuiT.H. JinQ.K. LiX.D. LiS.J. CuiC.B. Cytotoxicity of different extract parts of buckwheat sprout.Food Sci. Technol. Int.201210200203
    [Google Scholar]
  44. SytarO. BresticM. ZivcakM. TranL.S. Plant natural compounds with anticancer activity: a review.Zeitschrift fur Naturforschung C2015707-8185194
    [Google Scholar]
  45. ZhengS. ChenghuaH. KaifengH. Research on Se content of different tartary buckwheat genotypes.Agric. Sci. Technol. Hunan.201112102156
    [Google Scholar]
  46. Giménez-BastidaJ.A. ZielińskiH. Buckwheat as a functional food and its effects on health.J. Agric. Food Chem.201563367896791310.1021/acs.jafc.5b0249826270637
    [Google Scholar]
  47. JingR. LiH.Q. HuC.L. JiangY.P. QinL.P. ZhengC.J. Phytochemical and pharmacological profiles of three Fagopyrum buckwheats.Int. J. Mol. Sci.201617458910.3390/ijms1704058927104519
    [Google Scholar]
  48. DzahC.S. DuanY. ZhangH. AuthurD.A. MaH. Ultrasound-, subcritical water- and ultrasound assisted subcritical water-derived Tartary buckwheat polyphenols show superior antioxidant activity and cytotoxicity in human liver carcinoma cells.Food Res. Int.202013710959810.1016/j.foodres.2020.10959833233198
    [Google Scholar]
  49. LiF. ZhangX. LiY. LuK. YinR. MingJ. Phenolics extracted from tartary (Fagopyrum tartaricum L. Gaerth) buckwheat bran exhibit antioxidant activity, and an antiproliferative effect on human breast cancer MDA-MB-231 cells through the p38/MAP kinase pathway.Food Funct.20178117718810.1039/C6FO01230B27942664
    [Google Scholar]
  50. ZhouX.L. ChenZ.D. ZhouY.M. ShiR.H. LiZ.J. The effect of tartary buckwheat flavonoids in inhibiting the proliferation of MGC80-3 cells during seed germination.Molecules20192417309210.3390/molecules2417309231454945
    [Google Scholar]
  51. World Health Organization Cardiovascular diseases (CVDs) Fact Sheet2021Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (Accessed on 5 September 2021).
  52. AndriantsitohainaR. AugerC. ChataigneauT. Étienne-SelloumN. LiH. MartínezM.C. Schini-KerthV.B. LaherI. Molecular mechanisms of the cardiovascular protective effects of polyphenols.Br. J. Nutr.201210891532154910.1017/S000711451200340622935143
    [Google Scholar]
  53. RodrigoR. GilD. Miranda-MerchakA. KalantzidisG. Antihypertensive role of polyphenols.Adv. Clin. Chem.20125822525410.1016/B978‑0‑12‑394383‑5.00014‑X22950347
    [Google Scholar]
  54. TomotakeH. YamamotoN. KitabayashiH. KawakamiA. KayashitaJ. OhinataH. KarasawaH. KatoN. Preparation of tartary buckwheat protein product and its improving effect on cholesterol metabolism in rats and mice fed cholesterol-enriched diet.J. Food Sci.2007727S528S53310.1111/j.1750‑3841.2007.00474.x17995668
    [Google Scholar]
  55. MellenP. B. WalshT. F. HerringtonD. M. Whole grain intake and cardiovascular disease: a meta-analysis.Nutr Metab Cardiovasc Dis20081842839010.1016/j.numecd.2006.12.008
    [Google Scholar]
  56. HeJ. KlagM.J. WheltonP.K. MoJ.P. ChenJ.Y. QianM.C. MoP.S. HeG.Q. Oats and buckwheat intakes and cardiovascular disease risk factors in an ethnic minority of China.Am. J. Clin. Nutr.199561236637210.1093/ajcn/61.2.3667840076
    [Google Scholar]
  57. ZhangY. LiS. WuX. Pressurized liquid extraction of flavonoids from Houttuynia cordata Thunb.Separ. Purif. Tech.200858330531010.1016/j.seppur.2007.04.010
    [Google Scholar]
  58. WangM. LiuJ.R. GaoJ.M. ParryJ.W. WeiY.M. Antioxidant activity of Tartary buckwheat bran extract and its effect on the lipid profile of hyperlipidemic rats.J. Agric. Food Chem.200957115106511210.1021/jf900194s19419146
    [Google Scholar]
  59. MerendinoN. MolinariR. CostantiniL. MazzucatoA. PucciA. BonafacciaF. EstiM. CeccantoniB. PapeschiC. BonafacciaG. A new “functional” pasta containing tartary buckwheat sprouts as an ingredient improves the oxidative status and normalizes some blood pressure parameters in spontaneously hypertensive rats.Food Funct.2014551017102610.1039/C3FO60683J24658587
    [Google Scholar]
  60. LiL. LietzG. SealC. Buckwheat and CVD Risk Markers: A systematic review and meta-analysis.Nutrients201810561910.3390/nu1005061929762481
    [Google Scholar]
  61. UshidaY. MatsuiT. TanakaM. MatsumotoK. HosoyamaH. MitomiA. SagesakaY. Takami KakudaT. Endothelium-dependent vasorelaxation effect of rutin-free tartary buckwheat extract in isolated rat thoracic aorta.J Nutr Biochem20081910700710.1016/j.jnutbio.2007.09.005
    [Google Scholar]
  62. ChuJ.X. LiG.M. GaoX.J. WangJ.X. HanS.Y. Buckwheat rutin inhibits AngII-induced cardiomyocyte hypertrophy via blockade of CaN-dependent signal pathway.Iran. J. Pharm. Res.20141341347135525587324
    [Google Scholar]
  63. KayashitaJ. ShimaokaI. NakajohM. YamazakiM. KatoN. Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol-Fed rats because of its low digestibility.J. Nutr.199712771395140010.1093/jn/127.7.13959202097
    [Google Scholar]
  64. ZhangC. ZhangR. LiY.M. LiangN. ZhaoY. ZhuH. HeZ. LiuJ. HaoW. JiaoR. MaK.Y. ChenZ.Y. Cholesterol-Lowering Activity of Tartary Buckwheat Protein.J. Agric. Food Chem.20176591900190610.1021/acs.jafc.7b0006628199789
    [Google Scholar]
  65. ZouL. JiaK. LiR. WangP. LinJ.Z. ChenH.J. ZhaoG. PengL.X. Pharmacokinetic study of eplerenone in rats after long-term coadministration with buckwheat tea.Kaohsiung J. Med. Sci.201632417718410.1016/j.kjms.2016.03.00427185599
    [Google Scholar]
  66. StokićE. MandićA. SakačM. MišanA. PestorićM. ŠimurinaO. JambrecD. JovanovP. NedeljkovićN. MilovanovićI. SedejI. Quality of buckwheat-enriched wheat bread and its antihyperlipidemic effect in statin treated patients.Lebensm. Wiss. Technol.201563155656110.1016/j.lwt.2015.03.023
    [Google Scholar]
  67. YuH. LiuS. LiM. WuB. Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity.Environ. Geochem. Health201638233935110.1007/s10653‑015‑9742‑826169729
    [Google Scholar]
  68. DinuM. GhiselliL. WhittakerA. PagliaiG. CesariF. FiorilloC. BecattiM. MarcucciR. BenedettelliS. SofiF. Consumption of buckwheat products and cardiovascular risk profile: A randomized, single-blinded crossover trial.Nutr. Metab. Cardiovasc. Dis.2017271e20e2110.1016/j.numecd.2016.11.054
    [Google Scholar]
  69. HuY. HouZ. LiuD. YangX. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways.Food Funct.2016731523153610.1039/C5FO01467K26899161
    [Google Scholar]
  70. ChoiI. SeogH. ParkY. KimY. ChoiH. Suppressive effects of germinated buckwheat on development of fatty liver in mice fed with high-fat diet.Phytomedicine2007147-856356710.1016/j.phymed.2007.05.00217601714
    [Google Scholar]
  71. WojcickiJ. SkowronJ. RozewickaL. SamochowiecL. JuzwiakS. Hepatoprotective effects of buckwheat extract in rabbits fed on a high -fat diet.Acta Med. Biol. (Niigata)199644147151
    [Google Scholar]
  72. ChengN. WuL. ZhengJ. CaoW. Buckwheat honey attenuates carbon tetrachloride -induced liver and DNA damage in mice.Evid. Based Complement. Alternat. Med.2015201511010.1155/2015/98738526508989
    [Google Scholar]
  73. YangQ. LuoC. ZhangX. LiuY. WangZ. CacciamaniP. ShiJ. CuiY. WangC. SinhaB. PengB. TongG. DasG. ShahE. GaoY. LiW. TuY. QianD. ShahK. AkbarM. ZhouS. SongB.J. WangX. Tartary buckwheat extract alleviates alcohol-induced acute and chronic liver injuries through the inhibition of oxidative stress and mitochondrial cell death pathway.Am. J. Transl. Res.2020121708932051738
    [Google Scholar]
  74. HuY. ZhaoY. RenD. GuoJ. LuoY. YangX. Hypoglycemic and hepatoprotective effects of d -chiro-inositol-enriched tartary buckwheat extract in high fructose-fed mice.Food Funct.20156123760376910.1039/C5FO00612K26412138
    [Google Scholar]
  75. ZhouX. WangQ. YangY. ZhouY. TangW. LiZ. Anti -infection effects of buckwheat flavonoid extracts (BWFEs) from germinated sprouts.J. Med. Plants Res.201262429
    [Google Scholar]
  76. DengJ. LiuR. LuQ. HaoP. XuA. ZhangJ. TanJ. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey.Food Chem.201825224324910.1016/j.foodchem.2018.01.11529478537
    [Google Scholar]
  77. DongL.Y. WangC.Y. WuC.Q. JiangQ. ZhangZ.F. Protection and mechanism of Fagopyrum cymosum on lung injury in rats with Klebsiella pneumonia..Zhong Yao Cai201235460360723019909
    [Google Scholar]
  78. SehajpalS. PrasadD.N. SinghR.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation.Arch. Pharm. (Weinheim)20193527180033910.1002/ardp.20180033931231875
    [Google Scholar]
  79. Quettier-DeleuC. GressierB. VasseurJ. DineT. BrunetC. LuyckxM. CazinM. CazinJ.C. BailleulF. TrotinF. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour.J. Ethnopharmacol.2000721-2354210.1016/S0378‑8741(00)00196‑310967451
    [Google Scholar]
  80. HęśM. GóreckaD. DziedzicK. Antioxidant properties of extracts from buckwheat by-products.Acta Sci. Pol. Technol. Aliment.201211216717422493158
    [Google Scholar]
  81. KimJ.Y. SonB.K. LeeS.S. Effects of adlay, buckwheat, and barley on transit time and the antioxidative system in obesity induced rats.Nutr. Res. Pract.20126320821210.4162/nrp.2012.6.3.20822808344
    [Google Scholar]
  82. ZhouQ. LuW. NiuY. LiuJ. ZhangX. GaoB. AkohC.C. ShiH. YuL.L. Identification and quantification of phytochemical composition and anti-inflammatory, cellular antioxidant, and radical scavenging activities of 12 Plantago species.J. Agric. Food Chem.201361276693670210.1021/jf401191q23767948
    [Google Scholar]
  83. Krupa-KozakU. ŚwiąteckaD. BączekN. BrzóskaM.M. Inulin and fructooligosaccharide affect in vitro calcium uptake and absorption from calcium-enriched gluten-free bread.Food Funct.2016741950195810.1039/C6FO00140H26965706
    [Google Scholar]
  84. ViciG. BelliL. BiondiM. PolzonettiV. Gluten free diet and nutrient deficiencies: A review.Clin. Nutr.20163561236124110.1016/j.clnu.2016.05.00227211234
    [Google Scholar]
  85. ChoiJ.Y. LeeJ.M. LeeD.G. ChoS. YoonY.H. ChoE.J. LeeS. The n-butanol fraction and rutin from Tartary buckwheat improve cognition and memory in an in vivo model of amyloid-β-induced Alzheimer’s disease.J. Med. Food201518663164110.1089/jmf.2014.329225785882
    [Google Scholar]
  86. SongK. KimS. NaJ.Y. ParkJ.H. KimJ.K. KimJ.H. KwonJ. Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2.Food Chem. Toxicol.20147222823310.1016/j.fct.2014.07.02825084483
    [Google Scholar]
  87. BishnoiM. ChopraK. KulkarniS.K. Protective effect of rutin, a polyphenolic flavonoid against haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes.Fundam. Clin. Pharmacol.200721552152910.1111/j.1472‑8206.2007.00512.x17868205
    [Google Scholar]
  88. ÁlvarezP. AlvaradoC. PuertoM. SchlumbergerA. JiménezL. De la FuenteM. Improvement of leukocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals.Nutrition200622991392110.1016/j.nut.2005.12.01216809023
    [Google Scholar]
  89. GarrettR. RomanosM.T.V. BorgesR.M. SantosM.G. RochaL. SilvaA.J.R. Antiherpetic activity of a flavonoid fraction from Ocotea notata leaves.Rev. Bras. Farmacogn.201222230631310.1590/S0102‑695X2012005000003
    [Google Scholar]
  90. PaulI.M. BeilerJ. McMonagleA. ShafferM.L. DudaL. BerlinC.M.Jr Effect of honey, dextromethorphan, and no treatment on nocturnal cough and sleep quality for coughing children and their parents.Arch. Pediatr. Adolesc. Med.2007161121140114610.1001/archpedi.161.12.114018056558
    [Google Scholar]
  91. IhmeN. KiesewetterH. JungF. HoffmannK.H. BirkA. MüllerA. GrütznerK.I. Leg oedema protection from a buckwheat herb tea in patients with chronic venous insufficiency: a single-centre, randomised, double-blind, placebo-controlled clinical trial.Eur. J. Clin. Pharmacol.199650644344710.1007/s0022800501388858269
    [Google Scholar]
  92. KuS.K. LeeI.C. HanM.S. BaeJ.S. Inhibitory effects of rutin on the endothelial protein C receptor shedding in vitro and in vivo. Inflammation20143751424143110.1007/s10753‑014‑9866‑524622777
    [Google Scholar]
  93. KarkiR. ParkC. H. KimD. W. Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7).J Integr Med20131142465210.3736/jintegrmed2013036
    [Google Scholar]
  94. KayashitaJ. ShimaokaI. NakajohM. KondohM. HayashiK. KatoN. Muscle hypertrophy in rats fed on a buckwheat protein extract.Biosci. Biotechnol. Biochem.19996371242124510.1271/bbb.63.124210478451
    [Google Scholar]
  95. WieslanderG. FabjanN. VogrincicM. KreftI. VombergarB. NorbackD. Effects of common and Tartary buckwheat consumption on mucosal symptoms, headache and tiredness: A double-blind crossover intervention study.J. Food Agric. Environ.201210107110
    [Google Scholar]
  96. KreftI. FabjanN. YasumotoK. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products.Food Chem.200698350851210.1016/j.foodchem.2005.05.081
    [Google Scholar]
  97. GheldofN. WangX.H. EngesethN.J. Buckwheat honey increases serum antioxidant capacity in humans.J. Agric. Food Chem.20035151500150510.1021/jf025897t12590505
    [Google Scholar]
  98. PrzybylskiR. GruczynskaE. A review of nutritional and nutraceutical components of buckwheat.Eur. J. Plant Sci. Biotechnol20093Special issue 11022
    [Google Scholar]
  99. GoelC. SemwalA.D. AnanthamP. SharmaG.K. Development and storage stability of buckwheat chips using response surface methodology (RSM).J. Food Sci. Technol.2018551250645074 https://doi.orh/10.1007/s13197-018-3445-y
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073265824231004115334
Loading
/content/journals/cchts/10.2174/0113862073265824231004115334
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test