Skip to content
2000
Volume 27, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Bronchopulmonary dysplasia (BPD) is a chronic lung condition that occurs in premature infants who undergo prolonged mechanical ventilation and oxygen therapy. Existing treatment methods have shown limited efficacy, highlighting the urgent need for new therapeutic strategies. Artesunate (AS) is a compound known for its potential anti-inflammatory properties, and studies have shown its protective effects against acute lung injury. However, its impact on BPD and the underlying mechanisms remain unclear.

Objective

To investigate the effect and underlying mechanism of AS on chronic hyperoxia-induced BPD in neonatal mice.

Methods

Full-term C57BL/6J mice were randomly assigned to the Air+lactate Ringer's solution (L/R) group, O + L/R group, and O + AS group. Analysis was performed using assay methods such as ELISA, RT-qPCR, hematoxylin-eosin staining, and Western blotting.

Results

Compared with the O+L/R group, the expression of inflammatory factors in the serum, tissue, and BALF of the O+AS group was significantly reduced, the lung function of the mice was improved, and the inflammatory infiltrates were significantly alleviated. AS inhibited the mRNA expression of inflammatory factors in mice. We found that the expression of nuclear p65 and cytoplasmic p-IκBα in the NF-κB pathway was inhibited after adding AS.

Conclusion

AS ameliorated chronic hyperoxia-induced BPD in neonatal mice probably by inhibiting the expression of NF-κB pathway and inflammatory factors.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073246710231002042239
2023-10-11
2025-01-13
Loading full text...

Full text loading...

References

  1. PierroM. ThebaudB. SollR. Mesenchymal stem cells for the prevention and treatment of bronchopulmonary dysplasia in preterm infants.Cochrane Database Syst. Rev.201711CD01193210.1002/14651858.CD011932.pub2
    [Google Scholar]
  2. GilfillanM. BhandariA. BhandariV. Diagnosis and management of bronchopulmonary dysplasia.BMJ2021375n197410.1136/bmj.n1974 34670756
    [Google Scholar]
  3. GoughA. LindenM. SpenceD. PattersonC.C. HallidayH.L. McGarveyL.P.A. Impaired lung function and health status in adult survivors of bronchopulmonary dysplasia.Eur. Respir. J.201443380881610.1183/09031936.00039513 23900988
    [Google Scholar]
  4. McGlynnJ.R. AoyamaB.C. MartinA. CollacoJ.M. McGrath-MorrowS.A. Outpatient respiratory outcomes in children with BPD on supplemental oxygen.Pediatr. Pulmonol.20235851535154110.1002/ppul.26356
    [Google Scholar]
  5. OmarS.A. Abdul-HafezA. IbrahimS. PillaiN. AbdulmageedM. ThiruvenkataramaniR.P. Stem-cell therapy for Bronchopulmonary Dysplasia (BPD) in newborns.Cells2022118127510.3390/cells11081275
    [Google Scholar]
  6. SinclairK. YerkovichS.T. ChambersD.C. Mesenchymal stem cells and the lung.Respirology201318339741110.1111/resp.12050 23316733
    [Google Scholar]
  7. LesageF. JimenezJ. ToelenJ. DeprestJ. Preclinical evaluation of cell-based strategies to prevent or treat bronchopulmonary dysplasia in animal models: A systematic review.J. Matern. Fetal Neonatal Med.201831795896610.1080/14767058.2017.1301927 28277906
    [Google Scholar]
  8. NoldM.F. ManganN.E. RudloffI. ChoS.X. ShariatianN. SamarasingheT.D. Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia.Proc. Natl. Acad. Sci.201311035143841438910.1073/pnas.1306859110
    [Google Scholar]
  9. JobeA. Mechanisms of lung injury and bronchopulmonary dysplasia.Am. J. Perinatol.201633111076107810.1055/s‑0036‑1586107 27603539
    [Google Scholar]
  10. HsiaoC.C. ChangJ.C. TsaoL.Y. YangR.C. ChenH.N. LeeC.H. LinC.Y. TsaiY.G. Correlates of elevated interleukin-6 and 8-Hydroxy-2′-Deoxyguanosine levels in tracheal aspirates from very low birth weight infants who develop bronchopulmonary dysplasia.Pediatr. Neonatol.2017581636910.1016/j.pedneo.2016.01.004 27321203
    [Google Scholar]
  11. TianX.Y. ZhangX.D. LiQ.L. ShenY. ZhengJ. Biological markers in cord blood for prediction of bronchopulmonary dysplasia in premature infants.Clin. Exp. Obstet. Gynecol.201441331331810.12891/ceog16292014 24992784
    [Google Scholar]
  12. JiangW. LiB. ZhengX. LiuX. CenY. LiJ. PanX. CaoH. ZhengJ. ZhouH. Artesunate in combination with oxacillin protect sepsis model mice challenged with lethal live methicillin-resistant Staphylococcus aureus (MRSA) via its inhibition on proinflammatory cytokines release and enhancement on antibacterial activity of oxacillin.Int. Immunopharmacol.20111181065107310.1016/j.intimp.2011.02.028 21396483
    [Google Scholar]
  13. MengL. LiL. LuS. LiK. SuZ. WangY. FanX. LiX. ZhaoG. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways.Mol. Immunol.20189471710.1016/j.molimm.2017.12.008 29241031
    [Google Scholar]
  14. WangZ. WangQ. HeT. LiW. LiuY. FanY. WangY. WangQ. ChenJ. The combination of artesunate and carboplatin exerts a synergistic anti‐tumour effect on non‐small cell lung cancer.Clin. Exp. Pharmacol. Physiol.20204761083109110.1111/1440‑1681.13287 32072678
    [Google Scholar]
  15. RousselC. CaumesE. ThellierM. NdourP.A. BuffetP.A. JauréguiberryS. Artesunate to treat severe malaria in travellers: Review of efficacy and safety and practical implications.J. Travel Med.201724210.1093/jtm/taw093 28395097
    [Google Scholar]
  16. WangR.Y. LiH.W. ZhangQ. LinJ.T. Effect of artesunate on airway responsiveness and airway inflammation in asthmatic mice.Zhonghua Yi Xue Za Zhi201999322536254110.3760/cma.j.issn.0376‑2491.2019.32.014 31484283
    [Google Scholar]
  17. XieB. LiS. BaiW. LiZ. LouF. Artesunate alleviates hyperoxia-induced lung injury in neonatal mice by inhibiting NLRP3 inflammasome activation.Evid. Based Complement. Alternat. Med.20232023760394310.1155/2023/7603943
    [Google Scholar]
  18. LiuY. DangW. ZhangS. WangL. ZhangX. Artesunate attenuates inflammatory injury and inhibits the NF-kappaB pathway in a mouse model of cerebral ischemia.J. Int. Med. Res.20214911300060521105354910.1177/03000605211053549
    [Google Scholar]
  19. ChenS. WuQ. ZhongD. LiC. DuL. Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-kappaB pathway.Respir. Res.202021114010.1186/s12931‑020‑01403‑2
    [Google Scholar]
  20. ZhangE. WangJ. ChenQ. WangZ. LiD. JiangN. JuX. Artesunate ameliorates sepsis-induced acute lung injury by activating the mTOR/AKT/PI3K axis.Gene202075914496910.1016/j.gene.2020.144969 32712064
    [Google Scholar]
  21. DengS. ZhangH. HanW. GuoC. DengC. Transforming growth Factor-β-Neutralizing antibodies improve alveolarization in the oxygen-exposed newborn mouse lung.J. Interferon Cytokine Res.201939210611610.1089/jir.2018.0080 30657417
    [Google Scholar]
  22. ZengX.Z. ZhangY.Y. YangQ. WangS. ZouB.H. TanY.H. Artesunate attenuates LPS-induced osteoclastogenesis by suppressing TLR4/TRAF6 and PLCgamma1-Ca(2+)-NFATc1 signaling pathway.Acta Pharmacol. Sin.202041222923610.1038/s41401‑019‑0289‑6
    [Google Scholar]
  23. KumarV.L. VermaS. DasP. Artesunate suppresses inflammation and oxidative stress in a rat model of colorectal cancer.Drug Dev. Res.20198081089109710.1002/ddr.21590 31471932
    [Google Scholar]
  24. FengF.B. QiuH.Y. RETRACTED: Effects of Artesunate on chondrocyte proliferation, apoptosis and autophagy through the PI3K/AKT/mTOR signaling pathway in rat models with rheumatoid arthritis.Biomed. Pharmacother.20181021209122010.1016/j.biopha.2018.03.142 29710540
    [Google Scholar]
  25. LiuZ. ZhangJ. LiS. JiangJ. Artesunate inhibits renal ischemia reperfusion-stimulated lung inflammation in rats by activating HO-1 pathway.Inflammation201841111412110.1007/s10753‑017‑0669‑3 28921399
    [Google Scholar]
  26. ZhouZ. HouJ. LiQ. Artesunate attenuates traumatic brain injury-induced impairments in rats.Transl. Neurosci.202011130931810.1515/tnsci‑2020‑0136
    [Google Scholar]
  27. SpeerC.P. Inflammation and bronchopulmonary dysplasia.Semin. Neonatol.200381293810.1016/S1084‑2756(02)00190‑2 12667828
    [Google Scholar]
  28. LiK. ZhangF. WeiL. HanZ. LiuX. PanY. GuoC. HanW. Recombinant human Elafin ameliorates chronic hyperoxia-induced lung injury by inhibiting nuclear factor-Kappa B signaling in neonatal mice.J. Interferon Cytokine Res.202040632033010.1089/jir.2019.0241 32460595
    [Google Scholar]
  29. RussellD.W. GaggarA. SolomonG.M. Neutrophil fates in bronchiectasis and alpha-1 antitrypsin deficiency.Ann. Am. Thorac. Soc.201613Suppl. 2S123S12910.1513/AnnalsATS.201512‑805KV 27115946
    [Google Scholar]
  30. ZhangT. WangJ. WangS. MaC. Timosaponin B-II inhibits lipopolysaccharide-induced acute lung toxicity via TLR/NF-κB pathway.Toxicol. Mech. Methods201525966567110.3109/15376516.2015.1045652 26540118
    [Google Scholar]
  31. NotarteK.I.R. QuimqueM.T.J. MacaranasI.T. KhanA. PastranaA.M. VillafloresO.B. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-kappaB pathway and the increased NRF2 level by a flavonol-enriched n-butanol fraction from Uvaria alba.ACS Omega.2023865377539210.1021/acsomega.2c06451
    [Google Scholar]
  32. AliS. HirschfeldA.F. MayerM.L. FortunoE.S.III CorbettN. KaplanM. WangS. SchneidermanJ. FjellC.D. YanJ. AkhabirL. AminuddinF. MarrN. Lacaze-MasmonteilT. HegeleR.G. BeckerA. Chan-YeungM. HancockR.E.W. KollmannT.R. DaleyD. SandfordA.J. LavoieP.M. TurveyS.E. Functional genetic variation in NFKBIA and susceptibility to childhood asthma, bronchiolitis, and bronchopulmonary dysplasia.J. Immunol.201319083949395810.4049/jimmunol.1201015 23487427
    [Google Scholar]
  33. LiuD. WangY. LiL. ZhaoH. LiL. LiuY. Celecoxib protects hyperoxia-induced lung injury via NF-kappaB and AQP1.Front Pediatr.2019722810.3389/fped.2019.00228
    [Google Scholar]
  34. WangX.H. JiaH.L. DengL. HuangW.M. Astragalus polysaccharides mediated preventive effects on bronchopulmonary dysplasia in rats.Pediatr. Res.201476434735410.1038/pr.2014.107 25029259
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073246710231002042239
Loading
/content/journals/cchts/10.2174/0113862073246710231002042239
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Artesunate; bronchopulmonary dysplasia; inflammation; mice; mRNA expression; neonatal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test