Skip to content
2000
Volume 28, Issue 4
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

CFTR, which belongs to the ATP-binding cassette transporter family and whose members are always involved in cancer progression, is implicated in lung adenocarcinoma (LUAD) progression, but the underlying mechanism remains undefined. Therefore, this study intended to investigate how CFTR works exactly on LUAD progression.

Methods

Bioinformatics methods were utilized to analyze GATA6 and CFTR expression in LUAD and targeting relationship, followed by a pathway enrichment analysis of CFTR. GATA6 and CFTR expression levels were assessed by qRT-PCR. Cell viability and proliferation were detected through MTT and colony formation assays. An arachidonic acid (AA) assay kit was utilized to measure AA content. mRNA and protein expression levels of genes (cPLA2, COX-2, and CYP1A1) related to the AA metabolism pathway were detected by qRT-PCR and western blot, respectively. Moreover, the Dual-luciferase reporter gene assay and ChIP were used to verify the binding of GATA6 and CFTR promoters.

Results

GATA6 and CFTR were lowly expressed in LUAD, and CFTR was enriched in the AA metabolism pathway. GATA6 activated CFTR transcription. Cellular and rescue experiments revealed that low or high CFTR expression could foster or hamper LUAD cell viability and proliferation, and concomitant treatment of indomethacin, an AA metabolism pathway inhibitor, mitigated stimulation on LUAD progression by low CFTR expression. Silencing of GATA6 reversed the suppressive impact of CFTR overexpression on LUAD progression modulation of the AA metabolism pathway.

Conclusion

The activation of CFTR by GATA6 hampered LUAD progression by modulating the AA metabolism pathway, suggesting that GATA6/CFTR axis might be a therapeutic target for LUAD patients.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073269158240122072743
2024-01-30
2025-03-29
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. WangY. RenF. SunD. LiuJ. LiuB. HeY. PangS. ShiB. ZhouF. YaoL. LangY. XuS. WangJ. CircKeap1 suppresses the progression of lung adenocarcinoma via the miR-141-3p/KEAP1/NRF2 axis.Front. Oncol.20211167258610.3389/fonc.2021.672586 34136401
    [Google Scholar]
  3. LiZ. JiangD. YangS. MiR-490-3p inhibits the malignant progression of lung adenocarcinoma.Cancer Manag. Res.202012109751098410.2147/CMAR.S258182 33154676
    [Google Scholar]
  4. HongH. ZhuH. LiC. ZangC. SangH. ChenL. WangA. FNDC1 is highly expressed in lung adenocarcinoma and closely related with poor prognosis.Nan Fang Yi Ke Da Xue Xue Bao202242811821190 36073217
    [Google Scholar]
  5. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2018.CA Cancer J. Clin.201868173010.3322/caac.21442 29313949
    [Google Scholar]
  6. WangB. WuL. ChenJ. DongL. ChenC. WenZ. HuJ. FlemingI. WangD.W. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets.Signal Transduct. Target. Ther.2021619410.1038/s41392‑020‑00443‑w 33637672
    [Google Scholar]
  7. ChiuA.P. TschidaB.R. ShamT.T. LoL.H. MoriarityB.S. LiX.X. LoR.C. HintonD.E. RowlandsD.K. ChanC.O. MokD.K.W. LargaespadaD.A. WarnerN. KengV.W. HBx-K130M/V131I promotes liver cancer in transgenic mice via AKT/FOXO1 signaling pathway and arachidonic acid metabolism.Mol. Cancer Res.20191771582159310.1158/1541‑7786.MCR‑18‑1127 30975706
    [Google Scholar]
  8. ZhaoR. LvY. FengT. ZhangR. GeL. PanJ. HanB. SongG. WangL. ATF6α promotes prostate cancer progression by enhancing PLA2G4A‐mediated arachidonic acid metabolism and protecting tumor cells against ferroptosis.Prostate202282561762910.1002/pros.24308 35089606
    [Google Scholar]
  9. MonteleoneN.J. LutzC.S. miR-708 negatively regulates TNFα/IL-1β signaling by suppressing NF-κB and arachidonic acid pathways.Mediators Inflamm.2021202111110.1155/2021/5595520 33776573
    [Google Scholar]
  10. ZhangX. LiT. HanY.N. GeM. WangP. SunL. LiuH. CaoT. NieY. FanD. GuoH. WuK. ZhaoX. LuY. miR-125b promotes colorectal cancer migration and invasion by dual-targeting CFTR and CGN.Cancers (Basel)20211322571010.3390/cancers13225710 34830864
    [Google Scholar]
  11. BartoszewskiR. MatalonS. CollawnJ.F. Ion channels of the lung and their role in disease pathogenesis.Am. J. Physiol. Lung Cell. Mol. Physiol.20173135L859L87210.1152/ajplung.00285.2017 29025712
    [Google Scholar]
  12. HouY. GuanX. YangZ. LiC. Emerging role of cystic fibrosis transmembrane conductance regulator - an epithelial chloride channel in gastrointestinal cancers.World J. Gastrointest. Oncol.20168328228810.4251/wjgo.v8.i3.282 26989463
    [Google Scholar]
  13. LiW. WangC. PengX. ZhangH. HuangH. LiuH. CFTR inhibits the invasion and growth of esophageal cancer cells by inhibiting the expression of NF‐κB.Cell Biol. Int.201842121680168710.1002/cbin.11069 30358020
    [Google Scholar]
  14. XiaX. WangJ. LiuY. YueM. Lower Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) promotes the proliferation and migration of endometrial carcinoma.Med. Sci. Monit.20172396697410.12659/MSM.899341 28225751
    [Google Scholar]
  15. ZhaoM. ZhangJ. HuangW. DongJ. GuoJ. U, K.P.; Weng, Z.; Liu, S.; Chan, H.C.; Feng, H.; Jiang, X. CFTR promotes malignant glioma development via up‐regulation of Akt/Bcl2‐mediated anti‐apoptosis pathway.J. Cell. Mol. Med.202024137301731210.1111/jcmm.15300 32463592
    [Google Scholar]
  16. BorotF. VieuD.L. FaureG. FritschJ. ColasJ. MoriceauS. Baudouin-LegrosM. BrouillardF. Ayala-SanmartinJ. TouquiL. ChansonM. EdelmanA. OlleroM. Eicosanoid release is increased by membrane destabilization and CFTR inhibition in Calu-3 cells.PLoS One2009410e711610.1371/journal.pone.0007116 19847291
    [Google Scholar]
  17. ZhouY. ZhengX. XuB. DengH. ChenL. JiangJ. Histone methyltransferase SETD2 inhibits tumor growth via suppressing CXCL1-mediated activation of cell cycle in lung adenocarcinoma.Aging (Albany NY)20201224251892520610.18632/aging.104120 33223508
    [Google Scholar]
  18. PolavarapuS. ManiA.M. GundalaN.K.V. HariA.D. BathinaS. DasU.N. Effect of polyunsaturated fatty acids and their metabolites on bleomycin-induced cytotoxic action on human neuroblastoma cells in vitro.PLoS One2014912e11476610.1371/journal.pone.0114766 25536345
    [Google Scholar]
  19. MaJ. LiM. ChaiJ. WangK. LiP. LiuY. ZhaoD. XuJ. YuK. YanQ. GuoS. WangZ. FanL. Expression of RSK4, CD44 and MMP-9 is upregulated and positively correlated in metastatic ccRCC.Diagn. Pathol.20201512810.1186/s13000‑020‑00948‑6 32209138
    [Google Scholar]
  20. WangL. LiY. YangX. YuanH. LiX. QiM. ChangY.W.Y. WangC. FuW. YangM. ZhangJ. HanB. ERG-SOX4 interaction promotes epithelial-mesenchymal transition in prostate cancer cells.Prostate201474664765810.1002/pros.22783 24435928
    [Google Scholar]
  21. LiuA.N. QuH.J. YuC.Y. SunP. Knockdown of LINC01614 inhibits lung adenocarcinoma cell progression by up‐regulating miR‐217 and down‐regulating FOXP1.J. Cell. Mol. Med.20182294034404410.1111/jcmm.13483 29934982
    [Google Scholar]
  22. TengK. WeiS. ZhangC. ChenJ. ChenJ. XiaoK. LiuJ. DaiM. GuanX. YunJ. XieD. KIFC1 is activated by TCF-4 and promotes hepatocellular carcinoma pathogenesis by regulating HMGA1 transcriptional activity.J. Exp. Clin. Cancer Res.201938132910.1186/s13046‑019‑1331‑8 31340839
    [Google Scholar]
  23. JiW. ZhangL. ZhuH. GATA binding protein 5 (GATA5) induces Rho GTPase activating protein 9 (ARHGAP9) to inhibit the malignant process of lung adenocarcinoma cells.Bioengineered20221322878288810.1080/21655979.2022.2025695 35040754
    [Google Scholar]
  24. KoundourosN. KaraliE. TrippA. ValleA. IngleseP. PerryN.J.S. MageeD.J. Anjomani VirmouniS. ElderG.A. TysonA.L. DóriaM.L. van WeverwijkA. SoaresR.F. IsackeC.M. NicholsonJ.K. GlenR.C. TakatsZ. PoulogiannisG. Metabolic fingerprinting links oncogenic PIK3CA with enhanced arachidonic acid-derived eicosanoids.Cell2020181715961611.e2710.1016/j.cell.2020.05.053 32559461
    [Google Scholar]
  25. GharibehL. YamakA. WhitcombJ. LuA. JoyalM. KomatiH. LiangW. FisetC. NemerM. GATA6 is a regulator of sinus node development and heart rhythm.Proc. Natl. Acad. Sci. USA20211181e200732211810.1073/pnas.2007322118 33443158
    [Google Scholar]
  26. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.21551 30620402
    [Google Scholar]
  27. ZhouY. ZhaoM. DuY. LiuY. ZhaoG. YeL. LiQ. LiH. WangX. LiuX. GuoY. LiuJ. HuangY. MicroRNA‐195 suppresses the progression of lung adenocarcinoma by directly targeting apelin.Thorac. Cancer20191061419143010.1111/1759‑7714.13087 31070305
    [Google Scholar]
  28. LiH. MaN. WangJ. WangY. YuanC. WuJ. LuoM. YangJ. ChenJ. ShiJ. LiuX. Nicotine induces progressive properties of lung adenocarcinoma A549 Cells by Inhibiting Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) expression and plasma membrane localization.Technol. Cancer Res. Treat.20181710.1177/1533033818809984 30384810
    [Google Scholar]
  29. XiaoQ. KoutsilieriS. SismanoglouD.C. LauschkeV.M. CFTR reduces the proliferation of lung adenocarcinoma and is a strong predictor of survival in both smokers and non-smokers.J. Cancer Res. Clin. Oncol.2022148123293330210.1007/s00432‑022‑04106‑x 35715537
    [Google Scholar]
  30. TangJ. GaoW. LiuG. ShengW. ZhouJ. DongQ. DongM. miR-944 Suppresses EGF-induced EMT in colorectal cancer cells by directly targeting GATA6.OncoTargets Ther.2021142311232510.2147/OTT.S290567 33833529
    [Google Scholar]
  31. ChenW. ChenZ. ZhangM. TianY. LiuL. LanR. ZengG. FuX. RuG. LiuW. ChenL. FanZ. GATA6 exerts potent lung cancer suppressive function by inducing cell senescence.Front. Oncol.20201082410.3389/fonc.2020.00824 32596145
    [Google Scholar]
  32. LiuH. DuF. SunL. WuQ. WuJ. TongM. WangX. WangQ. CaoT. GaoX. CaoJ. WuN. NieY. FanD. LuY. ZhaoX. GATA6 suppresses migration and metastasis by regulating the miR-520b/CREB1 axis in gastric cancer.Cell Death Dis.20191023510.1038/s41419‑018‑1270‑x 30674866
    [Google Scholar]
  33. LiY. LiH. WeiX. Long noncoding RNA LINC00261 suppresses prostate cancer tumorigenesis through upregulation of GATA6-mediated DKK3.Cancer Cell Int.202020147410.1186/s12935‑020‑01484‑5 33013201
    [Google Scholar]
  34. HuangD. ChenJ. YangL. OuyangQ. LiJ. LaoL. ZhaoJ. LiuJ. LuY. XingY. ChenF. SuF. YaoH. LiuQ. SuS. SongE. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death.Nat. Immunol.201819101112112510.1038/s41590‑018‑0207‑y 30224822
    [Google Scholar]
  35. ZitoG. NaselliF. SaievaL. RaimondoS. CalabreseG. GuzzardoC. ForteS. RolfoC. ParentiR. AlessandroR. Retinoic acid affects lung adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition.Sci. Rep.201771477010.1038/s41598‑017‑05047‑z 28684780
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073269158240122072743
Loading
/content/journals/cchts/10.2174/0113862073269158240122072743
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): arachidonic acid; CFTR; CFTR promoters; GATA6; lung adenocarcinoma; mRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test