Skip to content
2000
Volume 28, Issue 4
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

A link between cholesterol and endometrial cancer has been established, but current studies have been limited in their findings. We aimed to elucidate the causal relationship between cholesterol and endometrial cancer and to find prognostic genes for endometrial cancer.

Methods

We first explored the causal relationship between total cholesterol and endometrial cancer using two-sample Mendelian randomization and then obtained differential genes to screen for prognosis-related genes in endometrial cancer. Then, we utilized pan-cancer analysis based on RNA sequencing data to evaluate the expression pattern and immunological role of the Translocase of Outer Mitochondrial Membrane 40 (TOMM40). Through multiple transcriptome datasets and multi-omics in-depth analysis, we comprehensively explore the relationship of TOMM40 expression with clinicopathologic characteristics, clinical outcomes and mutations in endometrial cancer. Lastly, we systematically associated the TOMM40 with different cancers from immunological properties from numerous perspectives, such as immune cell infiltration, immune checkpoint inhibitors, immunotherapy, gene mutation load and microsatellite instability.

Results

We found a negative association between cholesterol and endometrial cancer. A total of 78 genes were enriched by relevant single nucleotide polymorphisms (SNPs), of which 12 upregulated genes and 5 downregulated genes in endometrial cancer. TOMM40 was found to be a prognostic gene associated with endometrial cancer by prognostic analysis. TOMM40 was found to be positively correlated with the infiltration of most immune cells and immunization checkpoints in a subsequent study. Meanwhile, TOMM40 also was an oncogene in many cancer types. High TOMM40 was associated with lower genome stability.

Conclusion

The findings of our study indicate that the maintenance of normal total cholesterol metabolism is associated with a decreased risk of developing endometrial cancer. Moreover, TOMM40 may have potential as a prognostic indicator for endometrial cancer.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073270411240102060240
2024-01-12
2025-03-29
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. MoriceP. LearyA. CreutzbergC. Abu-RustumN. DaraiE. Endometrial cancer.Lancet2016387100231094110810.1016/S0140‑6736(15)00130‑026354523
    [Google Scholar]
  3. ClarkeM.A. LongB.J. Del Mar MorilloA. ArbynM. Bakkum-GamezJ.N. WentzensenN. Association of endometrial cancer risk with postmenopausal bleeding in women.JAMA Intern. Med.201817891210122210.1001/jamainternmed.2018.282030083701
    [Google Scholar]
  4. BokhmanJ.V. Two pathogenetic types of endometrial carcinoma.Gynecol. Oncol.1983151101710.1016/0090‑8258(83)90111‑76822361
    [Google Scholar]
  5. ChengY. DongY. TianW. ZhangH. LiX. WangZ. ShanB. RenY. WeiL. WangH. WangJ. Nomogram for predicting recurrence-free survival in chinese women with endometrial cancer after initial therapy: External validation.J. Oncol.2020202011110.1155/2020/236354532565798
    [Google Scholar]
  6. BrintonL.A. FelixA.S. McMeekinD.S. CreasmanW.T. ShermanM.E. MutchD. CohnD.E. WalkerJ.L. MooreR.G. DownsL.S. SoslowR.A. ZainoR. Etiologic heterogeneity in endometrial cancer: Evidence from a Gynecologic Oncology Group trial.Gynecol. Oncol.2013129227728410.1016/j.ygyno.2013.02.02323485770
    [Google Scholar]
  7. SungH. SiegelR.L. TorreL.A. Pearson-StuttardJ. IslamiF. FedewaS.A. Goding SauerA. ShuvalK. GapsturS.M. JacobsE.J. GiovannucciE.L. JemalA. Global patterns in excess body weight and the associated cancer burden.CA Cancer J. Clin.20196928811210.3322/caac.2149930548482
    [Google Scholar]
  8. AubreyC. BlackK. CampbellS. PinS. Endometrial cancer and bariatric surgery: A scoping review.Surg. Obes. Relat. Dis.201915349750110.1016/j.soard.2018.12.00330700395
    [Google Scholar]
  9. JavittN.B. Bile acid synthesis from cholesterol: Regulatory and auxiliary pathways.FASEB J.19948151308131110.1096/fasebj.8.15.80017448001744
    [Google Scholar]
  10. ArthurR.S. KabatG.C. KimM.Y. WildR.A. ShadyabA.H. Wactawski-WendeJ. HoG.Y.F. ReevesK.W. KullerL.H. LuoJ. Beebe-DimmerJ. SimonM.S. StricklerH. Wassertheil-SmollerS. RohanT.E. Metabolic syndrome and risk of endometrial cancer in postmenopausal women: A prospective study.Cancer Causes Control201930435536310.1007/s10552‑019‑01139‑530788634
    [Google Scholar]
  11. KhoP.F. AmantF. AnnibaliD. AshtonK. AttiaJ. AuerP.L. BeckmannM.W. BlackA. BrintonL. BuchananD.D. ChanockS.J. ChenC. ChenM.M. ChengT.H.T. CookL.S. Crous-BousM. CzeneK. De VivoI. DennisJ. DörkT. DowdyS.C. DunningA.M. DürstM. EastonD.F. EkiciA.B. FaschingP.A. FridleyB.L. FriedenreichC.M. García-ClosasM. GaudetM.M. GilesG.G. GoodeE.L. GormanM. HaimanC.A. HallP. HankinsonS.E. HeinA. HillemannsP. HodgsonS. HoivikE.A. HollidayE.G. HunterD.J. JonesA. KraftP. KrakstadC. LambrechtsD. Le MarchandL. LiangX. LindblomA. LissowskaJ. LongJ. LuL. MaglioccoA.M. MartinL. McEvoyM. MilneR.L. MintsM. NassirR. OttonG. PallesC. PoolerL. ProiettoT. RebbeckT.R. RennerS.P. RischH.A. RübnerM. RunnebaumI. SacerdoteC. SartoG.E. SchumacherF. ScottR.J. SetiawanV.W. ShahM. ShengX. ShuX.O. SoutheyM.C. ThamE. TomlinsonI. TrovikJ. TurmanC. TyrerJ.P. Van Den BergD. WangZ. WentzensenN. XiaL. XiangY.B. YangH.P. YuH. ZhengW. WebbP.M. ThompsonD.J. SpurdleA.B. GlubbD.M. O’MaraT.A. Mendelian randomization analyses suggest a role for cholesterol in the development of endometrial cancer.Int. J. Cancer2021148230731910.1002/ijc.3320632851660
    [Google Scholar]
  12. DaiM. ZhuX.L. LiuF. XuQ.Y. GeQ.L. JiangS.H. YangX.M. LiJ. WangY.H. WuQ.K. AiZ.H. TengY.C. ZhangZ.G. Cholesterol synthetase DHCR24 induced by insulin aggravates cancer invasion and progesterone resistance in endometrial carcinoma.Sci. Rep.2017714140410.1038/srep4140428112250
    [Google Scholar]
  13. GaoS. ShiZ. LiX. LiW. WangY. LiuZ. JiangJ. Fatostatin suppresses growth and enhances apoptosis by blocking SREBP-regulated metabolic pathways in endometrial carcinoma.Oncol. Rep.20183941919192910.3892/or.2018.626529436682
    [Google Scholar]
  14. WangQ. HuR. LiW. TaiY. GuW. DasB.C. YangF. JiJ. WangC. ZhouJ. BF175 inhibits endometrial carcinoma through SREBP-regulated metabolic pathways in vitro.Mol. Cell. Endocrinol.202152311113510.1016/j.mce.2020.11113533359761
    [Google Scholar]
  15. GibsonD.A. CollinsF. CousinsF.L. Esnal ZufiaurreA. SaundersP.T.K. The impact of 27-hydroxycholesterol on endometrial cancer proliferation.Endocr. Relat. Cancer201825438139110.1530/ERC‑17‑044929371332
    [Google Scholar]
  16. SharmaB. AgnihotriN. Role of cholesterol homeostasis and its efflux pathways in cancer progression.J. Steroid Biochem. Mol. Biol.201919110537710.1016/j.jsbmb.2019.10537731063804
    [Google Scholar]
  17. ChenY.C. ChangS.C. LeeY.S. HoW.M. HuangY.H. WuY.Y. ChuY.C. WuK.H. WeiL.S. WangH.L. ChiuC.C. TOMM40 genetic variants cause neuroinflammation in alzheimer’s disease.Int. J. Mol. Sci.2023244408510.3390/ijms2404408536835494
    [Google Scholar]
  18. HumphriesA.D. StreimannI.C. StojanovskiD. JohnstonA.J. YanoM. HoogenraadN.J. RyanM.T. Dissection of the mitochondrial import and assembly pathway for human Tom40.J. Biol. Chem.200528012115351154310.1074/jbc.M41381620015644312
    [Google Scholar]
  19. SunR. ZhouX. WangT. LiuY. WeiL. QiuZ. QiuC. JiangJ. Novel insights into tumorigenesis and prognosis of endometrial cancer through systematic investigation and validation on mitophagy-related signature.Hum. Cell20233641548156310.1007/s13577‑023‑00920‑837266867
    [Google Scholar]
  20. JeemonP. PettigrewK. SainsburyC. PrabhakaranD. PadmanabhanS. Implications of discoveries from genome-wide association studies in current cardiovascular practice.World J. Cardiol.20113723024710.4330/wjc.v3.i7.23021860704
    [Google Scholar]
  21. LutzM.W. CasanovaR. SaldanaS. KuchibhatlaM. PlassmanB.L. HaydenK.M. Analysis of pleiotropic genetic effects on cognitive impairment, systemic inflammation, and plasma lipids in the Health and Retirement Study.Neurobiol. Aging20198017318610.1016/j.neurobiolaging.2018.10.02831201950
    [Google Scholar]
  22. GormleyM. YarmolinskyJ. DuddingT. BurrowsK. MartinR.M. ThomasS. TyrrellJ. BrennanP. PringM. BocciaS. OlshanA.F. DiergaardeB. HungR.J. LiuG. LeggeD. TajaraE.H. SeverinoP. LackoM. NessA.R. Davey SmithG. VincentE.E. RichmondR.C. Using genetic variants to evaluate the causal effect of cholesterol lowering on head and neck cancer risk: A Mendelian randomization study.PLoS Genet.2021174e100952510.1371/journal.pgen.100952533886544
    [Google Scholar]
  23. WillerC.J. SchmidtE.M. SenguptaS. PelosoG.M. GustafssonS. KanoniS. GannaA. ChenJ. BuchkovichM.L. MoraS. BeckmannJ.S. Bragg-GreshamJ.L. ChangH.Y. DemirkanA. Den HertogH.M. DoR. DonnellyL.A. EhretG.B. EskoT. FeitosaM.F. FerreiraT. FischerK. FontanillasP. FraserR.M. FreitagD.F. GurdasaniD. HeikkiläK. HyppönenE. IsaacsA. JacksonA.U. JohanssonÅ. JohnsonT. KaakinenM. KettunenJ. KleberM.E. LiX. LuanJ. LyytikäinenL.P. MagnussonP.K.E. ManginoM. MihailovE. MontasserM.E. Müller-NurasyidM. NolteI.M. O’ConnellJ.R. PalmerC.D. PerolaM. PetersenA.K. SannaS. SaxenaR. ServiceS.K. ShahS. ShunginD. SidoreC. SongC. StrawbridgeR.J. SurakkaI. TanakaT. TeslovichT.M. ThorleifssonG. Van den HerikE.G. VoightB.F. VolcikK.A. WaiteL.L. WongA. WuY. ZhangW. AbsherD. AsikiG. BarrosoI. BeenL.F. BoltonJ.L. BonnycastleL.L. BrambillaP. BurnettM.S. CesanaG. DimitriouM. DoneyA.S.F. DöringA. ElliottP. EpsteinS.E. Ingi EyjolfssonG. GiganteB. GoodarziM.O. GrallertH. GravitoM.L. GrovesC.J. HallmansG. HartikainenA.L. HaywardC. HernandezD. HicksA.A. HolmH. HungY.J. IlligT. JonesM.R. KaleebuP. KasteleinJ.J.P. KhawK.T. KimE. KloppN. KomulainenP. KumariM. LangenbergC. LehtimäkiT. LinS.Y. LindströmJ. LoosR.J.F. MachF. McArdleW.L. MeisingerC. MitchellB.D. MüllerG. NagarajaR. NarisuN. NieminenT.V.M. NsubugaR.N. OlafssonI. OngK.K. PalotieA. PapamarkouT. PomillaC. PoutaA. RaderD.J. ReillyM.P. RidkerP.M. RivadeneiraF. RudanI. RuokonenA. SamaniN. ScharnaglH. SeeleyJ. SilanderK. StančákováA. StirrupsK. SwiftA.J. TiretL. UitterlindenA.G. van PeltL.J. VedantamS. WainwrightN. WijmengaC. WildS.H. WillemsenG. WilsgaardT. WilsonJ.F. YoungE.H. ZhaoJ.H. AdairL.S. ArveilerD. AssimesT.L. BandinelliS. BennettF. BochudM. BoehmB.O. BoomsmaD.I. BoreckiI.B. BornsteinS.R. BovetP. BurnierM. CampbellH. ChakravartiA. ChambersJ.C. ChenY.I. CollinsF.S. CooperR.S. DaneshJ. DedoussisG. de FaireU. FeranilA.B. FerrièresJ. FerrucciL. FreimerN.B. GiegerC. GroopL.C. GudnasonV. GyllenstenU. HamstenA. HarrisT.B. HingoraniA. HirschhornJ.N. HofmanA. HovinghG.K. HsiungC.A. HumphriesS.E. HuntS.C. HveemK. IribarrenC. JärvelinM.R. JulaA. KähönenM. KaprioJ. KesäniemiA. KivimakiM. KoonerJ.S. KoudstaalP.J. KraussR.M. KuhD. KuusistoJ. KyvikK.O. LaaksoM. LakkaT.A. LindL. LindgrenC.M. MartinN.G. MärzW. McCarthyM.I. McKenzieC.A. MenetonP. MetspaluA. MoilanenL. MorrisA.D. MunroeP.B. NjølstadI. PedersenN.L. PowerC. PramstallerP.P. PriceJ.F. PsatyB.M. QuertermousT. RauramaaR. SaleheenD. SalomaaV. SangheraD.K. SaramiesJ. SchwarzP.E.H. SheuW.H. ShuldinerA.R. SiegbahnA. SpectorT.D. StefanssonK. StrachanD.P. TayoB.O. TremoliE. TuomilehtoJ. UusitupaM. van DuijnC.M. VollenweiderP. WallentinL. WarehamN.J. WhitfieldJ.B. WolffenbuttelB.H.R. OrdovasJ.M. BoerwinkleE. PalmerC.N.A. ThorsteinsdottirU. ChasmanD.I. RotterJ.I. FranksP.W. RipattiS. CupplesL.A. SandhuM.S. RichS.S. BoehnkeM. DeloukasP. KathiresanS. MohlkeK.L. IngelssonE. AbecasisG.R. Discovery and refinement of loci associated with lipid levels.Nat. Genet.201345111274128310.1038/ng.279724097068
    [Google Scholar]
  24. RajasundaramS. RahmanR.P. WoolfB. ZhaoS.S. GillD. Morning cortisol and circulating inflammatory cytokine levels: A mendelian randomisation study.Genes202213111610.3390/genes1301011635052454
    [Google Scholar]
  25. PierceB.L. AhsanH. VanderWeeleT.J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants.Int. J. Epidemiol.201140374075210.1093/ije/dyq15120813862
    [Google Scholar]
  26. JinY. Causal relationship between narcolepsy and depression: A two-sample Mendelian randomization study.J. Psychosom. Res.202317511151710.1016/j.jpsychores.2023.11151737832275
    [Google Scholar]
  27. WichmannG. RosolowskiM. KrohnK. KreuzM. BoehmA. ReicheA. ScharrerU. HalamaD. BertoliniJ. BauerU. HolzingerD. PawlitaM. HessJ. EngelC. HasencleverD. ScholzM. AhnertP. KirstenH. HemprichA. WittekindC. HerbarthO. HornF. DietzA. LoefflerM. The role of HPV RNA transcription, immune response‐related gene expression and disruptive TP53 mutations in diagnostic and prognostic profiling of head and neck cancer.Int. J. Cancer2015137122846285710.1002/ijc.2964926095926
    [Google Scholar]
  28. TangF. LiZ. LaiY. LuZ. LeiH. HeC. HeZ. A 7-gene signature predicts the prognosis of patients with bladder cancer.BMC Urol.2022221810.1186/s12894‑022‑00955‑335090432
    [Google Scholar]
  29. LiC.H. FangC.Y. ChanM.H. ChenC.L. ChangY.C. HsiaoM. The cytoplasmic expression of FSTL3 correlates with colorectal cancer progression, metastasis status and prognosis.J. Cell. Mol. Med.202327567268610.1111/jcmm.1769036807490
    [Google Scholar]
  30. LuS. CaiS. PengX. ChengR. ZhangY. Integrative transcriptomic, proteomic and functional analysis reveals ATP1B3 as a diagnostic and potential therapeutic target in hepatocellular carcinoma.Front. Immunol.20211263661410.3389/fimmu.2021.63661433868261
    [Google Scholar]
  31. ZhongL. ZhuJ. ShuQ. XuG. HeC. FangL. A prognostic cuproptosis-related LncRNA signature for colon adenocarcinoma.J. Oncol.2023202311810.1155/2023/592593536844874
    [Google Scholar]
  32. LeeD.H. JeongY.J. WonJ.Y. SimH.I. ParkY. JinH.S. PBK/TOPK Is a favorable prognostic biomarker correlated with antitumor immunity in colon cancers.Biomedicines202210229910.3390/biomedicines1002029935203508
    [Google Scholar]
  33. SunD. WangJ. HanY. DongX. GeJ. ZhengR. ShiX. WangB. LiZ. RenP. SunL. YanY. ZhangP. ZhangF. LiT. WangC. TISCH: A comprehensive web resource enabling interactive single-cell transcriptome visualization of tumor microenvironment.Nucleic Acids Res.202149D1D1420D143010.1093/nar/gkaa102033179754
    [Google Scholar]
  34. GuB. ShangX. YanM. LiX. WangW. WangQ. ZhangC. Variations in incidence and mortality rates of endometrial cancer at the global, regional, and national levels, 1990–2019.Gynecol. Oncol.2021161257358010.1016/j.ygyno.2021.01.03633551200
    [Google Scholar]
  35. RenehanA.G. MacKintoshM.L. CrosbieE.J. Obesity and endometrial cancer: Unanswered epidemiological questions.BJOG2016123217517810.1111/1471‑0528.1373126542313
    [Google Scholar]
  36. AuneD. Navarro RosenblattD.A. ChanD.S.M. VingelieneS. AbarL. VieiraA.R. GreenwoodD.C. BanderaE.V. NoratT. Anthropometric factors and endometrial cancer risk: A systematic review and dose–response meta-analysis of prospective studies.Ann. Oncol.20152681635164810.1093/annonc/mdv14225791635
    [Google Scholar]
  37. KaaksR. LukanovaA. KurzerM.S. Obesity, endogenous hormones, and endometrial cancer risk: A synthetic review.Cancer Epidemiol. Biomarkers Prev.200211121531154312496040
    [Google Scholar]
  38. CuiX. RosnerB. WillettW.C. HankinsonS.E. Dietary fat, fiber, and carbohydrate intake in relation to risk of endometrial cancer.Cancer Epidemiol. Biomarkers Prev.201120597898910.1158/1055‑9965.EPI‑10‑108921393567
    [Google Scholar]
  39. GongT.T. LiD. WuQ.J. WangY.Z. Cholesterol consumption and risk of endometrial cancer: A systematic review and dose-response meta-analysis of observational studies.Oncotarget2016713169961700810.18632/oncotarget.791326959738
    [Google Scholar]
  40. WuQ.J. GongT.T. WangY.Z. Dietary fatty acids intake and endometrial cancer risk: A dose-response meta-analysis of epidemiological studies.Oncotarget2015634360813609710.18632/oncotarget.555526462150
    [Google Scholar]
  41. SklanA. 2016 annual meeting of the society of gynecologic oncology.Lancet Oncol.201617556210.1016/S1470‑2045(16)30020‑127037005
    [Google Scholar]
  42. MandalC.C. SharmaA. PanwarM.S. RadosevichJ.A. Is cholesterol a mediator of cold-induced cancer?Tumour Biol.20163779635964810.1007/s13277‑016‑4799‑226797787
    [Google Scholar]
  43. NielsenS.F. NordestgaardB.G. BojesenS.E. Statin use and reduced cancer-related mortality.N. Engl. J. Med.2012367191792180210.1056/NEJMoa120173523134381
    [Google Scholar]
  44. NakamuraK. HongoA. KodamaJ. HiramatsuY. Fat accumulation in adipose tissues as a risk factor for the development of endometrial cancer.Oncol. Rep.2011261657110.3892/or.2011.125921491090
    [Google Scholar]
  45. ZhangY. LiuZ. YuX. ZhangX. LüS. ChenX. LüB. The association between metabolic abnormality and endometrial cancer: A large case-control study in China.Gynecol. Oncol.20101171414610.1016/j.ygyno.2009.12.02920096921
    [Google Scholar]
  46. ÖzdemirS. BatmazG. AtesS. CelikC. IncesuF. PeruC. Relation of metabolic syndrome with endometrial pathologies in patients with abnormal uterine bleeding.Gynecol. Endocrinol.201531972572910.3109/09513590.2015.105835526182187
    [Google Scholar]
  47. ZhuG. LiZ. TangL. ShenM. ZhouZ. WeiY. ZhaoY. BaiS. SongL. Associations of dietary intakes with gynecological cancers: Findings from a cross-sectional study.Nutrients20221423502610.3390/nu1423502636501056
    [Google Scholar]
  48. PattiG.J. ShriverL.P. WassifC.A. WooH.K. UritboonthaiW. AponJ. ManchesterM. PorterF.D. SiuzdakG. Nanostructure-initiator mass spectrometry (NIMS) imaging of brain cholesterol metabolites in Smith-Lemli-Opitz syndrome.Neuroscience2010170385886410.1016/j.neuroscience.2010.07.03820670678
    [Google Scholar]
  49. DaniloC. FrankP.G. Cholesterol and breast cancer development.Curr. Opin. Pharmacol.201212667768210.1016/j.coph.2012.07.00922867847
    [Google Scholar]
  50. SetiawanV.W. YangH.P. PikeM.C. McCannS.E. YuH. XiangY.B. WolkA. WentzensenN. WeissN.S. WebbP.M. van den BrandtP.A. van de VijverK. ThompsonP.J. StromB.L. SpurdleA.B. SoslowR.A. ShuX. SchairerC. SacerdoteC. RohanT.E. RobienK. RischH.A. RicceriF. RebbeckT.R. RastogiR. PrescottJ. PolidoroS. ParkY. OlsonS.H. MoysichK.B. MillerA.B. McCulloughM.L. MatsunoR.K. MaglioccoA.M. LurieG. LuL. LissowskaJ. LiangX. LaceyJ.V.Jr KolonelL.N. HendersonB.E. HankinsonS.E. HåkanssonN. GoodmanM.T. GaudetM.M. Garcia-ClosasM. FriedenreichC.M. FreudenheimJ.L. DohertyJ. De VivoI. CourneyaK.S. CookL.S. ChenC. CerhanJ.R. CaiH. BrintonL.A. BernsteinL. AndersonK.E. Anton-CulverH. SchoutenL.J. Horn-RossP.L. Type I and II endometrial cancers: Have they different risk factors?J. Clin. Oncol.201331202607261810.1200/JCO.2012.48.259623733771
    [Google Scholar]
  51. HwangH.J. LeeK.H. ChoJ.Y. ABCA9, an ER cholesterol transporter, inhibits breast cancer cell proliferation via SREBP ‐2 signaling.Cancer Sci.202311441451146310.1111/cas.1571036576228
    [Google Scholar]
  52. AraisoY. ImaiK. EndoT. Role of the TOM complex in protein import into mitochondria: Structural views.Annu. Rev. Biochem.202291167970310.1146/annurev‑biochem‑032620‑10452735287471
    [Google Scholar]
  53. NambaT. BAP31 regulates mitochondrial function via interaction with Tom40 within ER-mitochondria contact sites.Sci. Adv.201956eaaw138610.1126/sciadv.aaw138631206022
    [Google Scholar]
  54. NingL. PanB. ZhaoY.P. LiaoQ. ZhangT.P. ChenG. WangW.B. YangY.C. [Immuno-proteomic screening of human pancreatic cancer associated membrane antigens for early diagnosis].Zhonghua Wai Ke Za Zhi2007451343817403287
    [Google Scholar]
  55. YangW. ShinH.Y. ChoH. ChungJ.Y. LeeE. KimJ.H. KangE.S. TOM40 inhibits ovarian cancer cell growth by modulating mitochondrial function including intracellular ATP and ROS levels.Cancers2020125132910.3390/cancers1205132932456076
    [Google Scholar]
  56. YaoL. LiJ. XuZ. YanY. HuK. GSDMs are potential therapeutic targets and prognostic biomarkers in clear cell renal cell carcinoma.Aging20221462758277410.18632/aging.20397335321945
    [Google Scholar]
  57. HeZ. ZhangJ. MaJ. ZhaoL. JinX. LiH. R-spondin family biology and emerging linkages to cancer.Ann. Med.202355142844610.1080/07853890.2023.216698136645115
    [Google Scholar]
  58. TianY. BaiF. ZhangD. HIF1α: A novel biomarker with potential prognostic and immunotherapy in pan-cancer.Oxid. Med. Cell. Longev.2022202211710.1155/2022/124626735860430
    [Google Scholar]
  59. StantonS.E. DisisM.L. Clinical significance of tumor-infiltrating lymphocytes in breast cancer.J. Immunother. Cancer2016415910.1186/s40425‑016‑0165‑627777769
    [Google Scholar]
  60. Ingold HeppnerB. LoiblS. DenkertC. Tumor-infiltrating lymphocytes: A promising biomarker in breast cancer.Breast Care20161129610010.1159/00044435727239170
    [Google Scholar]
  61. ReyndersK. De RuysscherD. Tumor infiltrating lymphocytes in lung cancer: A new prognostic parameter.J. Thorac. Dis.201688E833E83510.21037/jtd.2016.07.7527618931
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073270411240102060240
Loading
/content/journals/cchts/10.2174/0113862073270411240102060240
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test