Skip to content
2000
Volume 28, Issue 4
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Chemotherapy resistance is a common cause of tumor treatment failure. Various molecular responses, such as increased expression of efflux transporter proteins, including P-glycoprotein (P-gp), changes in the tumor microenvironment (TME), the role of platelets, and the effects of cancer stem cells (CSCs), can lead to drug resistance. Through extensive research on the mechanisms of drug resistance, more effective anti-resistance drugs and therapeutic approaches are being developed. This review explores drug resistance mechanisms and summarizes relevant anti-resistance drugs. In addition, due to the therapeutic limitations of the aforementioned treatments, new advances in nanocarrier-based combination immunotherapy to address the challenge of drug resistance have been described. Nanocarriers combined with immunotherapy can not only target tumor sites for targeted drug release but also modulate the autoimmune system and enhance immune efficacy, thereby overcoming tumor drug resistance. This review suggests new strategies for overcoming tumor drug resistance and is expected to inform tumor treatment and prognosis.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073296206240416060154
2024-04-25
2025-03-29
Loading full text...

Full text loading...

References

  1. NameeN.M. O’DriscollL. Extracellular vesicles and anti-cancer drug resistance.Biochim. Biophys. Acta Rev. Cancer20181870212313610.1016/j.bbcan.2018.07.003 30003999
    [Google Scholar]
  2. ZhangL. YeB. ChenZ. ChenZ.S. Progress in the studies on the molecular mechanisms associated with multidrug resistance in cancers.Acta Pharm. Sin. B202313398299710.1016/j.apsb.2022.10.002 36970215
    [Google Scholar]
  3. AlshahraniM.Y. AlkhathamiA.G. AlmoyadM.A.A. AhmadM.Z. MohantoS. AhmadW. WahabS. Phytochemicals as potential inhibitors of interleukin-8 for anticancer therapy: In silico evaluation and molecular dynamics analysis.J. Biomol. Struct. Dyn.2023202311210.1080/07391102.2023.2294387 38116764
    [Google Scholar]
  4. JosephM.M. RamyaA.N. VijayanV.M. NairJ.B. BastianB.T. PillaiR.K. TherakathinalS.T. MaitiK.K. Targeted theranostic nano vehicle endorsed with self‐destruction and immunostimulatory features to circumvent drug resistance and wipe‐out tumor reinitiating cancer stem cells.Small20201638200330910.1002/smll.202003309 32797715
    [Google Scholar]
  5. ShankaranV. IkedaH. BruceA.T. WhiteJ.M. SwansonP.E. OldL.J. SchreiberR.D. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity.Nature200141068321107111110.1038/35074122 11323675
    [Google Scholar]
  6. LiG. SunB. LiY. LuoC. HeZ. SunJ. Small‐molecule prodrug nanoassemblies: An emerging nanoplatform for anticancer drug delivery.Small20211752210146010.1002/smll.202101460 34342126
    [Google Scholar]
  7. DebaugniesM. AcebesR.S. BlondeauJ. ParentM.A. ZoccoM. SongY. de MaertelaerV. MoersV. LatilM. DuboisC. CoulonvalK. ImpensF. Van HaverD. DufourS. UemuraA. SotiropoulouP.A. MéndezJ. BlanpainC. RHOJ controls EMT-associated resistance to chemotherapy.Nature2023616795516817510.1038/s41586‑023‑05838‑7 36949199
    [Google Scholar]
  8. LiY. XuX. Nanomedicine solutions to intricate physiological-pathological barriers and molecular mechanisms of tumor multidrug resistance.J. Control. Release202032348350110.1016/j.jconrel.2020.05.007 32387548
    [Google Scholar]
  9. De LorenzoS. TovoliF. TrevisaniF. Mechanisms of primary and acquired resistance to immune checkpoint inhibitors in patients with hepatocellular carcinoma.Cancers20221419461610.3390/cancers14194616 36230538
    [Google Scholar]
  10. TongY. ZhangJ. SunN. WangX.M. WeiQ. ZhangY. HuangR. PuY. DaiH. RenB. PeiG. SongF. ZhuG. WangX. XiaX. ChenX. JiangL. WangS. OuyangL. XieN. ZhangB. JiangY. LiuX. CalderoneR. BaiF. ZhangL. AlterovitzG. Berberine reverses multidrug resistance in Candida albicans by hijacking the drug efflux pump Mdr1p.Sci. Bull.202166181895190510.1016/j.scib.2020.12.035 36654399
    [Google Scholar]
  11. BreierA. GibalovaL. SeresM. BarancikM. SulovaZ. New insight into p-glycoprotein as a drug target.Anticancer. Agents Med. Chem.201313115917010.2174/187152013804487380 22931413
    [Google Scholar]
  12. HigginsC.F. GottesmanM.M. Is the multidrug transporter a flippase?Trends Biochem. Sci.1992171182110.1016/0968‑0004(92)90419‑A 1374941
    [Google Scholar]
  13. YuanY. LiuJ. YuX. LiuX. ChengY. ZhouC. LiM. ShiL. DengY. LiuH. WangG. WangL. WangZ. Tumor-targeting pH/redox dual-responsive nanosystem epigenetically reverses cancer drug resistance by co-delivering doxorubicin and GCN5 siRNA.Acta Biomater.202113555656610.1016/j.actbio.2021.09.002 34496281
    [Google Scholar]
  14. MirzaeiS. GholamiM.H. HashemiF. ZabolianA. FarahaniM.V. HushmandiK. ZarrabiA. GoldmanA. AshrafizadehM. OriveG. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects.Drug Discov. Today202227243645510.1016/j.drudis.2021.09.020 34624510
    [Google Scholar]
  15. SaulerM. BazanI.S. LeeP.J. Cell death in the lung: The apoptosis–necroptosis axis.Annu. Rev. Physiol.201981137540210.1146/annurev‑physiol‑020518‑114320 30485762
    [Google Scholar]
  16. XiaY. ZhangJ. LiuG. A prospective strategy leveraging nanomedicine for cancer therapy: Pouring ferroptosis on apoptosis.Nano Today20234810174010.1016/j.nantod.2022.101740
    [Google Scholar]
  17. ChoiS.K. KamH. KimK.Y. ParkS.I. LeeY-S. Targeting heat shock protein 27 in cancer: A druggable target for cancer treatment?Cancers2019118119510.3390/cancers11081195 31426426
    [Google Scholar]
  18. ChauhanD. LiG. HideshimaT. PodarK. MitsiadesC. MitsiadesN. CatleyL. TaiY.T. HayashiT. ShringarpureR. BurgerR. MunshiN. OhtakeY. SaxenaS. AndersonK.C. Hsp27 inhibits release of mitochondrial protein Smac in multiple myeloma cells and confers dexamethasone resistance.Blood200310293379338610.1182/blood‑2003‑05‑1417 12855565
    [Google Scholar]
  19. LamprosM. VlachosN. VoulgarisS. AlexiouG.A. The role of Hsp27 in chemotherapy resistance.Biomedicines202210489710.3390/biomedicines10040897 35453647
    [Google Scholar]
  20. DuD. Wang-KanX. NeubergerA. van VeenH.W. PosK.M. PiddockL.J.V. LuisiB.F. Multidrug efflux pumps: Structure, function and regulation.Nat. Rev. Microbiol.201816952353910.1038/s41579‑018‑0048‑6 30002505
    [Google Scholar]
  21. FoxlerD.E. BridgeK.S. FosterJ.G. GrevittP. CurryS. ShahK.M. DavidsonK.M. NaganoA. GadaletaE. RhysH.I. KennedyP.T. HermidaM.A. ChangT.Y. ShawP.E. ReynoldsL.E. McKayT.R. WangH.W. RibeiroP.S. PlevinM.J. LagosD. LemoineN.R. RajanP. GrahamT.A. ChelalaC. Hodivala-DilkeK.M. SpendloveI. SharpT.V.A. HIF – LIMD 1 negative feedback mechanism mitigates the pro‐tumorigenic effects of hypoxia.EMBO Mol. Med.2018108e830410.15252/emmm.201708304 29930174
    [Google Scholar]
  22. CrozierL. FoyR. MoueryB.L. WhitakerR.H. CornoA. SpanosC. LyT. Gowen CookJ. SaurinA.T. CDK4/6 inhibitors induce replication stress to cause long‐term cell cycle withdrawal.EMBO J.2022416e10859910.15252/embj.2021108599 35037284
    [Google Scholar]
  23. ZhangC. LiuN. Noncoding RNAs in the glycolysis of ovarian cancer.Front. Pharmacol.20221385548810.3389/fphar.2022.855488 35431949
    [Google Scholar]
  24. TaylorS. SpugniniE.P. AssarafY.G. AzzaritoT. RauchC. FaisS. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach.Drug Resist. Updat.201523697810.1016/j.drup.2015.08.004 26341193
    [Google Scholar]
  25. BöhmeI. BosserhoffA. Extracellular acidosis triggers a senescence‐like phenotype in human melanoma cells.Pigment Cell Melanoma Res.2020331415110.1111/pcmr.12811 31310445
    [Google Scholar]
  26. JedlitschkyG. GreinacherA. KroemerH.K. Transporters in human platelets: Physiologic function and impact for pharmacotherapy.Blood2012119153394340210.1182/blood‑2011‑09‑336933 22337717
    [Google Scholar]
  27. KöckK. GrubeM. JedlitschkyG. OevermannL. SiegmundW. RitterC.A. KroemerH.K. Expression of adenosine triphosphate-binding cassette (ABC) drug transporters in peripheral blood cells: Relevance for physiology and pharmacotherapy.Clin. Pharmacokinet.200746644947010.2165/00003088‑200746060‑00001 17518506
    [Google Scholar]
  28. MillerB.J. ChoiH.J. DaltonH.J. StoneR.L. ChoM.S. HaemmerleM. NickA.M. PradeepS. ZandB. PrevisR.A. PecotC.V. CraneE.K. HuW. LutgendorfS.K. KharghanA.V. SoodA.K. Differential platelet levels affect response to taxane-based therapy in ovarian cancer.Clin. Cancer Res.201521360261010.1158/1078‑0432.CCR‑14‑0870 25473001
    [Google Scholar]
  29. ShresthaS. BanstolaA. JeongJ.H. SeoJ.H. YookS. Targeting cancer stem cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles.J. Control. Release202234851853610.1016/j.jconrel.2022.06.013 35709876
    [Google Scholar]
  30. NicolayN.H. RühleA. PerezR.L. TrinhT. SisombathS. WeberK.J. SchmezerP. HoA.D. DebusJ. SaffrichR. HuberP.E. Mesenchymal stem cells exhibit resistance to topoisomerase inhibition.Cancer Lett.20163741758410.1016/j.canlet.2016.02.007 26876302
    [Google Scholar]
  31. TanabeA. SaharaH. The metabolic heterogeneity and flexibility of cancer stem cells.Cancers20201210278010.3390/cancers12102780 32998263
    [Google Scholar]
  32. WangX. LiuZ. WangY. GouS. Platinum(IV) prodrugs with cancer stem cell inhibitory effects on lung cancer for overcoming drug resistance.J. Med. Chem.202265117933794510.1021/acs.jmedchem.2c00472 35635560
    [Google Scholar]
  33. SleemanJ. SteegP.S. Cancer metastasis as a therapeutic target.Eur. J. Cancer20104671177118010.1016/j.ejca.2010.02.039 20307970
    [Google Scholar]
  34. WangY. WuG. FuX. XuS. WangT. ZhangQ. YangY. Aquaporin 3 maintains the stemness of CD133+ hepatocellular carcinoma cells by activating STAT3.Cell Death Dis.201910646510.1038/s41419‑019‑1712‑0 31197130
    [Google Scholar]
  35. ZhangL. LiY. WangQ. ChenZ. LiX. WuZ. HuC. LiaoD. ZhangW. ChenZ.S. The PI3K subunits, P110α and P110β are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer.Mol. Cancer20201911010.1186/s12943‑019‑1112‑1 31952518
    [Google Scholar]
  36. ZhuH. CaoG. FuY. FangC. ChuQ. LiX. WuY. HanG. ATP-responsive hollow nanocapsules for DOX/GOx delivery to enable tumor inhibition with suppressed P-glycoprotein.Nano Res.202114122223110.1007/s12274‑020‑3071‑7
    [Google Scholar]
  37. StefanS.M. WieseM. Small‐molecule inhibitors of multidrug resistance‐associated protein 1 and related processes: A historic approach and recent advances.Med. Res. Rev.201939117626410.1002/med.21510 29809286
    [Google Scholar]
  38. MüllerM. GerndtS. ArnerA. ChaoY.K. SchömigL. AtzbergerC. BielM. BracherF. VollmarA. BinderV. KellerM. GrimmC. BartelK. Reversal of chemoresistance in leukemia cells using synthetic bisbenzylisoquinoline derivatives.Blood2018132S13504350410.1182/blood‑2018‑99‑111651
    [Google Scholar]
  39. ChernykhY. GolenkovA. VysotskayaL. ShushanovS. RybalkinaE. Effect of expression of multidrug resistance genes in newly diagnosed multiple myeloma on the clinical course of the disease.Blood2016128225144514410.1182/blood.V128.22.5144.5144
    [Google Scholar]
  40. KitseraN. AlvarezR.M. EmmertS. CarellT. KhobtaA. Nucleotide excision repair of abasic DNA lesions.Nucleic Acids Res.201947168537854710.1093/nar/gkz558 31226203
    [Google Scholar]
  41. SzalatR. DrezeM. SamurM.K. CalkinsA.S. ParmigianiG. LoiseauA.H. AndersonK.C. FermandJ.P. LazaroJ.B. MunshiN.C. Nucleotide Excision Repair (NER) is frequently impaired and affects outcome in multiple myeloma (MM).Blood2014124212055205510.1182/blood.V124.21.2055.2055
    [Google Scholar]
  42. ZhangC. ChenL. SunL. JinH. RenK. LiuS. QianY. LiS. LiF. ZhuC. ZhaoY. LiuH. LiuY. BMAL1 collaborates with CLOCK to directly promote DNA double-strand break repair and tumor chemoresistance.Oncogene2023421396797910.1038/s41388‑023‑02603‑y 36725890
    [Google Scholar]
  43. HanT. WangX. ShiS. ZhangW. WangJ. WuQ. LiZ. FuJ. ZhengR. ZhangJ. TangQ. ZhangP. WangC. Cancer cell resistance to IFNγ can occur via enhanced double-strand break repair pathway activity.Cancer Immunol. Res.202311338139810.1158/2326‑6066.CIR‑22‑0056 36629846
    [Google Scholar]
  44. FuY. YangB. CuiY. HuX. LiX. LuF. QinT. ZhangL. HuZ. GuoE. FanJ. XiaoR. LiW. QinX. HuD. PengW. LiuJ. WangB. MillsG.B. ChenG. SunC. BRD4 inhibition impairs DNA mismatch repair, induces mismatch repair mutation signatures and creates therapeutic vulnerability to immune checkpoint blockade in MMR-proficient tumors.J. Immunother. Cancer2023114e00607010.1136/jitc‑2022‑006070 37072347
    [Google Scholar]
  45. JaworskiD. BrzoszczykB. SzylbergŁ. Recent research advances in double-strand break and mismatch repair defects in prostate cancer and potential clinical applications.Cells20231210137510.3390/cells12101375 37408208
    [Google Scholar]
  46. McCoyM. RaoS. CosgroveS. MadhavanS. KulkarniS. XuX. ShamannaK.R. Expert variant curation combined with in-Silico analysis for clinical interpretation of bcl2 variants in resistance to BCL2 inhibitors in chronic lymphocytic leukemia/small lymphocytic lymphoma.Blood2020136S1424310.1182/blood‑2020‑143073
    [Google Scholar]
  47. DaiJ. QuT. YinD. CuiY. ZhangC. ZhangE. GuoR. LncRNA LINC00969 promotes acquired gefitinib resistance by epigenetically suppressing of NLRP3 at transcriptional and posttranscriptional levels to inhibit pyroptosis in lung cancer.Cell Death Dis.202314531210.1038/s41419‑023‑05840‑x 37156816
    [Google Scholar]
  48. SuL. ChenY. HuangC. WuS. WangX. ZhaoX. XuQ. SunR. KongX. JiangX. QiuX. HuangX. WangM. WongP.P. Targeting Src reactivates pyroptosis to reverse chemoresistance in lung and pancreatic cancer models.Sci. Transl. Med.202315678eabl789510.1126/scitranslmed.abl7895 36630483
    [Google Scholar]
  49. FengY. ZhangD. HeG. LiuY. ZhaoY. RenX. SunH. LuG. ZhangZ. RenL. YinY. LiH. HeS. AZD4547 and the alleviation of hepatoma cell sorafenib resistance via the promotion of autophagy.Anticancer. Agents Med. Chem.202222183107311310.2174/1871520622666220425124419 35469578
    [Google Scholar]
  50. FengY. KlionskyD.J. Autophagy regulates DNA repair through SQSTM1/p62.Autophagy201713699599610.1080/15548627.2017.1317427 28650265
    [Google Scholar]
  51. ClevelandA. VeletaK. GershonT. CBIO-23. antiapoptotic bcl-xl restricts apoptosis in shh medulloblastoma and promotes progression.Neuro-oncol.202123S6vi31vi3210.1093/neuonc/noab196.122
    [Google Scholar]
  52. GaoL. MorineY. YamadaS. SaitoY. IkemotoT. TokudaK. TakasuC. MiyazakiK. ShimadaM. Nrf2 signaling promotes cancer stemness, migration, and expression of ABC transporter genes in sorafenib-resistant hepatocellular carcinoma cells.PLoS One2021169e025675510.1371/journal.pone.0256755 34473785
    [Google Scholar]
  53. SunY. DongD. XiaY. HaoL. WangW. ZhaoC. YTHDF1 promotes breast cancer cell growth, DNA damage repair and chemoresistance.Cell Death Dis.202213323010.1038/s41419‑022‑04672‑5 35279688
    [Google Scholar]
  54. BassiC. LiY-T. KhuK. MateoF. BaniasadiP.S. EliaA. MasonJ. StambolicV. PujanaM.A. MakT.W. GorriniC. The acetyltransferase Tip60 contributes to mammary tumorigenesis by modulating DNA repair.Cell Death Differ.20162371198120810.1038/cdd.2015.173 26915295
    [Google Scholar]
  55. PalamarisK. MoutafiM. GakiopoulouH. TheocharisS. Histone Deacetylase (HDAC) inhibitors: A promising weapon to tackle therapy resistance in melanoma.Int. J. Mol. Sci.2022237366010.3390/ijms23073660 35409020
    [Google Scholar]
  56. ChimentoA. D’AmicoM. PezziV. De AmicisF. Notch signaling in breast tumor microenvironment as mediator of drug resistance.Int. J. Mol. Sci.20222311629610.3390/ijms23116296 35682974
    [Google Scholar]
  57. CazetA.S. HuiM.N. ElsworthB.L. WuS.Z. RodenD. ChanC.L. SkhinasJ.N. CollotR. YangJ. HarveyK. JohanM.Z. CooperC. NairR. HerrmannD. McFarlandA. DengN. BorregoR.M. RojoF. TrigoJ.M. BezaresS. CaballeroR. LimE. TimpsonP. O’TooleS. WatkinsD.N. CoxT.R. SamuelM.S. MartínM. SwarbrickA. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer.Nat. Commun.201891289710.1038/s41467‑018‑05220‑6 30042390
    [Google Scholar]
  58. TangY.A. ChenY. BaoY. MaharaS. YatimS.M.J.M. OguzG. LeeP.L. FengM. CaiY. TanE.Y. FongS.S. YangZ. LanP. WuX. YuQ. Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer.Proc. Natl. Acad. Sci.201811526E5990E599910.1073/pnas.1801348115 29891662
    [Google Scholar]
  59. PapaccioF. PainoF. RegadT. PapaccioG. DesiderioV. TirinoV. Concise review: Cancer cells, cancer stem cells, and mesenchymal stem cells: Influence in cancer development.Stem Cells Transl. Med.20176122115212510.1002/sctm.17‑0138 29072369
    [Google Scholar]
  60. LuoJ. Ok LeeS. LiangL. HuangC-K. LiL. WenS. ChangC. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling.Oncogene201433212768277810.1038/onc.2013.233 23792449
    [Google Scholar]
  61. EwertzM. JensenM.B. GunnarsdóttirK.Á. HøjrisI. JakobsenE.H. NielsenD. StenbygaardL.E. TangeU.B. ColdS. Effect of obesity on prognosis after early-stage breast cancer.J. Clin. Oncol.2011291253110.1200/JCO.2010.29.7614 21115856
    [Google Scholar]
  62. SchraderJ. WalkerG.T.T. AucottR.L. van DeemterM. QuaasA. WalshS. BentenD. ForbesS.J. WellsR.G. IredaleJ.P. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells.Hepatology20115341192120510.1002/hep.24108 21442631
    [Google Scholar]
  63. CarloniV. LuongT.V. RomboutsK. Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: more complicated than ever.Liver Int.201434683484310.1111/liv.12465 24397349
    [Google Scholar]
  64. ComerfordK.M. WallaceT.J. KarhausenJ. LouisN.A. MontaltoM.C. ColganS.P. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene.Cancer Res.2002621233873394 12067980
    [Google Scholar]
  65. CabanosH.F. HataA.N. Emerging Insights into Targeted Therapy-Tolerant Persister Cells in Cancer.Cancers (Basel)20211311266610.3390/cancers13112666 34071428
    [Google Scholar]
  66. LiakouC.I. KamatA. TangD.N. ChenH. SunJ. TroncosoP. LogothetisC. SharmaP. CTLA-4 blockade increases IFNγ-producing CD4 + ICOS hi cells to shift the ratio of effector to regulatory T cells in cancer patients.Proc. Natl. Acad. Sci.200810539149871499210.1073/pnas.0806075105 18818309
    [Google Scholar]
  67. GaoJ. ShiL.Z. ZhaoH. ChenJ. XiongL. HeQ. ChenT. RoszikJ. BernatchezC. WoodmanS.E. ChenP.L. HwuP. AllisonJ.P. FutrealA. WargoJ.A. SharmaP. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy.Cell20161672397404.e910.1016/j.cell.2016.08.069 27667683
    [Google Scholar]
  68. ZaretskyJ.M. DiazG.A. ShinD.S. OrdinasE.H. HugoW. LieskovanH.S. TorrejonD.Y. RodriguezA.G. SandovalS. BarthlyL. SacoJ. Homet MorenoB. MezzadraR. ChmielowskiB. RuchalskiK. ShintakuI.P. SanchezP.J. Puig-SausC. CherryG. SejaE. KongX. PangJ. MaozB.B. AnduixC.B. GraeberT.G. TumehP.C. SchumacherT.N.M. LoR.S. RibasA. Mutations associated with acquired resistance to PD-1 blockade in melanoma.N. Engl. J. Med.2016375981982910.1056/NEJMoa1604958 27433843
    [Google Scholar]
  69. WangS. YangS. YangX. DengD. LiJ. DongM. Research progress of traditional chinese medicine monomers in reversing multidrug resistance of breast cancer.Am. J. Chin. Med.202351357559410.1142/S0192415X23500283 36823097
    [Google Scholar]
  70. LiJ. FengS. LiuX. JiaX. QiaoF. GuoJ. DengS. Effects of traditional Chinese medicine and its active ingredients on drug-resistant bacteria.Front. Pharmacol.20221383790710.3389/fphar.2022.837907 35721131
    [Google Scholar]
  71. ShenS. ZhangY. GuX. JiangS. XuL. Yangfei Kongliu Formula, a compound Chinese herbal medicine, combined with cisplatin, inhibits growth of lung cancer cells through transforming growth factor-β1 signaling pathway.J. Integr. Med.201715324225110.1016/S2095‑4964(17)60330‑3 28494854
    [Google Scholar]
  72. LiX. ChuS. LinM. GaoY. LiuY. YangS. ZhouX. ZhangY. HuY. WangH. ChenN. Anticancer property of ginsenoside Rh2 from ginseng.Eur. J. Med. Chem.202020311262710.1016/j.ejmech.2020.112627 32702586
    [Google Scholar]
  73. GuW. LiuL. FangF.F. HuangF. ChengB.B. LiB. Reversal effect of bufalin on multidrug resistance in human hepatocellular carcinoma BEL-7402/5-FU cells.Oncol. Rep.201431121622210.3892/or.2013.2817 24173654
    [Google Scholar]
  74. LiuT. MaH. ShiW. DuanJ. WangY. ZhangC. LiC. LinJ. LiS. LvJ. LinL. Inhibition of STAT3 signaling pathway by ursolic acid suppresses growth of hepatocellular carcinoma.Int. J. Oncol.201751255556210.3892/ijo.2017.4035 28714512
    [Google Scholar]
  75. PanJ. MiaoD. ChenL. Germacrone reverses adriamycin resistance in human chronic myelogenous leukemia K562/ADM cells by suppressing MDR1 gene/P-glycoprotein expression.Chem. Biol. Interact.2018288323710.1016/j.cbi.2018.04.012 29655913
    [Google Scholar]
  76. LiC. HongL. LiuC. MinJ. HuM. GuoW. Astragalus polysaccharides increase the sensitivity of SKOV3 cells to cisplatin.Arch. Gynecol. Obstet.2018297238138610.1007/s00404‑017‑4580‑9 29103194
    [Google Scholar]
  77. BaiY. LiL.D. LiJ. LuX. Targeting of topoisomerases for prognosis and drug resistance in ovarian cancer.J. Ovarian Res.2016913510.1186/s13048‑016‑0244‑9 27315793
    [Google Scholar]
  78. LiS. LiC. JinS. LiuJ. XueX. EltahanA.S. SunJ. TanJ. DongJ. LiangX.J. Overcoming resistance to cisplatin by inhibition of glutathione S-transferases (GSTs) with ethacraplatin micelles in vitro and in vivo.Biomaterials201714411912910.1016/j.biomaterials.2017.08.021 28834763
    [Google Scholar]
  79. ChenH. ShenJ. ChoyE. HornicekF.J. DuanZ. Targeting protein kinases to reverse multidrug resistance in sarcoma.Cancer Treat. Rev.20164381810.1016/j.ctrv.2015.11.011 26827688
    [Google Scholar]
  80. FuL. LiuW. SunH. LuoL. ZhouJ. HuangM. XuH. LuW. Effect of ligustrazine on the expression of LFA-1, ICAM-1 following bone marrow transplantation in mice.J. Huazhong Univ. Sci. Technolog. Med. Sci.200424323924210.1007/BF02832000 15315336
    [Google Scholar]
  81. QinY. LiuH. LiM. ZhaiD. TangY. YangL. QiaoK. YangJ. ZhongW. ZhangQ. LiuY. YangG. SunT. YangC. Salidroside improves the hypoxic tumor microenvironment and reverses the drug resistance of platinum drugs via HIF-1α signaling pathway.EBioMedicine201838253610.1016/j.ebiom.2018.10.069 30396856
    [Google Scholar]
  82. ChenF. LiJ. WangH. BaQ. Anti-tumor effects of chinese medicine compounds by regulating immune cells in microenvironment.Front. Oncol.20211174691710.3389/fonc.2021.746917 34722304
    [Google Scholar]
  83. FanZ. LiuH. XueY. LinJ. FuY. XiaZ. PanD. ZhangJ. QiaoK. ZhangZ. LiaoY. Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy.Bioact. Mater.20216231232510.1016/j.bioactmat.2020.08.005 32954050
    [Google Scholar]
  84. PramanikS. MohantoS. ManneR. RajendranR.R. DeepakA. EdapullyS.J. PatilT. KatariO. Nanoparticle-based drug delivery system: the magic bullet for the treatment of chronic pulmonary diseases.Mol. Pharm.202118103671371810.1021/acs.molpharmaceut.1c00491 34491754
    [Google Scholar]
  85. CaoJ. LiuX. YuanX. MengF. SunX. XuL. LiH. LiuY. HongZ. BaiJ. Enzyme-induced morphological transformation of self-assembled peptide nanovehicles potentiates intratumoral aggregation and inhibits tumour immunosuppression.Chem. Eng. J.202345414046610.1016/j.cej.2022.140466
    [Google Scholar]
  86. LevineP.M. BalanaA.T. SturchlerE. KooleC. NodaH. ZarzyckaB. DaleyE.J. TruongT.T. KatritchV. GardellaT.J. WoottenD. SextonP.M. McDonaldP. PrattM.R. O-GlcNAc engineering of GPCR peptide-agonists improves their stability and in vivo activity.J. Am. Chem. Soc.201914136142101421910.1021/jacs.9b05365 31418572
    [Google Scholar]
  87. LiuY. LiuY. SunX. WangY. DuC. BaiJ. Morphologically transformable peptide nanocarriers coloaded with doxorubicin and curcumin inhibit the growth and metastasis of hepatocellular carcinoma.Mater. Today Bio20242410090310.1016/j.mtbio.2023.100903 38130427
    [Google Scholar]
  88. ZhaiX. TangS. MengF. MaJ. LiA. ZouX. ZhouB. PengF. BaiJ. A dual drug-loaded peptide system with morphological transformation prolongs drug retention and inhibits breast cancer growth.Biomater. Adv.202315421365010.1016/j.bioadv.2023.213650 37857084
    [Google Scholar]
  89. SunX. GaoW. LiuY. WangY. WeiC. ShanL. WangT. TianX. BaiJ. pH-responsive morphology shifting peptides coloaded with paclitaxel and sorafenib inhibit angiogenesis and tumor growth.Mater. Des.202423811261910.1016/j.matdes.2023.112619
    [Google Scholar]
  90. GiddingsE.L. ChampagneD.P. WuM.H. LaffinJ.M. ThorntonT.M. PereiraV.F. HillC.R. FortnerK.A. RomeroN. EastJ. CaoP. Arias-PulidoH. SidhuK.S. SilverstrimB. KamY. KelleyS. PereiraM. BatesS.E. BunnJ.Y. FieringS.N. MatthewsD.E. RobeyR.W. StichD. D’AlessandroA. RinconM. Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance.Nat. Commun.2021121280410.1038/s41467‑021‑23071‑6 33990571
    [Google Scholar]
  91. PetersonB.G. TanK.W. Osa-AndrewsB. IramS.H. High-content screening of clinically tested anticancer drugs identifies novel inhibitors of human MRP1 (ABCC1).Pharmacol. Res.201711931332610.1016/j.phrs.2017.02.024 28258008
    [Google Scholar]
  92. XiaY. WangX. ChengH. FangM. NingP. ZhouY. ChenW. SongH. A polycation coated liposome as efficient siRNA carrier to overcome multidrug resistance.Colloids Surf. B Biointerfaces201715942743610.1016/j.colsurfb.2017.08.011 28826111
    [Google Scholar]
  93. LiuS. KhanA.R. YangX. DongB. JiJ. ZhaiG. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy.J. Control. Release202133512010.1016/j.jconrel.2021.05.012 33991600
    [Google Scholar]
  94. LiuY. WangY. GuanX. WuQ. ZhangM. CuiP. WangC. ChenX. MengX. MaT. Reversal of cisplatin resistance in ovarian cancer by the multitargeted nanodrug delivery system Tf-Mn-MOF@Nira@CDDP.ACS Appl. Mater. Interfaces20231522264842649510.1021/acsami.3c05374 37218712
    [Google Scholar]
  95. FauskangerM. HaabethO.A.W. SkjeldalF.M. BogenB. TveitaA.A. Tumor Killing by CD4+ T Cells Is Mediated via Induction of Inducible Nitric Oxide Synthase-Dependent Macrophage Cytotoxicity.Front. Immunol.20189168410.3389/fimmu.2018.01684 30083157
    [Google Scholar]
  96. KimE.M. JungC.H. KimJ. HwangS.G. ParkJ.K. UmH.D. The p53/p21 complex regulates cancer cell invasion and apoptosis by targeting bcl-2 family proteins.Cancer Res.201777113092310010.1158/0008‑5472.CAN‑16‑2098 28377455
    [Google Scholar]
  97. LeeE.F. HarrisT.J. TranS. EvangelistaM. ArulanandaS. JohnT. RamnacC. HobbsC. ZhuH. GunasinghG. SegalD. BehrenA. CebonJ. DobrovicA. MariadasonJ.M. StrasserA. RohrbeckL. HaassN.K. HeroldM.J. FairlieW.D. BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival.Cell Death Dis.201910534210.1038/s41419‑019‑1568‑3 31019203
    [Google Scholar]
  98. QiaoH. ZhangL. FangD. ZhuZ. HeW. HuL. DiL. GuoZ. WangX. Surmounting tumor resistance to metallodrugs by co-loading a metal complex and siRNA in nanoparticles.Chem. Sci.202112124547455610.1039/D0SC06680J 34163720
    [Google Scholar]
  99. BaslanT. MorrisJ.P.IV ZhaoZ. ReyesJ. HoY.J. TsanovK.M. BermeoJ. TianS. ZhangS. AskanG. YavasA. LecomteN. ErakkyA. VargheseA.M. ZhangA. KendallJ. GhibanE. ChorbadjievL. WuJ. DimitrovaN. ChadalavadaK. NanjangudG.J. BandlamudiC. GongY. DonoghueM.T.A. SocciN.D. KrasnitzA. NottaF. LeachS.D. DonahueI.C.A. LoweS.W. Ordered and deterministic cancer genome evolution after p53 loss.Nature2022608792479580210.1038/s41586‑022‑05082‑5 35978189
    [Google Scholar]
  100. ShenC. YangC. XiaB. YouM. Long non-coding RNAs: Emerging regulators for chemo/immunotherapy resistance in cancer stem cells.Cancer Lett.202150024425210.1016/j.canlet.2020.11.010 33242560
    [Google Scholar]
  101. SwethaK.L. PaulM. MaravajjalaK.S. KumbhamS. BiswasS. RoyA. Overcoming drug resistance with a docetaxel and disulfiram loaded pH-sensitive nanoparticle.J. Control. Release20233569311410.1016/j.jconrel.2023.02.023 36841286
    [Google Scholar]
  102. ChenQ. WangC. ZhangX. ChenG. HuQ. LiH. WangJ. WenD. ZhangY. LuY. YangG. JiangC. WangJ. DottiG. GuZ. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment.Nat. Nanotechnol.2019141899710.1038/s41565‑018‑0319‑4 30531990
    [Google Scholar]
  103. GaertnerF. MassbergS. Patrolling the vascular borders: platelets in immunity to infection and cancer.Nat. Rev. Immunol.2019191274776010.1038/s41577‑019‑0202‑z 31409920
    [Google Scholar]
  104. MengF. ZhaiX. MaJ. LiA. WangX. BaiJ. Enzyme-induced shape-shifting peptide nanocarrier coloaded with paclitaxel and dipyridamole inhibits platelet function and tumor metastasis.ACS Appl. Mater. Interfaces202416116617710.1021/acsami.3c13855 38143309
    [Google Scholar]
  105. DrewD.A. CaoY. ChanA.T. Aspirin and colorectal cancer: the promise of precision chemoprevention.Nat. Rev. Cancer201616317318610.1038/nrc.2016.4 26868177
    [Google Scholar]
  106. LiJ. LiJ. YaoY. YongT. BieN. WeiZ. LiX. LiS. QinJ. JiaH. DuQ. YangX. GanL. Biodegradable electrospun nanofibrous platform integrating antiplatelet therapy-chemotherapy for preventing postoperative tumor recurrence and metastasis.Theranostics20221273503351710.7150/thno.69795 35547751
    [Google Scholar]
  107. MageeJ.A. PiskounovaE. MorrisonS.J. Cancer stem cells: Impact, heterogeneity, and uncertainty.Cancer Cell201221328329610.1016/j.ccr.2012.03.003 22439924
    [Google Scholar]
  108. PattabiramanD.R. WeinbergR.A. Tackling the cancer stem cells — what challenges do they pose?Nat. Rev. Drug Discov.201413749751210.1038/nrd4253 24981363
    [Google Scholar]
  109. SunR. LiuY. LiS. ShenS. DuX. XuC. WangJ. Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells.J. Control. Release2015213e9410.1016/j.jconrel.2015.05.156 27005258
    [Google Scholar]
  110. MinchintonA.I. TannockI.F. Drug penetration in solid tumours.Nat. Rev. Cancer20066858359210.1038/nrc1893 16862189
    [Google Scholar]
  111. ChenQ. DengB. LuoQ. SongG. Deep tumor‐penetrated nanosystem eliminates cancer stem cell for highly efficient liver cancer therapy.Chem. Eng. J.202142112787410.1016/j.cej.2020.127874
    [Google Scholar]
  112. WenL. ChenL. ZhengS. ZengJ. DuanG. WangY. WangG. ChaiZ. LiZ. GaoM. Ultrasmall biocompatible WO 3−x nanodots for multi‐modality imaging and combined therapy of cancers.Adv. Mater.201628255072507910.1002/adma.201506428 27136070
    [Google Scholar]
  113. RzhevskiyA. KapitannikovaA. MalininaP. VolovetskyA. Aboulkheyr EsH. KulasingheA. ThieryJ.P. MaslennikovaA. ZvyaginA.V. WarkianiE.M. Emerging role of circulating tumor cells in immunotherapy.Theranostics202111168057807510.7150/thno.59677 34335980
    [Google Scholar]
  114. HornL. SpigelD.R. VokesE.E. HolgadoE. ReadyN. SteinsM. PoddubskayaE. BorghaeiH. FelipE. Paz-AresL. PluzanskiA. ReckampK.L. BurgioM.A. KohlhäeuflM. WaterhouseD. BarlesiF. AntoniaS. ArrietaO. FayetteJ. CrinòL. RizviN. ReckM. HellmannM.D. GeeseW.J. LiA. ChirchirB.A. HealeyD. BrahmerJ. EberhardtW.E.E. Nivolumab versus docetaxel in previously treated patients with advanced non–small-cell lung cancer: Two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057).J. Clin. Oncol.201735353924393310.1200/JCO.2017.74.3062 29023213
    [Google Scholar]
  115. GongZ. JiaQ. ChenJ. DiaoX. GaoJ. WangX. ZhuB. Impaired cytolytic activity and loss of clonal neoantigens in elderly patients with lung adenocarcinoma.J. Thorac. Oncol.201914585786610.1016/j.jtho.2019.01.024 30768970
    [Google Scholar]
  116. TheelenW.S.M.E. PeulenH.M.U. LalezariF. van der NoortV. de VriesJ.F. AertsJ.G.J.V. DumoulinD.W. BahceI. NiemeijerA.L.N. de LangenA.J. MonkhorstK. BaasP. Effect of pembrolizumab after stereotactic body radiotherapy vs. pembrolizumab alone on tumor response in patients with advanced non–small cell lung cancer.JAMA Oncol.2019591276128210.1001/jamaoncol.2019.1478 31294749
    [Google Scholar]
  117. RibasA. MedinaT. KummarS. AminA. KalbasiA. DrabickJ.J. BarveM. DanielsG.A. WongD.J. SchmidtE.V. CandiaA.F. CoffmanR.L. LeungA.C.F. JanssenR.S. SD-101 in combination with pembrolizumab in advanced melanoma: Results of a phase ib, multicenter study.Cancer Discov.20188101250125710.1158/2159‑8290.CD‑18‑0280 30154193
    [Google Scholar]
  118. NiK. LuoT. LanG. CulbertA. SongY. WuT. JiangX. LinW. A nanoscale metal–organic framework to mediate photodynamic therapy and deliver cpg oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy.Angew. Chem. Int. Ed.20205931108111210.1002/anie.201911429 31642163
    [Google Scholar]
  119. HegdeP.S. ChenD.S. Top 10 challenges in cancer immunotherapy.Immunity2020521173510.1016/j.immuni.2019.12.011 31940268
    [Google Scholar]
  120. RibasA. ShinD.S. ZaretskyJ. FrederiksenJ. CornishA. AvramisE. SejaE. KivorkC. SiebertJ. Kaplan-LefkoP. WangX. ChmielowskiB. GlaspyJ.A. TumehP.C. ChodonT. Pe’erD. Comin-AnduixB. PD-1 blockade expands intratumoral memory T cells.Cancer Immunol. Res.20164319420310.1158/2326‑6066.CIR‑15‑0210 26787823
    [Google Scholar]
  121. KohliK. YaoL. NowickiT.S. ZhangS. BlackR.G. SchroederB.A. FarrarE.A. CaoJ. SloanH. StiefD. CranmerL.D. WagnerM.J. HawkinsD.S. PillarisettyV.G. RibasA. CampbellJ. PierceR.H. KimE.Y. JonesR.L. RiddellS.R. YeeC. PollackS.M. IL-15 mediated expansion of rare durable memory T cells following adoptive cellular therapy.J. Immunother. Cancer202195e00223210.1136/jitc‑2020‑002232 33963013
    [Google Scholar]
  122. WrangleJ.M. VelchetiV. PatelM.R. Garrett-MayerE. HillE.G. RavenelJ.G. MillerJ.S. FarhadM. AndertonK. LindseyK. Taffaro-NeskeyM. ShermanC. SurianoS. Swiderska-SynM. SionA. HarrisJ. EdwardsA.R. RytlewskiJ.A. SandersC.M. YuskoE.C. RobinsonM.D. KriegC. RedmondW.L. EganJ.O. RhodeP.R. JengE.K. RockA.D. WongH.C. RubinsteinM.P. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: A non-randomised, open-label, phase 1b trial.Lancet Oncol.201819569470410.1016/S1470‑2045(18)30148‑7 29628312
    [Google Scholar]
  123. Jaime-SánchezP. CatalánE. Uranga-MurilloI. AguilóN. SantiagoL. M LanuzaP.; de Miguel, D.; A Arias, M.; Pardo, J. Antigen-specific primed cytotoxic T cells eliminate tumour cells in vivo and prevent tumour development, regardless of the presence of anti-apoptotic mutations conferring drug resistance.Cell Death Differ.20182591536154810.1038/s41418‑018‑0112‑9 29743559
    [Google Scholar]
  124. FaresC.M. Van AllenE.M. DrakeC.G. AllisonJ.P. Hu-LieskovanS. Mechanisms of Resistance to Immune Checkpoint Blockade: Why Does Checkpoint Inhibitor Immunotherapy Not Work for All Patients?Am. Soc. Clin. Oncol. Educ. Book2019393914716410.1200/EDBK_240837 31099674
    [Google Scholar]
  125. MariathasanS. TurleyS.J. NicklesD. CastiglioniA. YuenK. WangY. KadelE.E.III KoeppenH. AstaritaJ.L. CubasR. JhunjhunwalaS. BanchereauR. YangY. GuanY. ChalouniC. ZiaiJ. ŞenbabaoğluY. SantoroS. SheinsonD. HungJ. GiltnaneJ.M. PierceA.A. MeshK. LianoglouS. RieglerJ. CaranoR.A.D. ErikssonP. HöglundM. SomarribaL. HalliganD.L. van der HeijdenM.S. LoriotY. RosenbergJ.E. FongL. MellmanI. ChenD.S. GreenM. DerlethC. FineG.D. HegdeP.S. BourgonR. PowlesT. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells.Nature2018554769354454810.1038/nature25501 29443960
    [Google Scholar]
  126. KurzE. HirschC.A. DaltonT. ShadaloeyS.A. JamayranK.A. MillerG. PareekS. RajaeiH. MohindrooC. BaydoganS. Ngo-HuangA. ParkerN. KatzM.H.G. PetzelM. VucicE. McAllisterF. SchadlerK. WinogradR. Bar-SagiD. Exercise-induced engagement of the IL-15/IL-15Rα axis promotes anti-tumor immunity in pancreatic cancer.Cancer Cell2022407720737.e510.1016/j.ccell.2022.05.006 35660135
    [Google Scholar]
  127. WuH.J. WuE. The role of gut microbiota in immune homeostasis and autoimmunity.Gut Microbes20123141410.4161/gmic.19320 22356853
    [Google Scholar]
  128. BelkaidY. HandT.W. Role of the microbiota in immunity and inflammation.Cell2014157112114110.1016/j.cell.2014.03.011 24679531
    [Google Scholar]
  129. HakozakiT. OkumaY. OmoriM. HosomiY. Impact of prior antibiotic use on the efficacy of nivolumab for non small cell lung cancer.Oncol. Lett.20191732946295210.3892/ol.2019.9899 30854072
    [Google Scholar]
  130. BoyeroL. GastaldoS.A. AlonsoM. UclésN.J.F. PineloM.S. CaroB.R. Primary and acquired resistance to immunotherapy in lung cancer: Unveiling the mechanisms underlying of immune checkpoint blockade therapy.Cancers20201212372910.3390/cancers12123729 33322522
    [Google Scholar]
  131. ClarkeE. EriksenJ.G. BarrettS. The effects of PD-1/PD-L1 checkpoint inhibitors on recurrent/metastatic head and neck squamous cell carcinoma: A critical review of the literature and meta-analysis.Acta Oncol.202160111534154210.1080/0284186X.2021.1964699 34410881
    [Google Scholar]
  132. XuY. ZhuG. MarounC.A. WuI.X.Y. HuangD. SeiwertT.Y. LiuY. MandalR. ZhangX. Programmed death-1/programmed death-ligand 1-axis blockade in recurrent or metastatic head and neck squamous cell carcinoma stratified by human papillomavirus status: A systematic review and meta-analysis.Front. Immunol.20211264517010.3389/fimmu.2021.645170 33897693
    [Google Scholar]
  133. RoutyB. Le ChatelierE. DerosaL. DuongC.P.M. AlouM.T. DaillèreR. FluckigerA. MessaoudeneM. RauberC. RobertiM.P. FidelleM. FlamentC. ColameP.V. OpolonP. KleinC. IribarrenK. MondragónL. JacquelotN. QuB. FerrereG. ClémensonC. MezquitaL. MasipJ.R. NaltetC. BrosseauS. KaderbhaiC. RichardC. RizviH. LevenezF. GalleronN. QuinquisB. PonsN. RyffelB. Minard-ColinV. GoninP. SoriaJ.C. DeutschE. LoriotY. GhiringhelliF. ZalcmanG. GoldwasserF. EscudierB. HellmannM.D. EggermontA. RaoultD. AlbigesL. KroemerG. ZitvogelL. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors.Science20183596371919710.1126/science.aan3706 29097494
    [Google Scholar]
  134. GongS. LiangX. ZhangM. LiL. HeT. YuanY. LiX. LiuF. YangX. ShenM. WuQ. GongC. Tumor microenvironment‐activated hydrogel platform with programmed release property evokes a cascade‐amplified immune response against tumor growth, metastasis and recurrence.Small20221850210706110.1002/smll.202107061 36323618
    [Google Scholar]
  135. NieJ. WangC. LiuY. YangQ. MeiQ. DongL. LiX. LiuJ. KuW. ZhangY. ChenM. AnX. ShiL. BrockM.V. BaiJ. HanW. Addition of low-dose decitabine to anti–PD-1 antibody camrelizumab in relapsed/refractory classical hodgkin lymphoma.J. Clin. Oncol.201937171479148910.1200/JCO.18.02151 31039052
    [Google Scholar]
  136. YuG. WuY. WangW. XuJ. LvX. CaoX. WanT. Low-dose decitabine enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by re-modulating the tumor microenvironment.Cell. Mol. Immunol.201916440140910.1038/s41423‑018‑0026‑y 29622799
    [Google Scholar]
  137. Dorta-EstremeraS. HegdeV.L. SlayR.B. SunR. YanamandraA.V. NicholasC. NookalaS. SierraG. CurranM.A. SastryK.J. Targeting interferon signaling and CTLA-4 enhance the therapeutic efficacy of anti-PD-1 immunotherapy in preclinical model of HPV+ oral cancer.J. Immunother. Cancer20197125210.1186/s40425‑019‑0728‑4 31533840
    [Google Scholar]
  138. GrayK.D. McCloskeyJ.E. VedvyasY. KallooO.R. EshakyS.E. YangY. ShevlinE. ZamanM. UllmannT.M. LiangH. StefanovaD. ChristosP.J. ScognamiglioT. TasslerA.B. ZarnegarR. FaheyT.J.III JinM.M. MinI.M. PD1 blockade enhances ICAM1-directed CAR T therapeutic efficacy in advanced thyroid cancer.Clin. Cancer Res.202026226003601610.1158/1078‑0432.CCR‑20‑1523 32887724
    [Google Scholar]
  139. JiaQ. QinD. HeF. XieQ. YingZ. ZhangY. SongY. ChengJ.N. ZuoX. XuL. FangH. HuC. PengL. JinT. ShiZ. AlexanderP.B. WangY. LiuY. HanW. ZhuJ. WangP. LiQ.J. ZhuB. Peripheral eosinophil counts predict efficacy of anti-CD19 CAR-T cell therapy against B-lineage non-Hodgkin lymphoma.Theranostics202111104699470910.7150/thno.54546 33754022
    [Google Scholar]
  140. SocinskiM.A. JotteR.M. CappuzzoF. OrlandiF. StroyakovskiyD. NogamiN. AbreuR.D. SibilotM.D. ThomasC.A. BarlesiF. FinleyG. KelschC. LeeA. ColemanS. DengY. ShenY. KowanetzM. ChavezL.A. SandlerA. ReckM. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC.N. Engl. J. Med.2018378242288230110.1056/NEJMoa1716948 29863955
    [Google Scholar]
  141. ChengJ.N. LuoW. SunC. JinZ. ZengX. AlexanderP.B. GongZ. XiaX. DingX. XuS. ZouP. WanY.Y. JiaQ. LiQ.J. ZhuB. Radiation-induced eosinophils improve cytotoxic T lymphocyte recruitment and response to immunotherapy.Sci. Adv.202175eabc760910.1126/sciadv.abc7609 33514544
    [Google Scholar]
  142. SpigelD.R. Faivre-FinnC. GrayJ.E. VicenteD. PlanchardD. Paz-AresL. VansteenkisteJ.F. GarassinoM.C. HuiR. QuantinX. RimnerA. WuY.L. ÖzgüroğluM. LeeK.H. KatoT. de WitM. KurataT. ReckM. ChoB.C. SenanS. NaidooJ. MannH. NewtonM. ThiyagarajahP. AntoniaS.J. Five-year survival outcomes from the PACIFIC trial: Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer.J. Clin. Oncol.202240121301131110.1200/JCO.21.01308 35108059
    [Google Scholar]
  143. OweidaA. HararahM.K. PhanA. BinderD. BhatiaS. LennonS. BukkapatnamS. Van CourtB. UyangaN. DarraghL. KimH.M. RabenD. TanA.C. HeasleyL. ClambeyE. NemenoffR. KaramS.D. Resistance to radiotherapy and PD-L1 blockade is mediated by TIM-3 upregulation and regulatory T-cell infiltration.Clin. Cancer Res.201824215368538010.1158/1078‑0432.CCR‑18‑1038 30042205
    [Google Scholar]
  144. ChauvinJ.M. ZarourH.M. TIGIT in cancer immunotherapy.J. Immunother. Cancer202082e00095710.1136/jitc‑2020‑000957 32900861
    [Google Scholar]
  145. MeleroI. SanmamedM.F. Glez-VazJ. Luri-ReyC. WangJ. ChenL. CD137 (4-1BB)-based cancer immunotherapy on its 25th anniversary.Cancer Discov.202313355256910.1158/2159‑8290.CD‑22‑1029 36576322
    [Google Scholar]
  146. PengC. HugginsM.A. WanhainenK.M. KnutsonT.P. LuH. GeorgievH. MittelsteadtK.L. JarjourN.N. WangH. HogquistK.A. CampbellD.J. da SilvaB.H. JamesonS.C. Engagement of the costimulatory molecule ICOS in tissues promotes establishment of CD8+ tissue-resident memory T cells.Immunity202255198114.e510.1016/j.immuni.2021.11.017 34932944
    [Google Scholar]
  147. ZhaH. HanX. ZhuY. YangF. LiY. LiQ. GuoB. ZhuB. Blocking C5aR signaling promotes the anti-tumor efficacy of PD-1/PD-L1 blockade.OncoImmunology2017610e134958710.1080/2162402X.2017.1349587 29123963
    [Google Scholar]
  148. VargasA.F. FurnessA.J.S. SolomonI. JoshiK. MekkaouiL. LeskoM.H. MirandaR.E. DahanR. GeorgiouA. SledzinskaA. BenA.A. FranzD. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with pd-1 blockade to eradicate established tumors.Immunity202246457758610.1016/j.immuni.2017.03.013 28410988
    [Google Scholar]
  149. MironB. GeynismanD.M. Bempegaldesleukin/nivolumab and challenges in first-line treatment of metastatic urothelial carcinoma.Eur. Urol.202282437437610.1016/j.eururo.2022.05.023 35752503
    [Google Scholar]
  150. TomitaY. IkedaT. SakataS. SaruwatariK. SatoR. IyamaS. JodaiT. AkaikeK. IshizukaS. SaekiS. SakagamiT. Association of probiotic Clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer.Cancer Immunol. Res.20208101236124210.1158/2326‑6066.CIR‑20‑0051 32665261
    [Google Scholar]
  151. LongH. JiaQ. WangL. FangW. WangZ. JiangT. ZhouF. JinZ. HuangJ. ZhouL. HuC. WangX. ZhangJ. BaY. GongY. ZengX. ZengD. SuX. AlexanderP.B. WangL. WangL. WanY.Y. WangX.F. ZhangL. LiQ.J. ZhuB. Tumor-induced erythroid precursor-differentiated myeloid cells mediate immunosuppression and curtail anti-PD-1/PD-L1 treatment efficacy.Cancer Cell2022406674693.e710.1016/j.ccell.2022.04.018 35594863
    [Google Scholar]
  152. ZuoS. SongJ. ZhangJ. HeZ. SunB. SunJ. Nano-immunotherapy for each stage of cancer cellular immunity: Which, why, and what?Theranostics202111157471748710.7150/thno.59953 34158861
    [Google Scholar]
  153. HuangS. ZhaoQ. Nanomedicine-combined immunotherapy for cancer.Curr. Med. Chem.202027345716572910.2174/0929867326666190618161610 31250752
    [Google Scholar]
  154. VincentM.P. NavidzadehJ.O. BobbalaS. ScottE.A. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy.Cancer Cell202240325527610.1016/j.ccell.2022.01.006 35148814
    [Google Scholar]
  155. BookstaverM.L. TsaiS.J. BrombergJ.S. JewellC.M. Improving vaccine and immunotherapy design using biomaterials.Trends Immunol.201839213515010.1016/j.it.2017.10.002 29249461
    [Google Scholar]
  156. JambhrunkarM. YuM. ZhangH. AbbarajuP. MekaA.K. CavallaroA. LuY. MitterN. YuC. Pristine mesoporous carbon hollow spheres as safe adjuvants induce excellent Th2-biased immune response.Nano Res.201811137038210.1007/s12274‑017‑1640‑1
    [Google Scholar]
  157. LiuQ. ZhouY. LiM. ZhaoL. RenJ. LiD. TanZ. WangK. LiH. HussainM. ZhangL. ShenG. ZhuJ. TaoJ. Polyethylenimine hybrid thin-shell hollow mesoporous silica nanoparticles as vaccine self-adjuvants for cancer immunotherapy.ACS Appl. Mater. Interfaces20191151477984780910.1021/acsami.9b19446 31773941
    [Google Scholar]
  158. NagS. MitraO. TripathiG. AdurI. MohantoS. NamaM. SamantaS. GowdaB.H.J. SubramaniyanV. SundararajanV. KumarasamyV. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.Photodiagn. Photodyn. Ther.20244510395910.1016/j.pdpdt.2023.103959 38228257
    [Google Scholar]
  159. AnsariM.J. RajendranR.R. MohantoS. AgarwalU. PandaK. DhotreK. ManneR. DeepakA. ZafarA. YasirM. PramanikS. Poly(N-isopropylacrylamide)-based hydrogels for biomedical applications: A review of the state-of-the-art.Gels20228745410.3390/gels8070454 35877539
    [Google Scholar]
  160. HanH. LiS. XuM. ZhongY. FanW. XuJ. ZhouT. JiJ. YeJ. YaoK. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives.Adv. Drug Deliv. Rev.202319611477010.1016/j.addr.2023.114770 36894134
    [Google Scholar]
  161. Duro-CastanoA. NebotV.J. Niño-ParienteA. ArmiñánA. Arroyo-CrespoJ.J. PaulA. Feiner-GraciaN. AlbertazziL. VicentM.J. Capturing “Extraordinary” soft‐assembled charge‐like polypeptides as a strategy for nanocarrier design.Adv. Mater.20172939170288810.1002/adma.201702888 28834624
    [Google Scholar]
  162. LiC. YouX. XuX. WuB. LiuY. TongT. ChenJ. LiY. DaiC. YeZ. TianX. WeiY. HaoZ. JiangL. WuJ. ZhaoM. A metabolic reprogramming amino acid polymer as an immunosurveillance activator and leukemia targeting drug carrier for t‐cell acute lymphoblastic leukemia.Adv. Sci.202299210413410.1002/advs.202104134 35080145
    [Google Scholar]
  163. SongY. SuQ. SongH. ShiX. LiM. SongN. LouS. WangW. YuZ. Precisely shaped self-adjuvanting peptide vaccines with enhanced immune responses for HPV-associated cancer therapy.ACS Appl. Mater. Interfaces20211342497374975310.1021/acsami.1c15361 34648269
    [Google Scholar]
  164. MohantoS. NarayanaS. MeraiK.P. KumarJ.A. BhuniaA. HaniU. Al FateaseA. GowdaB.H.J. NagS. AhmedM.G. PaulK. VoraL.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review.Int. J. Biol. Macromol.2023253Pt 512714310.1016/j.ijbiomac.2023.127143 37793512
    [Google Scholar]
  165. GholapA.D. KapareH.S. PagarS. KamandarP. BhowmikD. VishwakarmaN. RaikwarS. GarkalA. MehtaT.A. RojekarS. HatvateN. MohantoS. Exploring modified chitosan-based gene delivery technologies for therapeutic advancements.Int. J. Biol. Macromol.2024260Pt 212958110.1016/j.ijbiomac.2024.129581 38266848
    [Google Scholar]
  166. NagS. MitraO. TripathiG. SamantaS. BhattacharyaB. ChandaneP. MohantoS. SundararajanV. MalikS. RustagiS. AdhikariS. MohantyA. León-FigueroaD.A. Rodriguez-MoralesA.J. BarbozaJ.J. SahR. Exploring the theranostic potentials of miRNA and epigenetic networks in autoimmune diseases: A comprehensive review.Immun. Inflamm. Dis.20231112e112110.1002/iid3.1121 38156400
    [Google Scholar]
  167. KankalaR.K. LiuC.G. YangD.Y. WangS.B. ChenA.Z. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance.Chem. Eng. J.202038312313810.1016/j.cej.2019.123138
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073296206240416060154
Loading
/content/journals/cchts/10.2174/0113862073296206240416060154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test