Skip to content
2000
Volume 27, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Chagas disease kills around 10,000 people yearly, primarily in Latin America, where it is prevalent. Current treatment has limited chronic effectiveness, is unsafe, and has substantial side effects. As a result, the use of oxadiazole derivatives and similar heterocyclic compounds as bioisosteres are well known, and they are prospective candidates in the hunt for novel anti- chemicals. Recent research has revealed that the cysteine protease cruzain from is a validated target for disease treatment.

Objective

Thus, using a molecular dynamics simulation, the current study attempted to determine if a significant interaction occurred between the enzyme cruzain and its ligand.

Results

Interactions with the catalytic site and other critical locations were observed. Also, the RMSD values suggested that the molecule under research had stable interactions with its target.

Conclusion

Finally, the findings indicate that the investigated molecule 2b can interfere enzymatic activity of cruzain, indicating that it might be a promising antichagasic drug.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073268297231025110913
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. StanawayJ.D. RothG. The burden of Chagas disease: Estimates and challenges.Glob. Heart201510313914410.1016/j.gheart.2015.06.001 26407508
    [Google Scholar]
  2. TrachtenbergB.H. HareJ.M. Inflammatory cardiomyopathic syndromes.Circ. Res.2017121780381810.1161/CIRCRESAHA.117.310221 28912184
    [Google Scholar]
  3. CanteyP.T. StramerS.L. TownsendR.L. KamelH. OfafaK. ToddC.W. CurrierM. HandS. VarnadoW. DotsonE. HallC. JettP.L. MontgomeryS.P. The United States trypanosoma cruzi infection study: Evidence for vector-borne transmission of the parasite that causes Chagas disease among United States blood donors.Transfusion20125291922193010.1111/j.1537‑2995.2012.03581.x 22404755
    [Google Scholar]
  4. AntunesD. Marins-Dos-SantosA. RamosM.T. MascarenhasB.A.S. MoreiraC.J.C. Farias-de-OliveiraD.A. SavinoW. MonteiroR.Q. de MeisJ. Oral route driven acute Trypanosoma cruzi infection unravels an IL-6 dependent hemostatic derangement.Front. Immunol.201910107310.3389/fimmu.2019.01073 31139194
    [Google Scholar]
  5. SantosM. Oral trypanosoma cruzi acute infection in mice targets primary lymphoid organs and triggers extramedullary hematopoiesis.Front. Cell. Infect. Microbiol.202212800395
    [Google Scholar]
  6. FerreiraR.R. de SouzaE.M. Vilar-PereiraG. DegraveW.M.S. AbreuR.S. Meuser-BatistaM. FerreiraN.V.C. LedbeterS. BarkerR.H. BaillyS. FeigeJ.J. Lannes-VieiraJ. de Araújo-JorgeT.C. WaghabiM.C. In Chagas disease, transforming growth factor beta neutralization reduces Trypanosoma cruzi infection and improves cardiac performance.Front. Cell. Infect. Microbiol.202212101704010.3389/fcimb.2022.1017040 36530434
    [Google Scholar]
  7. Crespillo-AndújarC. Venanzi-RulloE. López-VélezR. Monge-MailloB. NormanF. López-PolínA. Pérez-MolinaJ.A. Safety profile of benznidazole in the treatment of chronic Chagas disease: Experience of a referral center and systematic literature review with meta-analysis.Drug Saf.201841111035104810.1007/s40264‑018‑0696‑5 30006773
    [Google Scholar]
  8. YangS. RenC.L. MaT.Y. ZouW.Q. DaiL. TianX.Y. LiuX.H. TanC.X. 1, 2, 4-Oxadiazole-based bio-isosteres of benzamides: Synthesis, biological activity, and toxicity to zebrafish embryo.Int. J. Mol. Sci.2021225236710.3390/ijms22052367 33673430
    [Google Scholar]
  9. VaidyaA. JainS. Prashantha KumarB. SinghS.K. KashawS.K. AgrawalR.K. Synthesis of 1,2,4-oxadiazole derivatives: Anticancer and 3D QSAR studies.Monatsh. Chem.2020151338539510.1007/s00706‑020‑02553‑1
    [Google Scholar]
  10. VaidyaA. JainS. JainP. JainP. TiwariN. JainR. JainR. JainA.K. AgrawalR.K. Synthesis, and biological activities of oxadiazole derivatives: A review.Mini Rev. Med. Chem.2016161082584510.2174/1389557516666160211120835 26864552
    [Google Scholar]
  11. RochaY.M. MagalhãesE.P. de MedeirosC.M. MachadoM.M. Nascimento e Melo de Oliveira, V.; de Oliveira, N.R.; Lima Sampaio, T.; de Menezes, R.R.P.P.B.; Martins, A.M.C.; Nicolete, R. Antiparasitary and antiproliferative activities in vitro of a 1,2,4-oxadiazole derivative on Trypanosoma cruzi.Parasitol. Res.202212172141215610.1007/s00436‑022‑07554‑z 35610523
    [Google Scholar]
  12. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  13. BrakK. KerrI.D. BarrettK.T. FuchiN. DebnathM. AngK. EngelJ.C. McKerrowJ.H. DoyleP.S. BrinenL.S. EllmanJ.A. EllmanJ. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy.J. Med. Chem.20105341763177310.1021/jm901633v 20088534
    [Google Scholar]
  14. YanJ. ZhangG. PanJ. WangY. α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking.Int. J. Biol. Macromol.20146421322310.1016/j.ijbiomac.2013.12.007 24333230
    [Google Scholar]
  15. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  16. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.2009312NA10.1002/jcc.21334 19499576
    [Google Scholar]
  17. ShityakovS. FörsterC. In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter.Adv. Appl. Bioinforma. Chem.20147233610.2147/AABC.S63749
    [Google Scholar]
  18. YusufD. DavisA.M. KleywegtG.J. SchmittS. An alternative method for the evaluation of docking performance: RSR vs RMSD.J. Chem. Inf. Model.20084871411142210.1021/ci800084x 18598022
    [Google Scholar]
  19. ImbertyA. HardmanK.D. CarverJ.P. PérezS. Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A.Glycobiology19911663164210.1093/glycob/1.6.631 1822243
    [Google Scholar]
  20. BerendsenH.J.C. van der SpoelD. van DrunenR. GROMACS: A message-passing parallel molecular dynamics implementation.Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  21. MacKerellA.D.Jr BanavaliN. FoloppeN. Development and current status of the CHARMM force field for nucleic acids.Biopolymers200056425726510.1002/1097‑0282(2000)56:4<257:AID‑BIP10029>3.0.CO;2‑W 11754339
    [Google Scholar]
  22. ZoeteV. CuendetM.A. GrosdidierA. MichielinO. SwissParam: A fast force field generation tool for small organic molecules.J. Comput. Chem.201132112359236810.1002/jcc.21816 21541964
    [Google Scholar]
  23. BussiG. DonadioD. ParrinelloM. Canonical sampling through velocity rescaling.J. Chem. Phys.2007126101410110.1063/1.2408420 17212484
    [Google Scholar]
  24. ParrinelloM. RahmanA. Polymorphic transitions in single crystals: A new molecular dynamics method.J. Appl. Phys.198152127182719010.1063/1.328693
    [Google Scholar]
  25. Van GunsterenW.F. BerendsenH.J.C. A leap-frog algorithm for stochastic dynamics.Mol. Simul.19881317318510.1080/08927028808080941
    [Google Scholar]
  26. VargasE. EcheverriF. VélezI. RobledoS. QuiñonesW. Synthesis and evaluation of thiochroman-4-one derivatives as potential leishmanicidal agents.Molecules20172212204110.3390/molecules22122041 29186046
    [Google Scholar]
  27. ScharfsteinJ. Subverting bradykinin-evoked inflammation by co-opting the contact system.Curr. Opin. Hematol.201825534735710.1097/MOH.0000000000000444 30028741
    [Google Scholar]
  28. TomasA.M. Overexpression of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, is associated with enhanced metacyclogenesis.Eur. J. Biochem.19972442596603
    [Google Scholar]
  29. CaputtoM.E. FabianL.E. BenítezD. MerlinoA. RíosN. CerecettoH. MoltrasioG.Y. MoglioniA.G. GonzálezM. FinkielszteinL.M. Thiosemicarbazones derived from 1-indanones as new anti-Trypanosoma cruzi agents.Bioorg. Med. Chem.201119226818682610.1016/j.bmc.2011.09.037 22000947
    [Google Scholar]
  30. DebP.K. Al-Shar’iN.A. VenugopalaK.N. PillayM. BorahP. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis.J. Enzyme Inhib. Med. Chem.202136186988410.1080/14756366.2021.1900162 34060396
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073268297231025110913
Loading
/content/journals/cchts/10.2174/0113862073268297231025110913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test