Skip to content
2000
Volume 27, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Colorectal cancer (CRC) has a very high incidence and lethality rate and is one of the most dangerous cancer types. Timely diagnosis can effectively reduce the incidence of colorectal cancer. Changes in para-cancerous tissues may serve as an early signal for tumorigenesis. Comparison of the differences in gene expression between para-cancerous and normal mucosa can help in the diagnosis of CRC and understanding the mechanisms of development.

Objectives

This study aimed to identify specific genes at the level of gene expression, which are expressed in normal mucosa and may be predictive of CRC risk.

Methods

A machine learning approach was used to analyze transcriptomic data in 459 samples of normal colonic mucosal tissue from 322 CRC cases and 137 non-CRC, in which each sample contained 28,706 gene expression levels. The genes were ranked using four ranking methods based on importance estimation (LASSO, LightGBM, MCFS, and mRMR) and four classification algorithms (decision tree [DT], K-nearest neighbor [KNN], random forest [RF], and support vector machine [SVM]) were combined with incremental feature selection [IFS] methods to construct a prediction model with excellent performance.

Results

The top-ranked genes, namely, , and , were associated with tumorigenesis based on previous studies.

Conclusion

This study summarized four sets of quantitative classification rules based on the DT algorithm, providing clues for understanding the microenvironmental changes caused by CRC. According to the rules, the effect of CRC on normal mucosa can be determined.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073266300231026103844
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. BrustugunO.T. MøllerB. HellandÅ. Years of life lost as a measure of cancer burden on a national level.Br. J. Cancer201411151014102010.1038/bjc.2014.364 24983370
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  4. FearonE.R. VogelsteinB. A genetic model for colorectal tumorigenesis.Cell199061575976710.1016/0092‑8674(90)90186‑I 2188735
    [Google Scholar]
  5. AmaroA. ChiaraS. PfefferU. Molecular evolution of colorectal cancer: From multistep carcinogenesis to the big bang.Cancer Metastasis Rev.2016351637410.1007/s10555‑016‑9606‑4 26947218
    [Google Scholar]
  6. PatersonC. CleversH. BozicI. Mathematical model of colorectal cancer initiation.Proc. Natl. Acad. Sci. USA202011734206812068810.1073/pnas.2003771117 32788368
    [Google Scholar]
  7. QuailD.F. JoyceJ.A. Microenvironmental regulation of tumor progression and metastasis.Nat. Med.201319111423143710.1038/nm.3394 24202395
    [Google Scholar]
  8. OmbratoL. NolanE. KurelacI. MavousianA. BridgemanV.L. HeinzeI. ChakravartyP. HorswellS. Gonzalez-GualdaE. MatacchioneG. WestonA. KirkpatrickJ. HusainE. SpeirsV. CollinsonL. OriA. LeeJ.H. MalanchiI. Metastatic-niche labelling reveals parenchymal cells with stem features.Nature2019572777160360810.1038/s41586‑019‑1487‑6 31462798
    [Google Scholar]
  9. LochheadP. ChanA.T. NishiharaR. FuchsC.S. BeckA.H. GiovannucciE. OginoS. Etiologic field effect: Reappraisal of the field effect concept in cancer predisposition and progression.Mod. Pathol.2015281142910.1038/modpathol.2014.81 24925058
    [Google Scholar]
  10. PatelA. TripathiG. GopalakrishnanK. WilliamsN. ArasaradnamR.P. Field cancerisation in colorectal cancer: A new frontier or pastures past?World J. Gastroenterol.201521133763377210.3748/wjg.v21.i13.3763 25852261
    [Google Scholar]
  11. HawthornL. LanL. MojicaW. Evidence for field effect cancerization in colorectal cancer.Genomics20141032-321122110.1016/j.ygeno.2013.11.003 24316131
    [Google Scholar]
  12. ChaiH. BrownR.E. Field effect in cancer-an update.Ann. Clin. Lab. Sci.2009394331337 19880759
    [Google Scholar]
  13. ChenL.C. HaoC.Y. ChiuY.S.Y. WongP. MelnickJ.S. BrotmanM. MorettoJ. MendesF. SmithA.P. BenningtonJ.L. MooreD. LeeN.M. Alteration of gene expression in normal-appearing colon mucosa of APC(min) mice and human cancer patients.Cancer Res.200464103694370010.1158/0008‑5472.CAN‑03‑3264 15150130
    [Google Scholar]
  14. PolleyA.C.J. MulhollandF. PinC. WilliamsE.A. BradburnD.M. MillsS.J. MathersJ.C. JohnsonI.T. Proteomic analysis reveals field-wide changes in protein expression in the morphologically normal mucosa of patients with colorectal neoplasia.Cancer Res.200666136553656210.1158/0008‑5472.CAN‑06‑0534 16818627
    [Google Scholar]
  15. DanielC.R. BostickR.M. FlandersW.D. LongQ. FedirkoV. SidelnikovE. SeabrookM.E. TGF-alpha expression as a potential biomarker of risk within the normal-appearing colorectal mucosa of patients with and without incident sporadic adenoma.Cancer Epidemiol. Biomarkers Prev.2009181657310.1158/1055‑9965.EPI‑08‑0732 19124482
    [Google Scholar]
  16. MauryaN.S. KushwahaS. ChawadeA. ManiA. Transcriptome profiling by combined machine learning and statistical R analysis identifies TMEM236 as a potential novel diagnostic biomarker for colorectal cancer.Sci. Rep.20211111430410.1038/s41598‑021‑92692‑0 34253750
    [Google Scholar]
  17. HossainM.J. ChowdhuryU.N. IslamM.B. UddinS. AhmedM.B. QuinnJ.M.W. MoniM.A. Machine learning and network-based models to identify genetic risk factors to the progression and survival of colorectal cancer.Comput. Biol. Med.202113510453910.1016/j.compbiomed.2021.104539 34153790
    [Google Scholar]
  18. KoppadS. BasavaA. NashK. GkoutosG.V. AcharjeeA. Machine learning-based identification of colon cancer candidate diagnostics genes.Biology202211336510.3390/biology11030365 35336739
    [Google Scholar]
  19. Vaughan-ShawP.G. TimofeevaM. OoiL.Y. SvintiV. GrimesG. SmillieC. BlackmurJ.P. DonnellyK. TheodoratouE. CampbellH. ZgagaL. DinF.V.N. FarringtonS.M. DunlopM.G. Differential genetic influences over colorectal cancer risk and gene expression in large bowel mucosa.Int. J. Cancer202114951100110810.1002/ijc.33616 33937989
    [Google Scholar]
  20. JianF. HuangF. ZhangY.H. HuangT. CaiY.D. Identifying anal and cervical tumorigenesis-associated methylation signaling with machine learning methods.Front. Oncol.20221299803210.3389/fonc.2022.998032 36249027
    [Google Scholar]
  21. LiH. WangD. ZhouX. DingS. GuoW. ZhangS. LiZ. HuangT. CaiY.D. Characterization of spleen and lymph node cell types via CITE-seq and machine learning methods.Front. Mol. Neurosci.202215103315910.3389/fnmol.2022.1033159 36311013
    [Google Scholar]
  22. LiuZ. MengM. DingS. ZhouX. FengK. HuangT. CaiY.D. Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods.Front. Microbiol.202213100729510.3389/fmicb.2022.1007295 36212830
    [Google Scholar]
  23. LiZ. HuangF. ChenL. HuangT. CaiY.D. Identifying in vitro cultured human hepatocytes markers with machine learning methods based on single-cell RNA-Seq data.Front. Bioeng. Biotechnol.20221091630910.3389/fbioe.2022.916309 35706505
    [Google Scholar]
  24. HuangF. MaQ. RenJ. LiJ. WangF. HuangT. CaiY.D. Identification of smoking-associated transcriptome aberration in blood with machine learning methods.BioMed Res. Int.2023202311310.1155/2023/5333361 36644165
    [Google Scholar]
  25. HuangF. Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores.Biochim. Biophys. Acta. Proteins Proteomics20231871314088910.1016/j.bbapap.2023.140889
    [Google Scholar]
  26. ZhaoX. ChenL. LuJ. A similarity-based method for prediction of drug side effects with heterogeneous information.Math. Biosci.201830613614410.1016/j.mbs.2018.09.010 30296417
    [Google Scholar]
  27. TibshiraniR. Regression shrinkage and selection via the lasso: A retrospective.J. R. Stat. Soc. Series B Stat. Methodol.201173327328210.1111/j.1467‑9868.2011.00771.x
    [Google Scholar]
  28. PedregosaF. Scikit-learn: Machine learning in python.J. Mach. Learn. Res.2011128528252830
    [Google Scholar]
  29. KeG. QiM. ThomasF. TaifengW. WeiC. WeidongM. QiweiY. Tie-YanL. LightGBM: A highly efficient gradient boosting decision tree.Proceedings of the 31st International Conference on Neural Information Processing Systems201731493157
    [Google Scholar]
  30. DramińskiM. Rada-IglesiasA. EnrothS. WadeliusC. KoronackiJ. KomorowskiJ. Monte Carlo feature selection for supervised classification.Bioinformatics200824111011710.1093/bioinformatics/btm486 18048398
    [Google Scholar]
  31. HanchuanPeng Fuhui Long; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy.IEEE Trans. Pattern Anal. Mach. Intell.20052781226123810.1109/TPAMI.2005.159 16119262
    [Google Scholar]
  32. LiuH. SetionoR. Incremental feature selection.Appl. Intell.19989321723010.1023/A:1008363719778
    [Google Scholar]
  33. KohaviR. A study of cross-validation and bootstrap for accuracy estimation and model selection. International joint Conference on artificial intelligence.1995
    [Google Scholar]
  34. ChawlaN.V. BowyerK.W. HallL.O. KegelmeyerW.P. SMOTE: Synthetic minority over-sampling technique.J. Artif. Intell. Res.20021632135710.1613/jair.953
    [Google Scholar]
  35. SafavianS.R. LandgrebeD. A survey of decision tree classifier methodology.IEEE Trans. Syst. Man Cybern.199121366067410.1109/21.97458
    [Google Scholar]
  36. CoverT. HartP. Nearest neighbor pattern classification.IEEE Trans. Inf. Theory1967131212710.1109/TIT.1967.1053964
    [Google Scholar]
  37. BreimanL. Random forests.Mach. Learn.200145153210.1023/A:1010933404324
    [Google Scholar]
  38. CortesC. VapnikV. Support-vector networks.Mach. Learn.199520327329710.1007/BF00994018
    [Google Scholar]
  39. WangH. ChenL. PMPTCE-HNEA: Predicting metabolic pathway types of chemicals and enzymes with a heterogeneous network embedding algorithm.Curr. Bioinform.20231810.2174/1574893618666230224121633
    [Google Scholar]
  40. PanX. Identifying protein subcellular locations with embeddings-based node2loc. IEEE/ACM Trans.Comput. Biol. Bioinform.2022192666675
    [Google Scholar]
  41. PowersD. Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation.J. Mach. Learn. Technol.2011213763
    [Google Scholar]
  42. TangS. ChenL. iATC-NFMLP: Identifying classes of anatomical therapeutic chemicals based on drug networks, fingerprints and multilayer perceptron.Curr. Bioinform.202217981482410.2174/1574893617666220318093000
    [Google Scholar]
  43. YangY. ChenL. Identification of drug–disease associations by using multiple drug and disease networks.Curr. Bioinform.2022171485910.2174/1574893616666210825115406
    [Google Scholar]
  44. WuC. ChenL. A model with deep analysis on a large drug network for drug classification.Math. Biosci. Eng.202220138340110.3934/mbe.2023018 36650771
    [Google Scholar]
  45. RenJ. ZhangY. GuoW. FengK. YuanY. HuangT. CaiY.D. Identification of genes associated with the impairment of olfactory and gustatory functions in COVID-19 via machine-learning methods.Life202313379810.3390/life13030798 36983953
    [Google Scholar]
  46. ChenL. ChenK. ZhouB. Inferring drug-disease associations by a deep analysis on drug and disease networks.Math. Biosci. Eng.2023208141361415710.3934/mbe.2023632 37679129
    [Google Scholar]
  47. WuT. HuE. XuS. ChenM. GuoP. DaiZ. FengT. ZhouL. TangW. ZhanL. FuX. LiuS. BoX. YuG. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation20212310014110.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  48. MatthewsB.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.Biochim. Biophys. Acta Protein Struct.1975405244245110.1016/0005‑2795(75)90109‑9 1180967
    [Google Scholar]
  49. BhatlekarS. AddyaS. SalunekM. OrrC.R. SurreyS. McKenzieS. FieldsJ.Z. BomanB.M. Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: Overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis.Stem Cells Dev.201423216717910.1089/scd.2013.0039 23980595
    [Google Scholar]
  50. Sanz-PamplonaR. CorderoD. BerenguerA. LejbkowiczF. RennertH. SalazarR. BiondoS. SanjuanX. PujanaM.A. RozekL. GiordanoT.J. Ben-IzhakO. CohenH.I. TrougouboffP. BejharJ. SovaY. RennertG. GruberS.B. MorenoV. Gene expression differences between colon and rectum tumors.Clin. Cancer Res.201117237303731210.1158/1078‑0432.CCR‑11‑1570 21976543
    [Google Scholar]
  51. XuW. LuJ. ZhaoQ. WuJ. SunJ. HanB. ZhaoX. KangY. Genome-wide plasma cell-free DNA methylation profiling identifies potential biomarkers for lung cancer.Dis. Markers201920191710.1155/2019/4108474 30867848
    [Google Scholar]
  52. HaradaH. MiyamaotoK. KimuraM. IshigamiT. TaniyamaK. OkadaM. Lung cancer risk stratification using methylation profile in the oral epithelium.Asian Cardiovasc. Thorac. Ann.2019272879210.1177/0218492318813443 30417685
    [Google Scholar]
  53. RodiniC.O. XavierF.C.A. PaivaK.B.S. De Souza Setúbal DestroM.F. MoysesR.A. MichaluarteP. CarvalhoM.B. FukuyamaE.E. TajaraE.H. OkamotoO.K. NunesF.D. Homeobox gene expression profile indicates HOXA5 as a candidate prognostic marker in oral squamous cell carcinoma.Int. J. Oncol.20124041180118810.3892/ijo.2011.1321 22227861
    [Google Scholar]
  54. WangJ. LiuZ. ZhangC. WangH. LiA. LiuB. LianX. RenZ. ZhangW. WangY. ZhangB. PangB. GaoY. Abnormal expression of HOXD11 promotes the malignant behavior of glioma cells and leads to poor prognosis of glioma patients.PeerJ20219e1082010.7717/peerj.10820 33614284
    [Google Scholar]
  55. MiyamotoK. FukutomiT. Akashi-TanakaS. HasegawaT. AsaharaT. SugimuraT. UshijimaT. Identification of 20 genes aberrantly methylated in human breast cancers.Int. J. Cancer2005116340741410.1002/ijc.21054 15818620
    [Google Scholar]
  56. CaiL. AbeM. IzumiS. ImuraM. YasugiT. UshijimaT. Identification of PRTFDC1 silencing and aberrant promoter methylation of GPR150, ITGA8 and HOXD11 in ovarian cancers.Life Sci.200780161458146510.1016/j.lfs.2007.01.015 17303177
    [Google Scholar]
  57. YangH. ZhouJ. MiJ. MaK. FanY. NingJ. WangC. WeiX. ZhaoH. LiE. HOXD10 acts as a tumor-suppressive factor via inhibition of the RHOC/AKT/MAPK pathway in human cholangiocellular carcinoma.Oncol. Rep.20153441681169110.3892/or.2015.4194 26260613
    [Google Scholar]
  58. ChenW. CaiF. ZhangB. BarekatiZ. ZhongX.Y. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers.Tumour Biol.201334145546210.1007/s13277‑012‑0570‑5 23238818
    [Google Scholar]
  59. WangY. LiZ. ZhaoX. ZuoX. PengZ. miR-10b promotes invasion by targeting HOXD10 in colorectal cancer.Oncol. Lett.201612148849410.3892/ol.2016.4628 27347170
    [Google Scholar]
  60. GuoY. PengY. GaoD. ZhangM. YangW. LinghuE. HermanJ.G. FuksF. DongG. GuoM. Silencing HOXD10 by promoter region hypermethylation activates ERK signaling in hepatocellular carcinoma.Clin. Epigenetics20179111610.1186/s13148‑017‑0412‑9 29075359
    [Google Scholar]
  61. PanW. WangK. LiJ. LiH. CaiY. ZhangM. WangA. WuY. GaoW. WengW. Restoring HOXD10 exhibits therapeutic potential for ameliorating malignant progression and 5-fluorouracil resistance in colorectal cancer.Front. Oncol.20211177152810.3389/fonc.2021.771528 34790580
    [Google Scholar]
  62. BerxG. StaesK. van HengelJ. MolemansF. BussemakersM.J.G. van BokhovenA. van RoyF. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1).Genomics199526228128910.1016/0888‑7543(95)80212‑5 7601454
    [Google Scholar]
  63. WongA.S.T. GumbinerB.M. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin.J. Cell Biol.200316161191120310.1083/jcb.200212033 12810698
    [Google Scholar]
  64. JeanesA. GottardiC.J. YapA.S. Cadherins and cancer: How does cadherin dysfunction promote tumor progression?Oncogene200827556920692910.1038/onc.2008.343 19029934
    [Google Scholar]
  65. LarueL. BellacosaA. Epithelial–mesenchymal transition in development and cancer: Role of phosphatidylinositol 3′ kinase/AKT pathways.Oncogene200524507443745410.1038/sj.onc.1209091 16288291
    [Google Scholar]
  66. ChenX. WangW. LiY. HuoY. ZhangH. FengF. XiW. ZhangT. GaoJ. YangF. ChenS. YangA. WangT. MYSM1 inhibits human colorectal cancer tumorigenesis by activating miR-200 family members/CDH1 and blocking PI3K/AKT signaling.J. Exp. Clin. Cancer Res.202140134110.1186/s13046‑021‑02106‑2 34706761
    [Google Scholar]
  67. ThierolfM. HagmannM.L. PfefferM. BerntenisN. WildN. RoeßlerM. PalmeS. KarlJ. BodenmüllerH. RüschoffJ. RossolS. RohrG. RöschW. FriessH. EickhoffA. JauchK.W. LangenH. ZolgW. TackeM. Towards a comprehensive proteome of normal and malignant human colon tissue by 2-D-LC-ESI-MS and 2-DE proteomics and identification of S100A12 as potential cancer biomarker.Proteomics Clin. Appl.200821112210.1002/prca.200780046 21136775
    [Google Scholar]
  68. de JongN.S.H. LeachS.T. DayA.S. Fecal S100A12: A novel noninvasive marker in children with Crohnʼs disease.Inflamm. Bowel Dis.200612756657210.1097/01.ibd.0000227626.72271.91 16804393
    [Google Scholar]
  69. TurnerD. LeachS.T. MackD. UusoueK. McLernonR. HyamsJ. LeleikoN. WaltersT.D. CrandallW. MarkowitzJ. OtleyA.R. GriffithsA.M. DayA.S. Faecal calprotectin, lactoferrin, M2-pyruvate kinase and S100A12 in severe ulcerative colitis: A prospective multicentre comparison of predicting outcomes and monitoring response.Gut20105991207121210.1136/gut.2010.211755 20801771
    [Google Scholar]
  70. LoktionovA. SoubieresA. BandaletovaT. MathurJ. PoullisA. Colorectal cancer detection by biomarker quantification in noninvasively collected colorectal mucus: preliminary comparison of 24 protein biomarkers.Eur. J. Gastroenterol. Hepatol.201931101220122710.1097/MEG.0000000000001535 31498281
    [Google Scholar]
  71. SprattD.E. WaldenH. ShawG.S. RBR E3 ubiquitin ligases: New structures, new insights, new questions.Biochem. J.2014458342143710.1042/BJ20140006 24576094
    [Google Scholar]
  72. HoS.R. MahanicC.S. LeeY.J. LinW.C. RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage.Proc. Natl. Acad. Sci.201411126E2646E265510.1073/pnas.1323107111 24979766
    [Google Scholar]
  73. YangY.L. ZhangY. LiD.D. ZhangF.L. LiuH.Y. LiaoX.H. XieH.Y. LuQ. ZhangL. HongQ. DongW.J. LiD.Q. ShaoZ.M. RNF144A functions as a tumor suppressor in breast cancer through ubiquitin ligase activity-dependent regulation of stability and oncogenic functions of HSPA2.Cell Death Differ.20202731105111810.1038/s41418‑019‑0400‑z 31406303
    [Google Scholar]
  74. LiY. WangJ. WangF. ChenW. GaoC. WangJ. RNF144A suppresses ovarian cancer stem cell properties and tumor progression through regulation of LIN28B degradation via the ubiquitin-proteasome pathway.Cell Biol. Toxicol.202238580982410.1007/s10565‑021‑09609‑w 33978933
    [Google Scholar]
  75. YinJ. GuoY. HOXD13 promotes the malignant progression of colon cancer by upregulating PTPRN2.Cancer Med.202110165524553310.1002/cam4.4078 34272834
    [Google Scholar]
  76. XuT. ZongY. PengL. KongS. ZhouM. ZouJ. LiuJ. MiaoR. SunX. LiL. Overexpression of eIF4E in colorectal cancer patients is associated with liver metastasis.OncoTargets Ther.20169815822 26929650
    [Google Scholar]
  77. HsiehA.C. RuggeroD. Targeting eukaryotic translation initiation factor 4E (eIF4E) in cancer.Clin. Cancer Res.201016204914492010.1158/1078‑0432.CCR‑10‑0433 20702611
    [Google Scholar]
  78. IchikawaM. SowaY. IizumiY. AonoY. SakaiT. Resibufogenin induces G1-phase arrest through the proteasomal degradation of cyclin D1 in human malignant tumor cells.PLoS One2015106e012985110.1371/journal.pone.0129851 26121043
    [Google Scholar]
  79. OthumpangatS. Sodium arsenite-induced inhibition of eukaryotic translation initiation factor 4E (eIF4E) results in cytotoxicity and cell death.PLoS One20052792123131
    [Google Scholar]
  80. ChenF. WangM. BaiJ. LiuQ. XiY. LiW. ZhengJ. Role of RUNX3 in suppressing metastasis and angiogenesis of human prostate cancer.PLoS One201491e8691710.1371/journal.pone.0086917 24475196
    [Google Scholar]
  81. GaoM. ZhangX. LiD. HeP. TianW. ZengB. Expression analysis and clinical significance of eIF4E, VEGF-C, E-cadherin and MMP-2 in colorectal adenocarcinoma.Oncotarget2016751855028551410.18632/oncotarget.13453 27907907
    [Google Scholar]
  82. ZhaoQ. ZhangK. LiZ. ZhangH. FuF. FuJ. ZhengM. ZhangS. High migration and invasion ability of pgccs and their daughter cells associated with the nuclear localization of S100A10 modified by SUMOylation.Front. Cell Dev. Biol.2021969687110.3389/fcell.2021.696871 34336846
    [Google Scholar]
  83. ChavakisT. KeiperT. Matz-WestphalR. HersemeyerK. SachsU.J. NawrothP.P. PreissnerK.T. SantosoS. The junctional adhesion molecule-C promotes neutrophil transendothelial migration in vitro and in vivo.J. Biol. Chem.200427953556025560810.1074/jbc.M404676200 15485832
    [Google Scholar]
  84. KhineA.A. Del SorboL. VaschettoR. VoglisS. TullisE. SlutskyA.S. DowneyG.P. ZhangH. Human neutrophil peptides induce interleukin-8 production through the P2Y6 signaling pathway.Blood200610772936294210.1182/blood‑2005‑06‑2314 16322472
    [Google Scholar]
  85. PiccoliM. D’AngeloE. CrottiS. SensiF. UrbaniL. MaghinE. BurnsA. De CoppiP. FassanM. RuggeM. RizzolioF. GiordanoA. PilatiP. MammanoE. PucciarelliS. AgostiniM. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research.J. Cell. Physiol.201823385937594810.1002/jcp.26403 29244195
    [Google Scholar]
  86. LadwaR. PringleH. KumarR. WestK. Expression of CTGF and Cyr61 in colorectal cancer.J. Clin. Pathol.2011641586410.1136/jcp.2010.082768 21081514
    [Google Scholar]
  87. XieL. SongX. LinH. ChenZ. LiQ. GuoT. XuT. SuT. XuM. ChangX. WangL.K. LiangB. HuangD. Aberrant activation of CYR61 enhancers in colorectal cancer development.J. Exp. Clin. Cancer Res.201938121310.1186/s13046‑019‑1217‑9 31118064
    [Google Scholar]
  88. HuangX. XiangL. LiY. ZhaoY. ZhuH. XiaoY. LiuM. WuX. WangZ. JiangP. QingH. ZhangQ. LiuG. ZhangW. LiA. ChenY. LiuS. WangJ. Snail/FOXK1/Cyr61 signaling axis regulates the epithelial–mesenchymal transition and metastasis in colorectal cancer.Cell. Physiol. Biochem.201847259060310.1159/000490015 29794466
    [Google Scholar]
  89. WuG. ZhuY.Z. ZhangJ.C. Sox4 up-regulates Cyr61 expression in colon cancer cells.Cell. Physiol. Biochem.201434240541210.1159/000363009 25059387
    [Google Scholar]
  90. JeongD. HeoS. Sung AhnT. LeeS. ParkS. KimH. ParkD. Byung BaeS. LeeS.S. Soo LeeM. KimC.J. Jun BaekM. Cyr61 Expression is associated with prognosis in patients with colorectal cancer.BMC Cancer201414116410.1186/1471‑2407‑14‑164 24606730
    [Google Scholar]
  91. YanJ. YangB. LinS. XingR. LuY. Downregulation of miR-142-5p promotes tumor metastasis through directly regulating CYR61 expression in gastric cancer.Gastric Cancer201922230231310.1007/s10120‑018‑0872‑4 30178386
    [Google Scholar]
  92. ten BokumA.M. HoflandL.J. van HagenP.M. Somatostatin and somatostatin receptors in the immune system: A review.Eur. Cytokine Netw.2000112161176 10903795
    [Google Scholar]
  93. CasniciC. LattuadaD. PeregoC. FrancoP. MarelliO. Inhibitory effect of somatostatin on human T lymphocytes proliferation.Int. J. Immunopharmacol.19981911-1272172710.1016/S0192‑0561(97)00033‑7 9669213
    [Google Scholar]
  94. RosskopfD. SchürksM. MantheyI. JoistenM. BuschS. SiffertW. Signal transduction of somatostatin in human B lymphoblasts.Am. J. Physiol. Cell Physiol.20032841C179C19010.1152/ajpcell.00160.2001 12388115
    [Google Scholar]
  95. RuscicaM. ArvigoM. SteffaniL. FeroneD. MagniP. Somatostatin, somatostatin analogs and somatostatin receptor dynamics in the biology of cancer progression.Curr. Mol. Med.201313455557110.2174/1566524011313040008 22934849
    [Google Scholar]
  96. LeiszterK. SiposF. GalambO. KrenácsT. VeresG. WichmannB. FűriI. KalmárA. PataiÁ.V. TóthK. ValczG. TulassayZ. MolnárB. Promoter hypermethylation-related reduced somatostatin production promotes uncontrolled cell proliferation in colorectal cancer.PLoS One2015102e011833210.1371/journal.pone.0118332 25723531
    [Google Scholar]
  97. GattoF. BarbieriF. ArvigoM. ThellungS. AmarùJ. AlbertelliM. FeroneD. FlorioT. Biological and biochemical basis of the differential efficacy of first and second generation somatostatin receptor ligands in neuroendocrine neoplasms.Int. J. Mol. Sci.20192016394010.3390/ijms20163940 31412614
    [Google Scholar]
  98. ModaraiS.R. OpdenakerL.M. ViswanathanV. FieldsJ.Z. BomanB.M. Somatostatin signaling via SSTR1 contributes to the quiescence of colon cancer stem cells.BMC Cancer201616194110.1186/s12885‑016‑2969‑7 27927191
    [Google Scholar]
  99. MaZ. WilliamsM. ChengY.Y. LeungW.K. Roles of methylated DNA biomarkers in patients with colorectal cancer.Dis. Markers201920191810.1155/2019/2673543 30944663
    [Google Scholar]
  100. FernandezS. RisolinoM. MandiaN. TalottaF. SoiniY. IncoronatoM. CondorelliG. BanfiS. VerdeP. miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer.Oncogene201534253240325010.1038/onc.2014.267 25151966
    [Google Scholar]
  101. GongY. LiuZ. YuanY. YangZ. ZhangJ. LuQ. WangW. FangC. LinH. LiuS. PUMILIO proteins promote colorectal cancer growth via suppressing p21.Nat. Commun.2022131162710.1038/s41467‑022‑29309‑1 35338151
    [Google Scholar]
  102. KanaiM. HamadaJ. TakadaM. AsanoT. MurakawaK. TakahashiY. MuraiT. TadaM. MiyamotoM. KondoS. MoriuchiT. Aberrant expressions of HOX genes in colorectal and hepatocellular carcinomas.Oncol. Rep.2010233843851 20127028
    [Google Scholar]
  103. SchimanskiC.C. FrerichsK. RahmanF. BergerM. LangH. GalleP.R. MoehlerM. GockelI. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells.World J. Gastroenterol.200915172089209610.3748/wjg.15.2089 19418581
    [Google Scholar]
  104. MansourM.A. SengaT. HOXD8 exerts a tumor-suppressing role in colorectal cancer as an apoptotic inducer.Int. J. Biochem. Cell Biol.20178811310.1016/j.biocel.2017.04.011 28457970
    [Google Scholar]
  105. PlanellN. LozanoJ.J. Mora-BuchR. MasamuntM.C. JimenoM. OrdásI. EstellerM. RicartE. PiquéJ.M. PanésJ. SalasA. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations.Gut201362796797610.1136/gutjnl‑2012‑303333 23135761
    [Google Scholar]
  106. HuangD. FengX. LiuY. DengY. ChenH. ChenD. FangL. CaiY. LiuH. WangL. WangJ. YangZ. AQP9-induced cell cycle arrest is associated with RAS activation and improves chemotherapy treatment efficacy in colorectal cancer.Cell Death Dis.201786e289410.1038/cddis.2017.282 28640255
    [Google Scholar]
  107. VerkmanA.S. Hara-ChikumaM. PapadopoulosM.C. Aquaporins—new players in cancer biology.J. Mol. Med.200886552352910.1007/s00109‑008‑0303‑9 18311471
    [Google Scholar]
  108. ChenQ. ZhuL. ZhengB. WangJ. SongX. ZhengW. WangL. YangD. WangJ. Effect of AQP9 expression in androgen-independent prostate cancer cell PC3.Int. J. Mol. Sci.201617573810.3390/ijms17050738 27187384
    [Google Scholar]
  109. ZhangW. LiC. LiuM. ChenX. ShuaiK. KongX. LvL. MeiZ. Aquaporin 9 is down-regulated in hepatocellular carcinoma and its over-expression suppresses hepatoma cell invasion through inhibiting epithelial-to-mesenchymal transition.Cancer Lett.2016378211111910.1016/j.canlet.2016.05.021 27216981
    [Google Scholar]
  110. LiuX. XuQ. LiZ. XiongB. Integrated analysis identifies AQP9 correlates with immune infiltration and acts as a prognosticator in multiple cancers.Sci. Rep.20201012079510.1038/s41598‑020‑77657‑z 33247170
    [Google Scholar]
  111. ZajkowskaM. Kulczyńska-PrzybikA. DulewiczM. SafiejkoK. JuchimiukM. KonopkoM. KozłowskiL. MroczkoB. Eotaxins and their receptor as biomarkers of colorectal cancer.J. Clin. Med.20211012267510.3390/jcm10122675 34204490
    [Google Scholar]
  112. ChoY.B. LeeW.Y. ChoiS.J. KimJ. HongH.K. KimS.H. ChoiY.L. KimH.C. YunS.H. ChunH.K. LeeK.U. CC chemokine ligand 7 expression in liver metastasis of colorectal cancer.Oncol. Rep.201228268969410.3892/or.2012.1815 22614322
    [Google Scholar]
  113. CheadleE.J. RiyadK. SubarD. RothwellD.G. AshtonG. BathaH. SherlockD.J. HawkinsR.E. GilhamD.E. Eotaxin-2 and colorectal cancer: A potential target for immune therapy.Clin. Cancer Res.200713195719572810.1158/1078‑0432.CCR‑07‑1145 17908961
    [Google Scholar]
  114. LanQ. LaiW. ZengY. LiuL. LiS. JinS. ZhangY. LuoX. XuH. LinX. ChuZ. CCL26 participates in the PRL-3–induced promotion of colorectal cancer invasion by stimulating tumor-associated macrophage infiltration.Mol. Cancer Ther.201817127628910.1158/1535‑7163.MCT‑17‑0507 29051319
    [Google Scholar]
  115. MooreA.J. DevineD.A. BibbyM.C. Preliminary experimental anticancer activity of cecropins.Pept. Res.199475265269 7849420
    [Google Scholar]
  116. RobertsonC.N. RobersonK.M. PineroA. JaynesJ.M. PaulsonD.F. Peptidyl membrane-interactive molecules are cytotoxic to prostatic cancer cells in vitro.World J. Urol.199816640540910.1007/s003450050091 9870289
    [Google Scholar]
  117. AnkaiahD. PalanichamyE. AntonyrajC.B. AyyannaR. PerumalV. AhamedS.I.B. ArulV. Cloning, overexpression, purification of bacteriocin enterocin-B and structural analysis, interaction determination of enterocin-A, B against pathogenic bacteria and human cancer cells.Int. J. Biol. Macromol.201811650251210.1016/j.ijbiomac.2018.05.002 29729340
    [Google Scholar]
  118. NorouziZ. SalimiA. HalabianR. FahimiH. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines.Microb. Pathog.201812318318910.1016/j.micpath.2018.07.006 30017942
    [Google Scholar]
  119. KhusroA. AartiC. MahizhaveniB. DusthackeerA. AgastianP. EsmailG.A. GhilanA.K.M. Al-DhabiN.A. ArasuM.V. Purification and characterization of anti-tubercular and anticancer protein from Staphylococcus hominis strain MANF2: In silico structural and functional insight of peptide.Saudi J. Biol. Sci.20202741107111610.1016/j.sjbs.2020.01.017 32256172
    [Google Scholar]
  120. SlaninováJ. MlsováV. KroupováH. AlánL. TůmováT. MonincováL. BorovičkováL. FučíkV. ČeřovskýV. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells.Peptides2012331182610.1016/j.peptides.2011.11.002 22100226
    [Google Scholar]
  121. SalehM. TrinchieriG. Innate immune mechanisms of colitis and colitis-associated colorectal cancer.Nat. Rev. Immunol.201111192010.1038/nri2891 21151034
    [Google Scholar]
  122. JuQ. ZhaoY.J. DongY. ChengC. ZhangS. YangY. LiP. GeD. SunB. Identification of a miRNA mRNA network associated with lymph node metastasis in colorectal cancer.Oncol. Lett.20191821179118810.3892/ol.2019.10460 31423178
    [Google Scholar]
  123. GamageD.G. HendricksonT.L. GPI Transamidase and GPI anchored proteins: Oncogenes and biomarkers for cancer.Crit. Rev. Biochem. Mol. Biol.201348544646410.3109/10409238.2013.831024 23978072
    [Google Scholar]
  124. TapialP. LópezP. LiethaD. FAK structure and regulation by membrane interactions and force in focal adhesions.Biomolecules202010217910.3390/biom10020179 31991559
    [Google Scholar]
  125. ZáhorecR. MarekV. WaczulíkováI. VeselovskýT. PalajJ. Kečk隊. DurdíkŠ. Predictive model using hemoglobin, albumin, fibrinogen, and neutrophil-to-lymphocyte ratio to distinguish patients with colorectal cancer from those with benign adenoma.Neoplasma20216861292130010.4149/neo_2021_210331N435 34585586
    [Google Scholar]
  126. WallaceK. LiH. BrazealJ.G. LewinD.N. SunS. BaA. PaulosC.M. RachidiS. LiZ. AlekseyenkoA.V. Platelet and hemoglobin count at diagnosis are associated with survival in African American and Caucasian patients with colorectal cancer.Cancer Epidemiol.20206710174610.1016/j.canep.2020.101746 32521488
    [Google Scholar]
  127. ZhaoZ. ZhuA. BhardwajM. Schrotz-KingP. BrennerH. Fecal microRNAs, Fecal microRNA panels, or combinations of fecal microRNAs with fecal hemoglobin for early detection of colorectal cancer and its precursors: A systematic review.Cancers20211416510.3390/cancers14010065 35008229
    [Google Scholar]
  128. MoretóM. Pérez-BosqueA. Dietary plasma proteins, the intestinal immune system, and the barrier functions of the intestinal mucosa1.J. Anim. Sci.200987S14E92E10010.2527/jas.2008‑1381 18820151
    [Google Scholar]
  129. InoueI. MukoubayashiC. YoshimuraN. NiwaT. DeguchiH. WatanabeM. EnomotoS. MaekitaT. UedaK. IguchiM. YanaokaK. TamaiH. AriiK. OkaM. FujishiroM. TakeshitaT. IwaneM. MoharaO. IchinoseM. Elevated risk of colorectal adenoma with Helicobacter pylori-related chronic gastritis: A population-based case-control study.Int. J. Cancer2011129112704271110.1002/ijc.25931 21225622
    [Google Scholar]
  130. DuG. FangX. DaiW. ZhangR. LiuR. DangX. Comparative gene expression profiling of normal and human colorectal adenomatous tissues.Oncol. Lett.2014852081208510.3892/ol.2014.2485 25295094
    [Google Scholar]
  131. SaxenaM. YeretssianG. NOD-like receptors: Master regulators of inflammation and cancer.Front. Immunol.2014532710.3389/fimmu.2014.00327 25071785
    [Google Scholar]
  132. LiB. QiZ.P. HeD.L. ChenZ.H. LiuJ.Y. WongM.W. ZhangJ.W. XuE.P. ShiQ. CaiS.L. SunD. YaoL.Q. ZhouP.H. ZhongY.S. NLRP7 deubiquitination by USP10 promotes tumor progression and tumor-associated macrophage polarization in colorectal cancer.J. Exp. Clin. Cancer Res.202140112610.1186/s13046‑021‑01920‑y 33838681
    [Google Scholar]
  133. HuhnS. da Silva FilhoM.I. SanmugananthamT. PichulikT. CatalanoC. PardiniB. NaccaratiA. Polakova-VymetálkovaV. JiraskovaK. VodickovaL. VodickaP. LöfflerM.W. CourthL. WehkampJ. DinF.V.N. TimofeevaM. FarringtonS.M. JansenL. HemminkiK. Chang-ClaudeJ. BrennerH. HoffmeisterM. DunlopM.G. WeberA.N.R. FörstiA. Coding variants in NOD-like receptors: An association study on risk and survival of colorectal cancer.PLoS One2018136e019935010.1371/journal.pone.0199350 29928061
    [Google Scholar]
  134. GulifeireT. YangC. LiX. WangY. YuX. Activation of NOD-like receptor protein 3 inflammasome mediates inflammatory response and apoptosis in septic intestinal injury model.Zhonghua Wei Zhong Bing Ji Jiu Yi Xue2021337855860 34412757
    [Google Scholar]
  135. ZakiM.H. VogelP. MalireddiR.K.S. Body-MalapelM. AnandP.K. BertinJ. GreenD.R. LamkanfiM. KannegantiT.D. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis.Cancer Cell201120564966010.1016/j.ccr.2011.10.022 22094258
    [Google Scholar]
  136. OhashiK. WangZ. YangY.M. BilletS. TuW. PimientaM. CasselS.L. PandolS.J. LuS.C. SutterwalaF.S. BhowmickN. SekiE. NOD‐like receptor C4 inflammasome regulates the growth of colon cancer liver metastasis in NAFLD.Hepatology20197051582159910.1002/hep.30693 31044438
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073266300231026103844
Loading
/content/journals/cchts/10.2174/0113862073266300231026103844
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): biomarker; Colorectal cancer; feature selection; gene expression; machine learning; mucosa
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test