Skip to content
2000
Volume 28, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Taurine upregulated gene 1 (TUG1) has been identified on long non-coding RNA (lncRNA); however, its function in myocardial cells following ischemia/reperfusion (I/R) injury has not been explored. This study aimed to investigate the role of LncTUG1 in I/R injury by focusing on its relationship with autophagy induction by regulating miR-34a-5p expression.

Methods

We established a myocardial I/R model and H9C2 hypoxia-ischemic and reoxygenation (HI/R) conditions to induce I/R injury. TTC, Western blot, CCK-8 assay, quantitative reverse transcription PCR, flow cytometry, and confocal microscopy were used to assess the size of myocardial infarct, level of some apoptotic-related and autophagy-associated proteins, cell viability, the level of LncRNA TUG1, apoptosis, and autophagy, respectively.

Results

The results revealed that a TUG1 knockdown protected against I/R-induced myocardial injury by decreasing the impairment in cardiac function. LncRNA TUG1 expression was increased in a myocardial I/R model and HI/R in H9C2 cells. Moreover, inhibition of LncTUG1 enhanced H9C2 cell viability and protected the cells from HI/R-induced apoptosis. Silencing LncRNA TUG1 promoted HI/R-induced autophagy. Furthermore, TUG1 siRNA upregulated the level of miR-34a-5p compared to the HI/R group. The protective effect of LncRNA TUG1 inhibition on H9C2 cells following HI/R was eliminated by blocking autophagy with an miR-34a-5p inhibitor.

Conclusion

These findings indicated that inhibiting TUG1 may reduce the extent of myocardial I/R injury by regulating miR-34a-5p. Taken together, these results suggest that LncRNA TUG1 may represent a novel therapeutic target for myocardial I/R injury.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073267559231106074309
2024-01-30
2025-01-19
Loading full text...

Full text loading...

References

  1. WangJ. ToanS. ZhouH. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury.Angiogenesis202023329931410.1007/s10456‑020‑09720‑2 32246225
    [Google Scholar]
  2. GuoZ. ZhaoM. JiaG. MaR. LiM. LncRNA PART1 alleviated myocardial ischemia/reperfusion injury via suppressing miR-503-5p/BIRC5 mediated mitochondrial apoptosis.Int. J. Cardiol.202133817618410.1016/j.ijcard.2021.05.044 34082009
    [Google Scholar]
  3. MaoX. CaiY. ChenY. WangY. JiangX. YeL. LiS. Novel targets and therapeutic strategies to protect against hepatic ischemia reperfusion injury.Front. Med.2022875733610.3389/fmed.2021.757336 35059411
    [Google Scholar]
  4. LongB. LiN. XuX.X. LiX.X. XuX.J. GuoD. ZhangD. WuZ.H. ZhangS.Y. Long noncoding RNA FTX regulates cardiomyocyte apoptosis by targeting miR-29b-1-5p and Bcl2l2.Biochem. Biophys. Res. Commun.2018495131231810.1016/j.bbrc.2017.11.030 29117536
    [Google Scholar]
  5. ZhaoZ. HaoW. MengQ. DuX. LeiS. XiaZ. Long non-coding RNA MALAT1 functions as a mediator in cardioprotective effects of fentanyl in myocardial ischemia-reperfusion injury.Cell Biol. Int.2017411627010.1002/cbin.10701 27862640
    [Google Scholar]
  6. LiuY. ZhouD. LiG. MingX. TuY. TianJ. LuH. YuB. Long non coding RNA-UCA1 contributes to cardiomyocyte apoptosis by suppression of p27 expression.Cell. Physiol. Biochem.20153551986199810.1159/000374006 25871510
    [Google Scholar]
  7. DaM. ZhuangJ. ZhouY. QiQ. HanS. Role of long noncoding RNA taurine‐upregulated gene 1 in cancers.Mol. Med.20212715110.1186/s10020‑021‑00312‑4 34039257
    [Google Scholar]
  8. JiangN. XiaJ. JiangB. XuY. LiY. RETRACTED: TUG1 alleviates hypoxia injury by targeting miR-124 in H9c2 cells.Biomed. Pharmacother.20181031669167710.1016/j.biopha.2018.04.191 29864957
    [Google Scholar]
  9. WuX. LiuY. MoS. WeiW. YeZ. SuQ. LncRNA TUG1 competitively binds to miR‐340 to accelerate myocardial ischemia‐reperfusion injury.FASEB J.2021351e2116310.1096/fj.202000827RR 33164260
    [Google Scholar]
  10. SuQ. LiuY. LvX.W. DaiR.X. YangX.H. KongB.H. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis.Am. J. Physiol. Heart Circ. Physiol.20203182H332H34410.1152/ajpheart.00444.2019 31858814
    [Google Scholar]
  11. CaiX. WangS. HongL. YuS. LiB. ZengH. YangX. ZhangP. ShaoL. Long noncoding RNA taurine-upregulated gene 1 knockdown protects cardiomyocytes against hypoxia/reoxygenation-induced injury through regulating miR-532-5p/Sox8 axis.J. Cardiovasc. Pharmacol.202076555656310.1097/FJC.0000000000000895 32833900
    [Google Scholar]
  12. HaJ. ParkS. NCMD: Node2vec-based neural collaborative filtering for predicting mirna-disease association. IEEE/ACM Trans.Comput. Biol. Bioinform.202320215071268
    [Google Scholar]
  13. HaJ. MDMF: Predicting miRNA-disease association based on matrix factorization with disease similarity constraint.J. Pers. Med.2022126885
    [Google Scholar]
  14. DereticV. Autophagy in inflammation, infection, and immunometabolism.Immunity202154343745310.1016/j.immuni.2021.01.018 33691134
    [Google Scholar]
  15. CorsettiG. PasiniE. Romano, C How Can malnutrition affect autophagy in chronic heart failure? Focus and perspectives.Int. J. Mol. Sci.2021227333210.3390/ijms22073332
    [Google Scholar]
  16. WangD. LvL. XuY. JiangK. ChenF. QianJ. ChenM. LiuG. XiangY. Cardioprotection of Panax Notoginseng saponins against acute myocardial infarction and heart failure through inducing autophagy.Biomed. Pharmacother.202113611128710.1016/j.biopha.2021.111287 33485065
    [Google Scholar]
  17. SciarrettaS. MaejimaY. ZablockiD. SadoshimaJ. The role of autophagy in the heart.Annu. Rev. Physiol.201880112610.1146/annurev‑physiol‑021317‑121427 29068766
    [Google Scholar]
  18. KaurS. ChangotraH. The beclin 1 interactome: Modification and roles in the pathology of autophagy-related disorders.Biochimie2020175344910.1016/j.biochi.2020.04.025 32428566
    [Google Scholar]
  19. LiuK-Y. MoY. SunY-Y. Autophagy and inflammation in ischemic stroke.Neural Regen. Res.20201581388139610.4103/1673‑5374.274331 31997797
    [Google Scholar]
  20. LiuC.Y. ZhangY.H. LiR.B. ZhouL.Y. AnT. ZhangR.C. ZhaiM. HuangY. YanK.W. DongY.H. PonnusamyM. ShanC. XuS. WangQ. ZhangY.H. ZhangJ. WangK. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription.Nat. Commun.2018912910.1038/s41467‑017‑02280‑y 29295976
    [Google Scholar]
  21. HuS. CaoS. TongZ. LiuJ. FGF21 protects myocardial ischemia-reperfusion injury through reduction of miR-145-mediated autophagy.Am. J. Transl. Res.2018101136773688 30662618
    [Google Scholar]
  22. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)).Method. Methods200125440240810.1006/meth.2001.1262 11846609
    [Google Scholar]
  23. XuZ. AlloushJ. BeckE. WeislederN. A murine model of myocardial ischemia-reperfusion injury through ligation of the left anterior descending artery.J. Vis. Exp.20148651329 24747599
    [Google Scholar]
  24. DahariyaS. PaddibhatlaI. KumarS. RaghuwanshiS. PallepatiA. GuttiR.K. Long non-coding RNA: Classification, biogenesis and functions in blood cells.Mol. Immunol.2019112829210.1016/j.molimm.2019.04.011 31079005
    [Google Scholar]
  25. SimionV. HaemmigS. FeinbergM.W. LncRNAs in vascular biology and disease.Vascul. Pharmacol.201911414515610.1016/j.vph.2018.01.003 29425892
    [Google Scholar]
  26. LiuW. FengQ. LiaoW. LiE. WuL. TUG1 promotes the expression of IFITM3 in hepatocellular carcinoma by competitively binding to miR-29a.J. Cancer202112226905692010.7150/jca.57477 34659578
    [Google Scholar]
  27. LiW. GeJ. XieJ. YangJ. ChenJ. HeT. LncRNA TUG1 promotes hepatocellular carcinoma migration and invasion via targeting the miR-137/AKT2 axis.Cancer Biother. Radiopharm.2021361085086210.1089/cbr.2019.3297 32589479
    [Google Scholar]
  28. SuQ. LiuY. LvX.W. YeZ.L. SunY.H. KongB.H. QinZ.B. Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy.J. Mol. Cell. Cardiol.2019133122510.1016/j.yjmcc.2019.05.021 31145943
    [Google Scholar]
  29. ParaskevopoulouM.D. HatzigeorgiouA.G. Analyzing miRNA-LncRNA interactions.Methods Mol. Biol.2016140227128610.1007/978‑1‑4939‑3378‑5_21 26721498
    [Google Scholar]
  30. ShiS.L. ZhangZ.H. Long non-coding RNA SNHG1 contributes to cisplatin resistance in non-small cell lung cancer by regulating miR-140-5p/Wnt/β-catenin pathway.Neoplasma201966575676510.4149/neo_2018_181218N980 31288529
    [Google Scholar]
  31. PolisenoL. SalmenaL. ZhangJ. CarverB. HavemanW.J. PandolfiP.P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.Nature201046573011033103810.1038/nature09144 20577206
    [Google Scholar]
  32. SalmenaL. PolisenoL. TayY. KatsL. PandolfiP.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language?Cell2011146335335810.1016/j.cell.2011.07.014 21802130
    [Google Scholar]
  33. ToldoS. MauroA.G. CutterZ. AbbateA. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury.Am. J. Physiol. Heart Circ. Physiol.20183156H1553H156810.1152/ajpheart.00158.2018 30168729
    [Google Scholar]
  34. DongY. ChenH. GaoJ. LiuY. LiJ. WangJ. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease.J. Mol. Cell. Cardiol.2019136274110.1016/j.yjmcc.2019.09.001 31505198
    [Google Scholar]
  35. ChenZ. ChuaC.C. HoY.S. HamdyR.C. ChuaB.H.L. Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice.Am. J. Physiol. Heart Circ. Physiol.20012805H2313H232010.1152/ajpheart.2001.280.5.H2313 11299236
    [Google Scholar]
  36. DuJ. LiuY. FuJ. Autophagy and heart failure.Adv. Exp. Med. Biol.2020120722322710.1007/978‑981‑15‑4272‑5_16 32671751
    [Google Scholar]
  37. DaiS. XuQ. LiuS. YuB. LiuJ. TangJ. Role of autophagy and its signaling pathways in ischemia/reperfusion injury.Am. J. Transl. Res.201791044704480 29118909
    [Google Scholar]
  38. ChenH.Y. XiaoZ.Z. LingX. XuR.N. ZhuP. ZhengS.Y. ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy.Mol. Med.20212711410.1186/s10020‑021‑00271‑w 33568052
    [Google Scholar]
  39. LiP. DongX.R. ZhangB. ZhangX.T. LiuJ.Z. MaD.S. MaL. Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease.Chin. Med. J.2021134222647265510.1097/CM9.0000000000001772 34608069
    [Google Scholar]
  40. ShiB. MaM. ZhengY. PanY. LinX. mTOR and Beclin1: Two key autophagy‐related molecules and their roles in myocardial ischemia/reperfusion injury.J. Cell. Physiol.20192348125621256810.1002/jcp.28125 30618070
    [Google Scholar]
  41. WangK. LiuC.Y. ZhouL.Y. WangJ.X. WangM. ZhaoB. ZhaoW.K. XuS.J. FanL.H. ZhangX.J. FengC. WangC.Q. ZhaoY.F. LiP.F. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p.Nat. Commun.201561677910.1038/ncomms7779 25858075
    [Google Scholar]
  42. YuS. DongB. ZhouS. TangL. LncRNA MALAT1: A potential regulator of autophagy in myocardial ischemia-reperfusion injury.Int. J. Cardiol.20172472510.1016/j.ijcard.2017.04.011 28916065
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073267559231106074309
Loading
/content/journals/cchts/10.2174/0113862073267559231106074309
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): autophagy; ischemia/reperfusion injury; LncTUG1; miR-34a-5p; myocardial; nucleotides (nt)
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test