Skip to content
2000
Volume 28, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Persistent human papillomavirus (HPV) infection is a causative agent for the majority of cervical cancer cases. The traditional Chinese medicine formula Quyoufang (QYF), a herbal oral decoction therapy, has been widely applied in the treatment of various diseases caused by HPV infection, but the molecular mechanism of QYF in the treatment of HPV infection remains unclear. This study aimed to investigate the effect of drug-containing serum of QYF on the apoptosis of HPV16-positive cervical immortalized epithelial cell line H8 .

Methods

Different concentrations of medicated serum were obtained by feeding QYF into the stomachs of rats. The effects of medicated serum on H8 cell proliferation and apoptosis were detected using the cell counting kit-8 assay (CCK-8) method, flow cytometry, and Hoechst 33342/PI apoptosis assays. The different expressions of E6, E7, p53, and pRb among H8 cells were detected by RT-PCR and Western Blot.

Results

The results firstly indicated that the drug-containing serum of QYF induced apoptosis and suppressed the proliferation of H8 cells in a concentration-dependent manner. RT-PCR and Western Blot unveiled that in contrast to the control group, the QYF groups could markedly elevate the mRNA expression of P53 and pRb as well as promote the expression of p53 and pRb protein levels. The QYF groups suppressed the expression of E6 mRNA and inhibited the expression of E6 protein.

Conclusion

The drug-containing serum of QYF could effectively inhibit the proliferation of H8 cells and induce their apoptosis, possibly through the E6/p53-related pathway.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073263350231107105959
2023-11-23
2025-01-19
Loading full text...

Full text loading...

References

  1. de MartelC. GeorgesD. BrayF. FerlayJ. CliffordG.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis.Lancet Glob. Health202082e180e19010.1016/S2214‑109X(19)30488‑7 31862245
    [Google Scholar]
  2. BrissonM. KimJ.J. CanfellK. DroletM. GingrasG. BurgerE.A. MartinD. SimmsK.T. BénardÉ. BoilyM.C. SyS. ReganC. KeaneA. CaruanaM. NguyenD.T.N. SmithM.A. LapriseJ.F. JitM. AlaryM. BrayF. FidarovaE. ElsheikhF. BloemP.J.N. BroutetN. HutubessyR. Impact of HPV vaccination and cervical screening on cervical cancer elimination: A comparative modelling analysis in 78 low-income and lower-middle-income countries.Lancet20203951022457559010.1016/S0140‑6736(20)30068‑4 32007141
    [Google Scholar]
  3. SenkomagoV. HenleyS.J. ThomasC.C. MixJ.M. MarkowitzL.E. SaraiyaM. Human Papillomavirus-attributable cancers-United States.MMWR Morb. Mortal. Wkly. Rep.2019683372472810.15585/mmwr.mm6833a3 31437140
    [Google Scholar]
  4. DoorbarJ. QuintW. BanksL. BravoI.G. StolerM. BrokerT.R. StanleyM.A. The biology and life-cycle of human papillomaviruses.Vaccine201230Suppl. 5F55F7010.1016/j.vaccine.2012.06.083 23199966
    [Google Scholar]
  5. DoorbarJ. EgawaN. GriffinH. KranjecC. MurakamiI. Human papillomavirus molecular biology and disease association.Rev. Med. Virol.201525S122310.1002/rmv.1822 25752814
    [Google Scholar]
  6. GutnikH. KastelicP. Oštrbenk Valenčak, A.; Poljak, M.; Strojan Fležar, M. Histomorphologic assessment and distribution of high-risk human papillomavirus (HPV) types in cervical high-grade squamous intraepithelial lesions with unusual histomorphologic features.Virchows Arch.2020476225126010.1007/s00428‑019‑02694‑7 31754816
    [Google Scholar]
  7. FrancisS.A. NelsonJ. LiverpoolJ. SoogunS. MofammereN. ThorpeR.J. Jr Examining attitudes and knowledge about HPV and cervical cancer risk among female clinic attendees in Johannesburg, South Africa.Vaccine201028508026803210.1016/j.vaccine.2010.08.090 20887829
    [Google Scholar]
  8. SerranoB. BrotonsM. BoschF.X. BruniL. Epidemiology and burden of HPV-related disease.Best Pract. Res. Clin. Obstet. Gynaecol.201847142610.1016/j.bpobgyn.2017.08.006 29037457
    [Google Scholar]
  9. PappaK. KontostathiG. LygirouV. ZoidakisJ. AnagnouN. Novel structural approaches concerning HPV proteins: Insight into targeted therapies for cervical cancer (Review).Oncol. Rep.20183941547155410.3892/or.2018.6257 29436691
    [Google Scholar]
  10. TaghizadehE. JahangiriS. RostamiD. TaheriF. RenaniP.G. TaghizadehH. Gheibi HayatS.M. Roles of E6 and E7 human papillomavirus proteins in molecular pathogenesis of cervical cancer.Curr. Protein Pept. Sci.201920992693410.2174/1389203720666190618101441 31244421
    [Google Scholar]
  11. Olmedo-NievaL. Muñoz-BelloJ. Contreras-ParedesA. LizanoM. The role of E6 spliced isoforms (E6*) in human papillomavirus-induced carcinogenesis.Viruses20181014510.3390/v10010045 29346309
    [Google Scholar]
  12. ZhiW. WeiY. LazareC. MengY. WuP. GaoP. LinS. PengT. ChuT. LiuB. DingW. CaoC. WuP. HPV‐ CCDC106 integration promotes cervical cancer progression by facilitating the high expression of CCDC106 after HPV E6 splicing.J. Med. Virol.2023951e2800910.1002/jmv.28009 35854676
    [Google Scholar]
  13. HeC.Y. DaiD. NieB. SongP. Mr. Zhu Renkang’s selected experiences in the treatment of skin diseases with the theory of blood therapy in the Wei Qi Camp.CJTCMP2021361165046507
    [Google Scholar]
  14. YangW. Mr. Zhu Renkang’s selected experiences in the treatment of skin diseases with the theory of blood therapy in the Wei Qi Camp.CJTCMP2021361165046507
    [Google Scholar]
  15. LiX.K. ZhangF. SongY.Q. Exploring the experience and prescription of renowned traditional chinese medicine doctor Zhu Renkang in treating skin diseases.CJGMCM2020352235293531
    [Google Scholar]
  16. LiuJ.B. ChenH.W. Zhu Renkang’s empirical studies on dermatoses.Shand. J. Trad. Chin. Med.1994138366
    [Google Scholar]
  17. Guang 'anmen Hospital, Affiliated with Chinese Medical Science.Zhu Renkang’s empirical clinical studies.BeijingPeople's Medical Publishing House2019
    [Google Scholar]
  18. WeimarC.H.E. Post UiterweerE.D. TeklenburgG. HeijnenC.J. MacklonN.S. In-vitro model systems for the study of human embryo–endometrium interactions.Reprod. Biomed. Online201327546147610.1016/j.rbmo.2013.08.002 24055530
    [Google Scholar]
  19. XuH. LiuC. LiM. WangC. LiuG. WangH. MaJ. LiL. ChenM. ChengM. YaoX. LinY. ZhaoS. WangY. WangM. In vitro antibacterial experiment of fuzheng jiedu huayu decoction against multidrug-resistant Pseudomonas aeruginosa.Front. Pharmacol.20201010168210.3389/fphar.2019.01682 32116680
    [Google Scholar]
  20. LiY. LiY. ZouZ. LiY. XieH. YangH. Yin Yang Gong Ji pill is an ancient formula with antitumor activity against hepatoma cells.J. Ethnopharmacol.202024824811226710.1016/j.jep.2019.112267 31586691
    [Google Scholar]
  21. QinM.Y. HuangS.Q. ZouX.Q. ZhongX.B. YangY.F. ZhangY.T. MiZ.C. ZhangY.S. HuangZ.G. Drug-containing serum of rhubarb-astragalus capsule inhibits the epithelial-mesenchymal transformation of HK-2 by downregulating TGF-β1/p38MAPK/Smad2/3 pathway.J. Ethnopharmacol.20211128011441410.1016/j.jep.2021.114414
    [Google Scholar]
  22. ZhouP. YuW. ZhangC. ChenK. TangW. LiX. LiuZ. XiaQ. Tiao-bu-fei-shen formula promotes downregulation of the caveolin 1-p38 mapk signaling pathway in COPD - Associated tracheobronchomalacia cell model.J. Ethnopharmacol.202229329311525610.1016/j.jep.2022.115256 35367574
    [Google Scholar]
  23. JunliZ. ShuhanW. YajuanZ. XiaolingD. JiahuanL. KeshuX. The role and mechanism of CREBH regulating SIRT3 in metabolic associated fatty liver disease.Life Sci.202230630612083810.1016/j.lfs.2022.120838
    [Google Scholar]
  24. YanL. ZhangS. ZengC. XueY.H. ZhouZ.L. LuF. ChenH. QuJ. DaiL.M. Cytotoxicity of single-walled carbon nanotubes with human ocular cells.Adv. Mater.201172873236
    [Google Scholar]
  25. ZhangY.S. HeL. LiuB. LiN.S. LuoX.J. HuC.P. MaQ.L. ZhangG.G. LiY.J. PengJ. A novel pathway of NADPH oxidase/vascular peroxidase 1 in mediating oxidative injury following ischemia–reperfusion.Basic Res. Cardiol.2012107326610.1007/s00395‑012‑0266‑4 22476986
    [Google Scholar]
  26. WuH. JiangX. LiY. ZhouY. ZhangT. ZhiP. GaoJ. Engineering stem cell derived biomimetic vesicles for versatility and effective targeted delivery.Adv. Funct. Mater.20203049200616910.1002/adfm.202006169
    [Google Scholar]
  27. FerlayJ. BrayF. PisaniP. ParkinD.M. Globocan 2000: Cancer incidence, mortality and prevalence worldwide, version 1.0.IARC CancerBase no.5.Lyons, FranceIARC Press2001
    [Google Scholar]
  28. BoschF.X. LorinczA. MuñozN. MeijerC.J.L.M. ShahK.V. The causal relation between human papillomavirus and cervical cancer.J. Clin. Pathol.200255424426510.1136/jcp.55.4.244 11919208
    [Google Scholar]
  29. zur HausenH. Papillomaviruses and cancer: From basic studies to clinical application.Nat. Rev. Cancer20022534235010.1038/nrc798 12044010
    [Google Scholar]
  30. WuS.Q. ChengP. HuL.J. SehnY.L. ZhangZ.Y. HuX.Y. Comparative analysis of HPV E6/E7 mRNA and DNA detection methods in cervical precancerous lesions. J. Clin. and Experimental Pathol.20229857+91
    [Google Scholar]
  31. RodenR. WuT.C. How will HPV vaccines affect cervical cancer?Nat. Rev. Cancer200661075376310.1038/nrc1973 16990853
    [Google Scholar]
  32. PangL.J. LiuJ.P. LvX.D. Comparative effectiveness of 3 Traditional Chinese Medicine treatment methods for idiopathic pulmonary fibrosis.Medicine20199830e1632510.1097/MD.0000000000016325 31348231
    [Google Scholar]
  33. DingW. JiT. XiongW. LiT. PuD. LiuR. Realgar, a traditional Chinese medicine, induces apoptosis of HPV16-positive cervical cells through a HPV16 E7-related pathway.Drug Des. Devel. Ther.2018123459346910.2147/DDDT.S172525 30410307
    [Google Scholar]
  34. SongY.C. HuangH.C. ChangC.Y.Y. LeeH.J. LiuC.T. LoH.Y. HoT.Y. LinW.C. YenH.R. A potential herbal adjuvant combined with a peptide-based vaccine acts against HPV-related tumors through enhancing effector and memory T-cell immune responses.Front. Immunol.2020116210.3389/fimmu.2020.00062 32153559
    [Google Scholar]
  35. ZhouY.J. GuoY.J. YangX.L. OuZ.L. Anti-cervical cancer role of matrine, oxymatrine and sophora flavescens alkaloid gels and its mechanism.J. Cancer2018981357136410.7150/jca.22427 29721044
    [Google Scholar]
  36. RenH. WangY. GuoY. WangM. MaX. LiW. GuoY. LiY. Matrine impedes colorectal cancer proliferation and migration by downregulating endoplasmic reticulum lipid raft associated protein 1 expression.Bioengineered20221349780979110.1080/21655979.2022.2060777 35412433
    [Google Scholar]
  37. WuX. ZhouJ. CaiD. LiM. Matrine inhibits the metastatic properties of human cervical cancer cells via downregulating the p38 signaling pathway.Oncol. Rep.20173821312132010.3892/or.2017.5787 28677790
    [Google Scholar]
  38. GuoN. MiaoR. GaoX. HuangD. HuZ. JiN. NanY. JiangF. GouX. Shikonin inhibits proliferation and induces apoptosis in glioma cells via downregulation of CD147.Mol. Med. Rep.20191954335434310.3892/mmr.2019.10101 30942433
    [Google Scholar]
  39. ZhangS. GaoQ. LiW. Shikonin inhibits cancer cell cycling by targeting Cdc25s.BMC Cancer20191912010.1186/s12885‑018‑5220‑x
    [Google Scholar]
  40. XuJ. KoizumiK. LiuM. MizunoY. SuzakiM. IitsukaH. InujimaA. FujimotoM. ShibaharaN. ShimadaY. Shikonin induces an anti tumor effect on murine mammary cancer via p38 dependent apoptosis.Oncol. Rep.20194132020202610.3892/or.2019.6966 30664166
    [Google Scholar]
  41. JuX. ZhangH. WangJ. SunZ. GuoL. WangQ. Shikonin triggers GSDME-mediated pyroptosis in tumours by regulating autophagy via the ROS–MAPK14/p38α axis.Phytomedicine202310910915459610.1016/j.phymed.2022.154596 36610142
    [Google Scholar]
  42. TangQ. LiuL. ZhangH. XiaoJ. HannS.S. Regulations of miR-183-5p and snail-mediated shikonin-reduced epithelial-mesenchymal transition in cervical cancer cells.Drug Des. Devel. Ther.2020141457758910.2147/DDDT.S236216 32103900
    [Google Scholar]
  43. HuangS. QiY. ChenS. HeB. ChenX. XuJ. Effect of heat-clearing and dampness-eliminating Chinese medicine for high-risk cervical cancer papillomavirus infection: A systematic review and meta-analysis of randomized controlled trials.Front. Med.20231010102203010.3389/fmed.2023.1022030 37692777
    [Google Scholar]
  44. YouW.C. HsiehC.C. HuangJ.T. Effect of extracts from indigowood root (Isatis indigotica Fort.) on immune responses in radiation-induced mucositis.J. Altern. Complement. Med.200915777177810.1089/acm.2008.0322 19534614
    [Google Scholar]
  45. DuK. YangC. ZhouZ. MaY. TianY. ZhangR. ZhangH. JiangX. ZhuH. LiuH. ChenP. LiuY. A novel isaindigotone derivative displays better anti-proliferation activities and induces apoptosis in gastric cancer cells.Int. J. Mol. Sci.20222314802810.3390/ijms23148028 35887375
    [Google Scholar]
  46. WangJ.B. GaoY.X. YeY.H. LinT.X. LiP. LinJ.X. ChenQ.Y. CaoL.L. LinM. TuR.H. LinJ.L. HuangZ.N. ZhengH.L. XieJ.W. ZhengC.H. HuangC.M. CDK5RAP3 acts as a tumour suppressor in gastric cancer through the infiltration and polarization of tumour-associated macrophages.Cancer Gene Ther.2023301223710.1038/s41417‑022‑00515‑9 35999359
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073263350231107105959
Loading
/content/journals/cchts/10.2174/0113862073263350231107105959
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antitumor; apoptosis; Chinese herbal medicine formula; E6; human papillomavirus; p53
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test