Skip to content
2000
Volume 28, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Colorectal cancer (CRC) ranks as the third most common cancer and is second in terms of mortality worldwide. Circular RNAs are involved in the occurrence and development of malignant tumors by functioning either as oncogenes or tumor suppressors.

Methods

This study investigated the functions of hsa_circ_0001278 in CRC. We analyzed the expression of hsa_circ_0001278 in CRC tissues and adjacent normal tissues. In order to understand the roles of hsa_circ_0001278 in CRC in terms of cellular biological behavior, experiments were conducted. A mechanistic study was designed to investigate the regulatory effect of hsa_circ_0001278 on CRC.

Results

Hsa_circ_0001278 was found to be significantly upregulated in CRC specimens. The functional analysis indicated that hsa_circ_0001278 promotes aggressive phenotypes of CRC cells. Further mechanistic studies revealed that hsa_circ_0001278 sponges miR-338-5p to regulate angiomotin-like 1 (AMOTL1), thereby facilitating CRC progression.

Conclusion

Our results demonstrate that hsa_circ_0001278 promotes malignant behaviors in CRC cells by sponging miR-338-5p to regulate AMOTL1 expression. This suggests that hsa_circ_0001278 may serve as a novel target for CRC treatment.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073265207231108052536
2023-11-24
2025-04-13
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. DienstmannR. VermeulenL. GuinneyJ. KopetzS. TejparS. TaberneroJ. Erratum: Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer.Nat. Rev. Cancer201717426810.1038/nrc.2017.24 28332502
    [Google Scholar]
  3. LuoZ. ChenX. ZhangY. HuangZ. ZhaoH. ZhaoJ. LiZ. ZhouJ. LiuJ. CaiJ. BiX. Development of a metastasis-related immune prognostic model of metastatic colorectal cancer and its usefulness to immunotherapy.Front. Cell Dev. Biol.2021857712510.3389/fcell.2020.577125 33585439
    [Google Scholar]
  4. AgostiniM. ManciniM. CandiE. Long non-coding RNAs affecting cell metabolism in cancer.Biol. Direct20221712610.1186/s13062‑022‑00341‑x 36182907
    [Google Scholar]
  5. AdamsB.D. AnastasiadouE. EstellerM. HeL. SlackF.J. The inescapable influence of noncoding RNAs in cancer.Cancer Res.201575245206521010.1158/0008‑5472.CAN‑15‑1989 26567137
    [Google Scholar]
  6. WiluszJ.E. SharpP.A. Molecular biology. A circuitous route to noncoding RNA.Science2013340613144044110.1126/science.1238522 23620042
    [Google Scholar]
  7. JeckW.R. SorrentinoJ.A. WangK. SlevinM.K. BurdC.E. LiuJ. MarzluffW.F. SharplessN.E. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA201319214115710.1261/rna.035667.112 23249747
    [Google Scholar]
  8. SalzmanJ. ChenR.E. OlsenM.N. WangP.L. BrownP.O. Cell-type specific features of circular RNA expression.PLoS Genet.201399e100377710.1371/journal.pgen.1003777 24039610
    [Google Scholar]
  9. Cortés-LópezM. MiuraP. Emerging functions of circular RNAs.Yale J. Biol. Med.2016894527537 28018143
    [Google Scholar]
  10. HansenT.B. JensenT.I. ClausenB.H. BramsenJ.B. FinsenB. DamgaardC.K. KjemsJ. Natural RNA circles function as efficient microRNA sponges.Nature2013495744138438810.1038/nature11993 23446346
    [Google Scholar]
  11. RuanH. WangP.C. HanL. Characterization of circular RNAs with advanced sequencing technologies in human complex diseases.Wiley Interdiscip. Rev. RNA202214175910.1002/wrna.1759 36164985
    [Google Scholar]
  12. SawickiT. RuszkowskaM. DanielewiczA. NiedźwiedzkaE. ArłukowiczT. PrzybyłowiczK.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis.Cancers2021139202510.3390/cancers13092025 33922197
    [Google Scholar]
  13. ZhangY. TanX. LuY. Exosomal transfer of circ_0006174 contributes to the chemoresistance of doxorubicin in colorectal cancer by depending on the miR-1205/CCND2 axis.J. Physiol. Biochem.2022781395010.1007/s13105‑021‑00831‑y 34792792
    [Google Scholar]
  14. GuH. XuZ. ZhangJ. WeiY. ChengL. WangJ. circ_0038718 promotes colon cancer cell malignant progression via the miR-195-5p/Axin2 signaling axis and also effect Wnt/β-catenin signal pathway.BMC Genomics202122176810.1186/s12864‑021‑07880‑z 34706645
    [Google Scholar]
  15. WuL. ZhangM. QiL. ZuX. LiY. LiuL. ChenM. LiY. HeW. HuX. MoM. OuZ. WangL. ERα-mediated alterations in circ_0023642 and miR-490-5p signaling suppress bladder cancer invasion.Cell Death Dis.201910963510.1038/s41419‑019‑1827‑3 31455760
    [Google Scholar]
  16. WangY. LiuJ. MaJ. SunT. ZhouQ. WangW. WangG. WuP. WangH. JiangL. YuanW. SunZ. MingL. Exosomal circRNAs: Biogenesis, effect and application in human diseases.Mol. Cancer201918111610.1186/s12943‑019‑1041‑z 31277663
    [Google Scholar]
  17. XingZ. WangR. WangX. LiuJ. ZhangM. FengK. WangX. CircRNA circ-PDCD11 promotes triple-negative breast cancer progression via enhancing aerobic glycolysis.Cell Death Discov.20217121810.1038/s41420‑021‑00604‑y 34420029
    [Google Scholar]
  18. YangF. XuanG. ChenY. CaoL. ZhaoM. WangC. ChenE. MicroRNAs are key molecules involved in the gene regulation network of colorectal cancer.Front. Cell Dev. Biol.20221082812810.3389/fcell.2022.828128 35465317
    [Google Scholar]
  19. WeiX. ZhuJ. ZhangY. ZhaoQ. WangH. GuK. miR-338-5p-ZEB2 axis in diagnostic, therapeutic predictive and prognostic value of gastric cancer.J. Cancer202112226756677210.7150/jca.58249 34659565
    [Google Scholar]
  20. HanL. CuiD. LiB. XuW.W. LamA.K.Y. ChanK.T. ZhuY. LeeN.P.Y. LawS.Y.K. GuanX.Y. QinY.R. ChanK.W. MaS. TsaoS.W. CheungA.L.M. MicroRNA‐338‐5p reverses chemoresistance and inhibits invasion of esophageal squamous cell carcinoma cells by targeting Id‐1.Cancer Sci.2019110123677368810.1111/cas.14220 31646712
    [Google Scholar]
  21. WuH. LiF. ZhuR. miR-338-5p inhibits cell growth and migration via inhibition of the METTL3/m6A/c-Myc pathway in lung cancer.Acta Biochim. Biophys. Sin.202053330431610.1093/abbs/gmaa170 33355622
    [Google Scholar]
  22. BilegsaikhanE. LiuH.N. ShenX.Z. LiuT.T. Circulating miR‐338‐5p is a potential diagnostic biomarker in colorectal cancer.J. Dig. Dis.201819740441010.1111/1751‑2980.12643 29952077
    [Google Scholar]
  23. ChuC.A. LeeC.T. LeeJ.C. WangY.W. HuangC.T. LanS.H. LinP.C. LinB.W. TianY.F. LiuH.S. ChowN.H. MiR-338-5p promotes metastasis of colorectal cancer by inhibition of phosphatidylinositol 3-kinase, catalytic subunit type 3-mediated autophagy pathway.EBioMedicine20194327028110.1016/j.ebiom.2019.04.010 30982765
    [Google Scholar]
  24. XuK. ZhanY. YuanZ. QiuY. WangH. FanG. WangJ. LiW. CaoY. ShenX. ZhangJ. LiangX. YinP. Hypoxia induces drug resistance in colorectal cancer through the HIF-1α/miR-338-5p/IL-6 feedback loop.Mol. Ther.201927101810182410.1016/j.ymthe.2019.05.017 31208913
    [Google Scholar]
  25. SadlakJ. JoshiI. PrószyńskiT.J. KischelA. CircAMOTL1 RNA and AMOTL1 protein: Complex functions of AMOTL1 Gene Products.Int. J. Mol. Sci.2023243210310.3390/ijms24032103 36768425
    [Google Scholar]
  26. AmirifarP. KissilJ. The role of Motin family proteins in tumorigenesis-an update.Oncogene202342161265127110.1038/s41388‑023‑02677‑8 36973516
    [Google Scholar]
  27. OuR. LvJ. ZhangQ. LinF. ZhuL. HuangF. LiX. LiT. ZhaoL. RenY. XuY. circAMOTL1 motivates amotl1 expression to facilitate cervical cancer growth.Mol. Ther. Nucleic Acids202019506010.1016/j.omtn.2019.09.022 31812104
    [Google Scholar]
  28. ZhengY. ZhangY. BarutelloG. ChiuK. ArigoniM. GiampietroC. CavalloF. HolmgrenL. Angiomotin like-1 is a novel component of the N-cadherin complex affecting endothelial/pericyte interaction in normal and tumor angiogenesis.Sci. Rep.2016613062210.1038/srep30622 27464479
    [Google Scholar]
  29. ZhouY. ZhangJ. LiH. HuangT. WongC.C. WuF. WuM. WengN. LiuL. ChengA.S.L. YuJ. WongN. LoK.W. TangP.M.K. KangW. ToK.F. AMOTL1 enhances YAP1 stability and promotes YAP1-driven gastric oncogenesis.Oncogene202039224375438910.1038/s41388‑020‑1293‑5 32313226
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073265207231108052536
Loading
/content/journals/cchts/10.2174/0113862073265207231108052536
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test