Skip to content
2000
Volume 27, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Breast carcinoma has become the leading fatal disease among women. The location of in the chromosome is close to the breast cancer susceptibility gene 1 (BRCA1). Accumulated research reported that could interact with a variety of transcription factors and cell cycle-regulating proteins.

Objective

This present study aims to comprehensively explore and reveal the biological functions of prohibitin on breast cancer The Cancer Genome Atlas (TCGA) and validation experiment .

Methods

Exploring the expression level of prohibitin across 27 tumors based on the TGGA database by bioinformatic methods and its relationship with tumor immune infiltration. Furthermore, we thus analyzed the biological roles of prohibitin on human breast cancer cell line MCF-7 with pEGFP-prohibitin overexpression plasmid by western blotting and transwell-assay.

Results

Firstly, we found prohibitin is overexpressed in most tumors based on The Cancer Genome Atlas database, and the negative relationships between and tumors infiltrating lymphocytes including B lymphocyte, CD4 T lymphocyte, CD8 T lymphocyte, Neutrophil, Macrophage and Dendritic, and its significant correlation with the prognosis of human cancer. expression not only inhibited cell viability and invasive abilities but also increased the apoptosis percentage of cells with a decreased percentage of the S phase and an increased G2 phase. The reduction of Bcl-2 was observed when prohibitin was upregulated, although the expression of E2F-1 did not change.

Conclusion

Although prohibitin is over-expressed in various cancer types, it functions as an important tumor suppressor that may suppress breast cancer cell proliferation and the invasive ability of MCF-7 by influencing its DNA synthesis and promoting cell apoptosis. All these may be likely associated with P53, erbB-2, and Bcl-2.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073266248231024113533
2023-11-07
2025-01-13
Loading full text...

Full text loading...

/deliver/fulltext/cchts/27/18/CCHTS-27-18-12.html?itemId=/content/journals/cchts/10.2174/0113862073266248231024113533&mimeType=html&fmt=ahah

References

  1. HarbeckN. GnantM. Breast cancer.Lancet2017389100741134115010.1016/S0140‑6736(16)31891‑8 27865536
    [Google Scholar]
  2. DeSantisC. SiegelR. BandiP. JemalA. Breast cancer statistics, 2011.CA Cancer J. Clin.201161640841810.3322/caac.20134 21969133
    [Google Scholar]
  3. Fahad UllahM. Breast cancer: Current perspectives on the disease status.Adv. Exp. Med. Biol.20191152516410.1007/978‑3‑030‑20301‑6_4 31456179
    [Google Scholar]
  4. LibsonS. LippmanM. A review of clinical aspects of breast cancer.Int. Rev. Psychiatry201426141510.3109/09540261.2013.852971 24716497
    [Google Scholar]
  5. WangW. XuL. YangY. DongL. ZhaoB. LuJ. ZhangT. ZhaoY. A novel prognostic marker and immunogenic membrane antigen: prohibitin (PHB) in pancreatic cancer.Clin. Transl. Gastroenterol.201899e17810.1038/s41424‑018‑0044‑1 30185797
    [Google Scholar]
  6. WörmannB. Breast cancer: Basics, screening, diagnostics and treatment.Med. Monatsschr. Pharm.20174025564 29952495
    [Google Scholar]
  7. KawiakA. Molecular research and treatment of breast cancer.Int. J. Mol. Sci.20222317961710.3390/ijms23179617 36077013
    [Google Scholar]
  8. BarzamanK. KaramiJ. ZareiZ. HosseinzadehA. KazemiM.H. Moradi-KalbolandiS. SafariE. FarahmandL. Breast cancer: Biology, biomarkers, and treatments.Int. Immunopharmacol.20208410653510.1016/j.intimp.2020.106535 32361569
    [Google Scholar]
  9. MaughanK.L. LutterbieM.A. HamP.S. Treatment of breast cancer.Am. Fam. Physician2010811113391346 20521754
    [Google Scholar]
  10. KhokharA. Breast cancer in India: where do we stand and where do we go?Asian Pac. J. Cancer Prev.201213104861486610.7314/APJCP.2012.13.10.4861 23244071
    [Google Scholar]
  11. Genetic tests to identify risk for breast cancer. In: Lynch, J.A.; Venne, V.; Berse, B., Eds.; Seminars in oncology nursing.Elsevier2015
    [Google Scholar]
  12. FranckenA.B. SchoutenP.C. BleikerE.M.A. LinnS.C. RutgersE.J.T. Breast cancer in women at high risk: The role of rapid genetic testing for BRCA1 and -2 mutations and the consequences for treatment strategies.Breast201322556156810.1016/j.breast.2013.07.045 23972475
    [Google Scholar]
  13. Merino BonillaJ.A. Torres TabaneraM. Ros MendozaL.H. Breast cancer in the 21st century: from early detection to new therapies.Radiologia (Madr.)201759536837910.1016/j.rx.2017.06.003 28712528
    [Google Scholar]
  14. CriscitielloC. CortiC. Breast cancer genetics: Diagnostics and treatment.Genes (Basel)2022139159310.3390/genes13091593 36140761
    [Google Scholar]
  15. BradenA. StankowskiR. EngelJ. OnitiloA. Breast cancer biomarkers: risk assessment, diagnosis, prognosis, prediction of treatment efficacy and toxicity, and recurrence.Curr. Pharm. Des.201420304879489810.2174/1381612819666131125145517 24283956
    [Google Scholar]
  16. MajeedW. AslamB. JavedI. KhaliqT. MuhammadF. AliA. RazaA. Breast cancer: Major risk factors and recent developments in treatment.Asian Pac. J. Cancer Prev.20141583353335810.7314/APJCP.2014.15.8.3353 24870721
    [Google Scholar]
  17. BécourtS. EspiéM. Hormonal treatment of breast cancer. Reference Module in Biomedical Sciences201810.1016/B978‑0‑12‑801238‑3.64351‑9
    [Google Scholar]
  18. NewmanL.A. Breast cancer in African-American women.Oncologist200510111410.1634/theoncologist.10‑1‑1 15632248
    [Google Scholar]
  19. AdradaB.E. CandelariaR. RauchG.M. MRI for the staging and evaluation of response to therapy in breast cancer.Top. Magn. Reson. Imaging201726521121810.1097/RMR.0000000000000147 28961570
    [Google Scholar]
  20. RooneyM.M. MillerK.N. PlichtaJ.K. Genetics of breast cancer.Surg. Clin. North Am.20231031354710.1016/j.suc.2022.08.016 36410352
    [Google Scholar]
  21. NoorF. NoorA. IshaqA.R. FarzeenI. SaleemM.H. GhaffarK. AslamM.F. AslamS. ChenJ.T. Recent Advances in diagnostic and therapeutic approaches for breast cancer: A comprehensive review.Curr. Pharm. Des.202127202344236510.2174/18734286MTE06NzEAx 33655849
    [Google Scholar]
  22. SachdevJ.C. SandovalA.C. JahanzebM. Update on precision medicine in breast cancer.Cancer Treat. Res.2019178458010.1007/978‑3‑030‑16391‑4_2 31209841
    [Google Scholar]
  23. RajalingamK. WunderC. BrinkmannV. ChurinY. HekmanM. SieversC. RappU.R. RudelT. Prohibitin is required for Ras-induced Raf–MEK–ERK activation and epithelial cell migration.Nat. Cell Biol.20057883784310.1038/ncb1283 16041367
    [Google Scholar]
  24. FanL. Strasser-WeipplK. LiJ.J. St LouisJ. FinkelsteinD.M. YuK.D. ChenW.Q. ShaoZ.M. GossP.E. Breast cancer in China.Lancet Oncol.2014157e279e28910.1016/S1470‑2045(13)70567‑9 24872111
    [Google Scholar]
  25. FerzocoR.M. RuddyK.J. Unique aspects of caring for young breast cancer patients.Curr. Oncol. Rep.2015172110.1007/s11912‑014‑0425‑x 25645111
    [Google Scholar]
  26. MenenR.S. HuntK.K. Considerations for the treatment of young patients with breast cancer.Breast J.201622666767210.1111/tbj.12644 27542172
    [Google Scholar]
  27. FreedmanR.A. PartridgeA.H. Management of breast cancer in very young women.Breast201322Suppl. 2S176S17910.1016/j.breast.2013.07.034 24074783
    [Google Scholar]
  28. AnastasiadiZ. LianosG.D. IgnatiadouE. HarissisH.V. MitsisM. Breast cancer in young women: An overview.Updates Surg.201769331331710.1007/s13304‑017‑0424‑1 28260181
    [Google Scholar]
  29. LiY. DongW. ZhangP. ZhangT. MaL. QuM. MaX. ZhouX. HeQ. Comprehensive analysis of regulatory factors and immune-associated patterns to decipher common and BRCA1/2 mutation-type-specific critical regulation in breast cancer.Front. Cell Dev. Biol.2021975089710.3389/fcell.2021.750897 34733851
    [Google Scholar]
  30. PengY.T. ChenP. OuyangR.Y. SongL. Multifaceted role of prohibitin in cell survival and apoptosis.Apoptosis20152091135114910.1007/s10495‑015‑1143‑z 26091791
    [Google Scholar]
  31. Artal-SanzM. TavernarakisN. Prohibitin and mitochondrial biology.Trends Endocrinol. Metab.200920839440110.1016/j.tem.2009.04.004 19733482
    [Google Scholar]
  32. MerkwirthC. DargazanliS. TatsutaT. GeimerS. LöwerB. WunderlichF.T. von Kleist-RetzowJ.C. WaismanA. WestermannB. LangerT. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria.Genes Dev.200822447648810.1101/gad.460708 18281461
    [Google Scholar]
  33. SanzM.A. TsangW.Y. WillemsE.M. GrivellL.A. LemireB.D. van der SpekH. NijtmansL.G.J. The mitochondrial prohibitin complex is essential for embryonic viability and germline function in Caenorhabditis elegans.J. Biol. Chem.200327834320913209910.1074/jbc.M304877200 12794069
    [Google Scholar]
  34. WebsterL.R. ProvanP.J. GrahamD.J. BythK. WalkerR.L. DavisS. SalisburyE.L. MoreyA.L. WardR.L. HawkinsN.J. ClarkeC.L. MeltzerP.S. BalleineR.L. Prohibitin expression is associated with high grade breast cancer but is not a driver of amplification at 17q21.33.Pathology201345762963610.1097/PAT.0000000000000004 24247619
    [Google Scholar]
  35. FanW. YangH. LiuT. WangJ. LiT.W.H. MavilaN. TangY. YangJ. PengH. TuJ. AnnamalaiA. NoureddinM. KrishnanA. GoresG.J. Martínez-ChantarM.L. MatoJ.M. LuS.C. Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells.Hepatology20176541249126610.1002/hep.28964 27981602
    [Google Scholar]
  36. KoushyarS. JiangW.G. DartD.A. Unveiling the potential of prohibitin in cancer.Cancer Lett.2015369231632210.1016/j.canlet.2015.09.012 26450374
    [Google Scholar]
  37. FusaroG. DasguptaP. RastogiS. JoshiB. ChellappanS. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling.J. Biol. Chem.200327848478534786110.1074/jbc.M305171200 14500729
    [Google Scholar]
  38. RastogiS. JoshiB. FusaroG. ChellappanS. Camptothecin induces nuclear export of prohibitin preferentially in transformed cells through a CRM-1-dependent mechanism.J. Biol. Chem.200628152951295910.1074/jbc.M508669200 16319068
    [Google Scholar]
  39. Zi XuY.X. AndeS.R. MishraS. Prohibitin: A new player in immunometabolism and in linking obesity and inflammation with cancer.Cancer Lett.201841520821610.1016/j.canlet.2017.12.001 29222040
    [Google Scholar]
  40. YoshimaruT. OnoM. BandoY. ChenY.A. MizuguchiK. ShimaH. KomatsuM. ImotoI. IzumiK. HondaJ. MiyoshiY. SasaM. KatagiriT. A-kinase anchoring protein BIG3 coordinates oestrogen signalling in breast cancer cells.Nat. Commun.2017811542710.1038/ncomms15427 28555617
    [Google Scholar]
  41. SatoT. SaitoH. SwensenJ. OlifantA. WoodC. DannerD. SakamotoT. TakitaK. KasumiF. MikiY. The human prohibitin gene located on chromosome 17q21 is mutated in sporadic breast cancer.Cancer Res.199252616431646 1540973
    [Google Scholar]
  42. MishraS. MurphyL.C. NyombaB.L.G. MurphyL.J. Prohibitin: A potential target for new therapeutics.Trends Mol. Med.200511419219710.1016/j.molmed.2005.02.004 15823758
    [Google Scholar]
  43. TheissA.L. JenkinsA.K. OkoroN.I. KlapprothJ.M.A. MerlinD. SitaramanS.V. Prohibitin inhibits tumor necrosis factor alpha-induced nuclear factor-kappa B nuclear translocation via the novel mechanism of decreasing importin alpha3 expression.Mol. Biol. Cell200920204412442310.1091/mbc.e09‑05‑0361 19710421
    [Google Scholar]
  44. YoshimaruT. KomatsuM. MiyoshiY. HondaJ. SasaM. KatagiriT. Therapeutic advances in BIG 3‐ PHB 2 inhibition targeting the crosstalk between estrogen and growth factors in breast cancer.Cancer Sci.2015106555055810.1111/cas.12654 25736224
    [Google Scholar]
  45. TakagiH. MoyamaC. TaniguchiK. AndoK. MatsudaR. AndoS. IiH. KageyamaS. KawauchiA. ChouhaN. DésaubryL. NakataS. Fluorizoline blocks the interaction between prohibitin-2 and γ -glutamylcyclotransferase and induces p21 waf1/cip1 expression in MCF7 breast cancer cells.Mol. Pharmacol.20221012788610.1124/molpharm.121.000334 34862308
    [Google Scholar]
  46. HeQ. ZhangS.Q. ChuY.L. JiaX.L. ZhaoL.H. WangX.L. Separation and identification of differentially expressed nuclear matrix proteins in breast carcinoma forming.Acta Oncol.2010491768410.3109/02841860903287213 19878069
    [Google Scholar]
  47. KimN.H. YoshimaruT. ChenY.A. MatsuoT. KomatsuM. MiyoshiY. TanakaE. SasaM. MizuguchiK. KatagiriT. BIG3 inhibits the estrogen-dependent nuclear translocation of PHB2 via multiple karyopherin-alpha proteins in breast cancer cells.PLoS One2015106e012770710.1371/journal.pone.0127707 26052702
    [Google Scholar]
  48. HwangK.T. Clinical databases for breast cancer research.Adv. Exp. Med. Biol.2021118749350910.1007/978‑981‑32‑9620‑6_26 33983596
    [Google Scholar]
  49. RoulotA. HéquetD. GuinebretièreJ.M. Vincent-SalomonA. LereboursF. DubotC. RouzierR. Tumoral heterogeneity of breast cancer.Ann. Biol. Clin. (Paris)2016746653660 27848916
    [Google Scholar]
  50. PrintzC. Breast cancer screening for women in their 40s reduces mortality.Cancer2021127449710.1002/cncr.33439 33512720
    [Google Scholar]
  51. KolakA. KamińskaM. SygitK. BudnyA. SurdykaD. Kukiełka-BudnyB. BurdanF. Primary and secondary prevention of breast cancer.Ann. Agric. Environ. Med.201724454955310.26444/aaem/75943 29284222
    [Google Scholar]
  52. LiZ. WeiH. LiS. WuP. MaoX. The role of progesterone receptors in breast cancer.Drug Des. Devel. Ther.20221630531410.2147/DDDT.S336643 35115765
    [Google Scholar]
  53. LiuP. XuY. ZhangW. LiY. TangL. ChenW. XuJ. SunQ. GuanX. Prohibitin promotes androgen receptor activation in ER-positive breast cancer.Cell Cycle201716877678410.1080/15384101.2017.1295193 28272969
    [Google Scholar]
  54. ChigiraT. NagatoishiS. TsumotoK. Differential binding of prohibitin-2 to estrogen receptor α and to drug-resistant ERα mutants.Biochem. Biophys. Res. Commun.2015463472673110.1016/j.bbrc.2015.06.002 26049107
    [Google Scholar]
  55. KahlertS. NuedlingS. van EickelsM. VetterH. MeyerR. GrohéC. Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway.J. Biol. Chem.200027524184471845310.1074/jbc.M910345199 10749889
    [Google Scholar]
  56. RiosA.C. van RheenenJ. ScheeleC.L.G.J. Multidimensional imaging of breast cancer.Cold Spring Harb. Perspect. Med.2023135a04133010.1101/cshperspect.a041330 36167726
    [Google Scholar]
  57. ZhangX. Molecular classification of breast cancer: Relevance and challenges.Arch. Pathol. Lab. Med.20231471465110.5858/arpa.2022‑0070‑RA 36136295
    [Google Scholar]
  58. NuellM.J. StewartD.A. WalkerL. FriedmanV. WoodC.M. OwensG.A. SmithJ.R. SchneiderE.L. Dell’ OrcoR. LumpkinC.K. Prohibitin, an evolutionarily conserved intracellular protein that blocks DNA synthesis in normal fibroblasts and HeLa cells.Mol. Cell. Biol.199111313721381 1996099
    [Google Scholar]
  59. TooI.H.K. BonneI. TanE.L. ChuJ.J.H. AlonsoS. Prohibitin plays a critical role in Enterovirus 71 neuropathogenesis.PLoS Pathog.2018141e100677810.1371/journal.ppat.1006778 29324904
    [Google Scholar]
  60. Tortelli JuniorT.C. de GodoyL.M.F. de SouzaG.A. BonattoD. OtakeA.H. de Freitas SaitoR. RosaJ.C. GreeneL.J. ChammasR. Accumulation of prohibitin is a common cellular response to different stressing stimuli and protects melanoma cells from ER stress and chemotherapy-induced cell death.Oncotarget2017826431144312910.18632/oncotarget.17810 28562344
    [Google Scholar]
  61. KahlA. AndersonC.J. QianL. VossH. ManfrediG. IadecolaC. ZhouP. Neuronal expression of the mitochondrial protein prohibitin confers profound neuroprotection in a mouse model of focal cerebral ischemia.J. Cereb. Blood Flow Metab.20183861010102010.1177/0271678X17720371 28714328
    [Google Scholar]
  62. WoodlockT.J. BethlendyG. SegelG.B. Prohibitin expression is increased in phorbol ester-treated chronic leukemic B-lymphocytes.Blood Cells Mol. Dis.2001271273410.1006/bcmd.2000.0348 11162143
    [Google Scholar]
  63. RautG.K. ChakrabartiM. PamarthyD. BhadraM.P. Glucose starvation-induced oxidative stress causes mitochondrial dysfunction and apoptosis via Prohibitin 1 upregulation in human breast cancer cells.Free Radic. Biol. Med.201914542844110.1016/j.freeradbiomed.2019.09.020 31614178
    [Google Scholar]
  64. WangS. FusaroG. PadmanabhanJ. ChellappanS.P. Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression.Oncogene200221558388839610.1038/sj.onc.1205944 12466959
    [Google Scholar]
  65. FuP. YangZ. BachL.A. Prohibitin-2 binding modulates insulin-like growth factor-binding protein-6 (IGFBP-6)-induced rhabdomyosarcoma cell migration.J. Biol. Chem.201328841298902990010.1074/jbc.M113.510826 24003225
    [Google Scholar]
  66. BaiY. LudescherM. PoschmannG. StühlerK. WyrichM. OlesJ. FrankenA. RivandiM. AbramovaA. ReinhardtF. RuckhäberleE. NiederacherD. FehmT. CahillM.A. StammN. NeubauerH. PGRMC1 promotes progestin-dependent proliferation of breast cancer cells by binding prohibitins resulting in activation of ERα signaling.Cancers (Basel)20211322563510.3390/cancers13225635 34830790
    [Google Scholar]
  67. WangK. LongB. ZhouL.Y. LiuF. ZhouQ.Y. LiuC.Y. FanY.Y. LiP.F. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation.Nat. Commun.201451359610.1038/ncomms4596 24710105
    [Google Scholar]
  68. HuangX. LiuJ. MaQ. Prohibitin participates in the HIRA complex to promote cell metastasis in breast cancer cell lines.FEBS Open Bio202010102182219010.1002/2211‑5463.12966 32865342
    [Google Scholar]
  69. ZhongN. CuiY. ZhouX. LiT. HanJ. Identification of prohibitin 1 as a potential prognostic biomarker in human pancreatic carcinoma using modified aqueous two-phase partition system combined with 2D-MALDI-TOF-TOF-MS/MS.Tumour Biol.20153621221123110.1007/s13277‑014‑2742‑y 25344214
    [Google Scholar]
  70. Satheesh KumarM.K. NairS. MonyU. KalingavarmanS. VenkatR. SivanarayananT.B. UnniA.K.K. RajeshkannanR. AnandakuttanA. RadhakrishnanS. MenonK.N. Significance of elevated Prohibitin 1 levels in Multiple Sclerosis patients lymphocytes towards the assessment of subclinical disease activity and its role in the central nervous system pathology of disease.Int. J. Biol. Macromol.201811057358110.1016/j.ijbiomac.2017.12.061 29242126
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073266248231024113533
Loading
/content/journals/cchts/10.2174/0113862073266248231024113533
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bioinformatics; Breast cancer; invasion; pan-cancer analysis; prohibitin; proliferation; TCGA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test