Skip to content
2000
Volume 27, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Gout is a common inflammatory arthritis, which is mainly caused by the deposition of monosodium urate (MSU) in tissues. Transcriptomics was used to explore the pathogenesis and treatment of gout in our work.

Objective

The objective of the study was to analyze and validate potential therapeutic targets and biomarkers in THP-1 cells that were exposed to MSU.

Methods

THP-1 cells were exposed to MSU. The inflammatory effect was characterized, and RNA-Seq analysis was then carried out. The differential genes obtained by RNA-Seq were analyzed with gene expression omnibus (GEO) series 160170 (GSE160170) gout-related clinical samples in the GEO database and gout-related genes in the GeneCards database. From the three analysis approaches, the genes with significant differences were verified by the differential genes’ transcription levels. The interaction relationship of long non-coding RNA (lncRNA) was proposed by ceRNA network analysis.

Results

MSU significantly promoted the release of IL-1β and IL-18 in THP-1 cells, which aggravated their inflammatory effect. Through RNA-Seq, 698 differential genes were obtained, including 606 differential mRNA and 92 differential `LncRNA. Cross-analysis of the RNA-Seq differential genes, the GSE160170 differential genes, and the gout-related genes in GeneCards revealed a total of 17 genes coexisting in the tripartite data. Furthermore, seven differential genes—C-X-C motif chemokine ligand 8 (CXCL8), C-X-C motif chemokine ligand 2 (CXCL2), tumor necrosis factor (TNF), C-C motif chemokine ligand 3 (CCL3), suppressor of cytokine signaling 3 (SOCS3), oncostatin M (OSM), and MIR22 host gene (MIR22HG)—were verified as key genes that analyzed the weight of genes in pathways, the enrichment of inflammation-related pathways, and protein-protein interaction (PPI) nodes combined with the expression of genes in RNA-Seq and GSE160170. It is suggested that MIR22HG may regulate OSM and SOCS3 through microRNA 4271 (miR-4271), OSM, and SOCS3m; CCL3 through microRNA 149-3p (miR-149-3p); and CXCL2 through microRNA 4652-3p (miR-4652-3p).

Conclusion

The potential of CXCL8, CXCL2, TNF, CCL3, SOCS3, and OSM as gout biomarkers and MIR22HG as a therapeutic target for gout are proposed, which provide new insights into the mechanisms of gout biomarkers and therapeutic methods.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073262471231011043339
2023-10-18
2025-01-13
Loading full text...

Full text loading...

References

  1. RagabG. ElshahalyM. BardinT. Gout: An old disease in new perspective - A review.J. Adv. Res.20178549551110.1016/j.jare.2017.04.008 28748116
    [Google Scholar]
  2. WeaverJ.S. VinaE.R. MunkP.L. KlauserA.S. ElifritzJ.M. TaljanovicM.S. Gouty arthropathy: Review of clinical manifestations and treatment, with emphasis on imaging.J. Clin. Med.202111116610.3390/jcm11010166 35011907
    [Google Scholar]
  3. WuZ.D. YangX.K. HeY.S. NiJ. WangJ. YinK.J. HuangJ.X. ChenY. FengY.T. WangP. PanH.F. Environmental factors and risk of gout.Environ. Res.2022212Pt C11337710.1016/j.envres.2022.113377 35500858
    [Google Scholar]
  4. ChoiH.K. AtkinsonK. KarlsonE.W. WillettW. CurhanG. Alcohol intake and risk of incident gout in men: A prospective study.Lancet200436394171277128110.1016/S0140‑6736(04)16000‑5 15094272
    [Google Scholar]
  5. SinghJ.A. GaffoA. Gout epidemiology and comorbidities.Semin. Arthritis Rheum.2020503S11S1610.1016/j.semarthrit.2020.04.008 32620196
    [Google Scholar]
  6. LeeY.W.M. KokS.X.S. WongL.W. WongS.B.S. Clinics in diagnostic imaging (200).Singapore Med. J.2019601050250710.11622/smedj.2019129 31663097
    [Google Scholar]
  7. PengZ. DingY.M. PeiL. YaoH.H. ZhangX.W. TangS.M. [Clinical characteristics of crystal deposits in joints and tendons in patients with gout].Beijing Da Xue Xue Bao202153610671071 34916683
    [Google Scholar]
  8. SoA.K. MartinonF. Inflammation in gout: Mechanisms and therapeutic targets.Nat. Rev. Rheumatol.2017131163964710.1038/nrrheum.2017.155 28959043
    [Google Scholar]
  9. NakayamaM. Macrophage recognition of crystals and nanoparticles.Front. Immunol.2018910310.3389/fimmu.2018.00103 29434606
    [Google Scholar]
  10. ZhaoJ. WeiK. JiangP. ChangC. XuL. XuL. ShiY. GuoS. XueY. HeD. Inflammatory response to regulated cell death in gout and its functional implications.Front. Immunol.20221388830610.3389/fimmu.2022.888306 35464445
    [Google Scholar]
  11. DalbethN. MerrimanT.R. StampL.K. Gout. Lancet2016388100552039205210.1016/S0140‑6736(16)00346‑9 27112094
    [Google Scholar]
  12. Franco-TrepatE. Alonso-PérezA. Guillán-FrescoM. Jorge-MoraA. Crespo-GolmarA. López-FagúndezM. Pazos-PérezA. GualilloO. Belén BravoS. Gómez BahamondeR. Amitriptyline blocks innate immune responses mediated by toll‐like receptor 4 and IL‐1 receptor: Preclinical and clinical evidence in osteoarthritis and gout.Br. J. Pharmacol.2022179227028610.1111/bph.15707 34643941
    [Google Scholar]
  13. SunX. LiP. QuX. LiuW. Isovitexin alleviates acute gouty arthritis in rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway.Pharm. Biol.20215911324133110.1080/13880209.2021.1979595 34582722
    [Google Scholar]
  14. XuW. LiF. ZhangX. WuC. WangY. YaoY. XiaD. The protective effects of neoastilbin on monosodium urate stimulated THP-1-Derived macrophages and gouty arthritis in mice through NF-κB and NLRP3 inflammasome pathways.Molecules20222711347710.3390/molecules27113477 35684415
    [Google Scholar]
  15. CampionE.W. GlynnR.J. DelabryL.O. Asymptomatic hyperuricemia. Risks and consequences in the normative aging study.Am. J. Med.198782342142610.1016/0002‑9343(87)90441‑4 3826098
    [Google Scholar]
  16. ZhangW.Z. Why does hyperuricemia not necessarily induce gout?Biomolecules202111228010.3390/biom11020280 33672821
    [Google Scholar]
  17. GalozziP. BindoliS. DoriaA. OlivieroF. SfrisoP. Autoinflammatory features in gouty arthritis.J. Clin. Med.2021109188010.3390/jcm10091880 33926105
    [Google Scholar]
  18. TauscheA.K. AringerM. Gicht.Z. Rheumatol.201675988589810.1007/s00393‑016‑0206‑z 27730304
    [Google Scholar]
  19. PillingerM.H. MandellB.F. Therapeutic approaches in the treatment of gout.Semin. Arthritis Rheum.2020503S24S3010.1016/j.semarthrit.2020.04.010 32620199
    [Google Scholar]
  20. WheltonA. HamiltonC.W. Nonsteroidal anti-inflammatory drugs: Effects on kidney function.J. Clin. Pharmacol.199131758859810.1002/j.1552‑4604.1991.tb03743.x 1894754
    [Google Scholar]
  21. SlobodnickA. ShahB. KrasnokutskyS. PillingerM.H. Update on colchicine, 2017.Rheumatology201857Suppl. 1i4i1110.1093/rheumatology/kex453 29272515
    [Google Scholar]
  22. CrittendenD.B. PillingerM.H. New therapies for gout.Annu. Rev. Med.201364132533710.1146/annurev‑med‑080911‑105830 23327525
    [Google Scholar]
  23. LiY. HuangC. YangZ. WangL. LuoD. QiL. LiZ. HuangY. Identification of potential biomarkers of gout through competitive endogenous RNA network analysis.Eur. J. Pharm. Sci.202217310618010.1016/j.ejps.2022.106180 35378210
    [Google Scholar]
  24. ShuJ. ChenM. YaC. YangR. LiF. Regulatory Role of miRNAs and lncRNAs in Gout.Comput. Math. Methods Med.2022202211110.1155/2022/6513565 35813414
    [Google Scholar]
  25. LiuX. FanZ. LiY. LiZ. ZhouZ. YuX. WanJ. MinZ. YangL. LiD. microRNA‐196a‐5p inhibits testicular germ cell tumor progression via NR6A1/E‐cadherin axis.Cancer Med.20209239107912210.1002/cam4.3498 33034957
    [Google Scholar]
  26. WangC. LiH. WangX. LiW. SuQ. XiaoX. HaoT. ChenW. ZhangY. ZhangH. WuW. HuZ. ZhaoG. HuoM. HeY. ZhangC. Ailanthus altissima-derived ailanthone enhances gastric cancer cell apoptosis by inducing the repression of base excision repair by downregulating p23 expression.Int. J. Biol. Sci.202117112811282510.7150/ijbs.60674 34345209
    [Google Scholar]
  27. QingY.F. ZhengJ.X. TangY.P. DaiF. DongZ.R. ZhangQ.B. LncRNAs Landscape in the patients of primary gout by microarray analysis.PLoS One2021162e023291810.1371/journal.pone.0232918 33600466
    [Google Scholar]
  28. TangD. WangG. LiuZ. WangB. YaoM. WangQ. HouX. ZhengY. ShengC. ZhouZ. Transcriptomic analysis of the effects of the HPV18 E6E7 gene on the cell death mode in esophageal squamous cell carcinoma.Oncol. Lett.202325416710.3892/ol.2023.13753 36960186
    [Google Scholar]
  29. ChenC. ChenH. ZhangY. ThomasH.R. FrankM.H. HeY. XiaR. TBtools: An integrative toolkit developed for interactive analyses of big biological data.Mol. Plant20201381194120210.1016/j.molp.2020.06.009 32585190
    [Google Scholar]
  30. TayY. RinnJ. PandolfiP.P. The multilayered complexity of ceRNA crosstalk and competition.Nature2014505748334435210.1038/nature12986 24429633
    [Google Scholar]
  31. RichetteP. BardinT. Gout. Lancet2010375971131832810.1016/S0140‑6736(09)60883‑7 19692116
    [Google Scholar]
  32. MasseoudD. RottK. Liu-BryanR. AgudeloC. Overview of hyperuricaemia and gout.Curr. Pharm. Des.200511324117412410.2174/138161205774913318 16375732
    [Google Scholar]
  33. SteigerS. HarperJ.L. Mechanisms of spontaneous resolution of acute gouty inflammation.Curr. Rheumatol. Rep.201416139210.1007/s11926‑013‑0392‑5 24343224
    [Google Scholar]
  34. ZhaoL. YeW. ZhuY. ChenF. WangQ. LvX. HuaY. DuZ. ZhuX. YuY. ZouH. LiuL. XueY. Distinct macrophage polarization in acute and chronic gout.Lab. Invest.2022102101054106310.1038/s41374‑022‑00798‑4 35614340
    [Google Scholar]
  35. GoldbergE.L. AsherJ.L. MolonyR.D. ShawA.C. ZeissC.J. WangC. Morozova-RocheL.A. HerzogR.I. IwasakiA. DixitV.D. β-hydroxybutyrate deactivates neutrophil nlrp3 inflammasome to relieve gout flares.Cell Rep.20171892077208710.1016/j.celrep.2017.02.004 28249154
    [Google Scholar]
  36. LiuL. ZhuL. LiuM. ZhaoL. YuY. XueY. ShanL. Recent insights into the role of macrophages in acute gout.Front. Immunol.20221395580610.3389/fimmu.2022.955806 35874765
    [Google Scholar]
  37. LiuY. WangJ. LiJ. Role of NLRP3 in the pathogenesis and treatment of gout arthritis.Front. Immunol.202314113782210.3389/fimmu.2023.1137822 37051231
    [Google Scholar]
  38. LandisR.C. YagnikD.R. FloreyO. PhilippidisP. EmonsV. MasonJ.C. HaskardD.O. Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages.Arthritis Rheum.200246113026303310.1002/art.10614 12428246
    [Google Scholar]
  39. DaigneaultM. PrestonJ.A. MarriottH.M. WhyteM.K.B. DockrellD.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages.PLoS One201051e866810.1371/journal.pone.0008668 20084270
    [Google Scholar]
  40. MaeßM.B. WittigB. CignarellaA. LorkowskiS. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli.J. Immunol. Methods20144021-2768110.1016/j.jim.2013.11.006 24269601
    [Google Scholar]
  41. Mohd YasinZ.N. Mohd IdrusF.N. HoeC.H. Yvonne-TeeG.B. Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review.Differentiation2022128678210.1016/j.diff.2022.10.001 36370526
    [Google Scholar]
  42. TedescoS. De MajoF. KimJ. TrentiA. TrevisiL. FadiniG.P. BolegoC. ZandstraP.W. CignarellaA. VitielloL. Convenience versus biological significance: Are PMA-Differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization?Front. Pharmacol.201897110.3389/fphar.2018.00071 29520230
    [Google Scholar]
  43. ChenB. LiH. OuG. RenL. YangX. ZengM. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage.Arthritis Res. Ther.201921119310.1186/s13075‑019‑1974‑z 31455356
    [Google Scholar]
  44. ChengJ.J. MaX.D. AiG.X. YuQ.X. ChenX.Y. YanF. LiY.C. XieJ.H. SuZ.R. XieQ.F. Palmatine protects against MSU-induced gouty arthritis via regulating the NF-κB/NLRP3 and Nrf2 pathways.Drug Des. Devel. Ther.2022162119213210.2147/DDDT.S356307 35812134
    [Google Scholar]
  45. HaoK. JiangW. ZhouM. LiH. ChenY. JiangF. HuQ. Targeting BRD4 prevents acute gouty arthritis by regulating pyroptosis.Int. J. Biol. Sci.202016163163317310.7150/ijbs.46153 33162822
    [Google Scholar]
  46. LiuY.F. XingG.L. ChenZ. TuS.H. Long non-coding RNA HOTAIR knockdown alleviates gouty arthritis through miR-20b upregulation and NLRP3 downregulation.Cell Cycle202120333234410.1080/15384101.2021.1874696 33467979
    [Google Scholar]
  47. MengQ. MengW. BianH. ZhengF. GuH. ZuoR. MiaoX. ZhouZ. WangL. WenZ. MaJ. SuX. Total glucosides of paeony protects THP-1 macrophages against monosodium urate-induced inflammation via MALAT1/miR-876-5p/NLRP3 signaling cascade in gouty arthritis.Biomed. Pharmacother.202113811141310.1016/j.biopha.2021.111413 33677310
    [Google Scholar]
  48. QinQ. LiuH. ShouJ. JiangY. YuH. WangX. The inhibitor effect of RKIP on inflammasome activation and inflammasome-dependent diseases.Cell. Mol. Immunol.2021184992100410.1038/s41423‑020‑00525‑3 32901127
    [Google Scholar]
  49. RussoR.C. GarciaC.C. TeixeiraM.M. AmaralF.A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases.Expert Rev. Clin. Immunol.201410559361910.1586/1744666X.2014.894886 24678812
    [Google Scholar]
  50. KienhorstL.B.E. van LochemE. KievitW. DalbethN. MerrimanM.E. Phipps-GreenA. LoofA. van HeerdeW. VermeulenS. StampL.K. van KoolwijkE. de GraafJ. HolzingerD. RothJ. JanssensH.J.E.M. MerrimanT.R. BroenJ.C.A. JanssenM. RadstakeT.R.D.J. Gout is a chronic inflammatory disease in which high levels of interleukin‐8 (CXCL8), myeloid‐related protein 8/myeloid‐related protein 14 complex, and an altered proteome are associated with diabetes mellitus and cardiovascular disease.Arthritis Rheumatol.201567123303331310.1002/art.39318 26248007
    [Google Scholar]
  51. KienhorstL. JanssensH. RadstakeT. van RielP. JacobsJ. van KoolwijkE. van LochemE. JanssenM. A pilot study of CXCL8 levels in crystal proven gout patients during allopurinol treatment and their association with cardiovascular disease.Joint Bone Spine201784670971310.1016/j.jbspin.2016.10.013 27894951
    [Google Scholar]
  52. NabievaD.A. AripovA.N. [The detection of proteomic markers and immunologic profile and their relationship with metabolic parameters in patients with gout.].Klin. Lab. Diagn.2017628485489 30802396
    [Google Scholar]
  53. QinC.C. LiuY.N. HuY. YangY. ChenZ. Macrophage inflammatory protein-2 as mediator of inflammation in acute liver injury.World J. Gastroenterol.201723173043305210.3748/wjg.v23.i17.3043 28533661
    [Google Scholar]
  54. MoilanenL.J. HämäläinenM. LehtimäkiL. NieminenR.M. MoilanenE. Urate crystal induced inflammation and joint pain are reduced in transient receptor potential ankyrin 1 deficient mice--potential role for transient receptor potential ankyrin 1 in gout.PLoS One2015102e011777010.1371/journal.pone.0117770 25658427
    [Google Scholar]
  55. YeY. ZhangY. WangB. WalanaW. WeiJ. GordonJ.R. LiF. CXCR1/CXCR2 antagonist G31P inhibits nephritis in a mouse model of uric acid nephropathy.Biomed. Pharmacother.20181071142115010.1016/j.biopha.2018.07.077 30257327
    [Google Scholar]
  56. PesceB. RibeiroC.H. LarrondoM. RamosV. SotoL. CatalánD. AguillónJ.C. TNF-α affects signature cytokines of th1 and th17 T cell subsets through differential actions on TNFR1 and TNFR2.Int. J. Mol. Sci.20222316930610.3390/ijms23169306 36012570
    [Google Scholar]
  57. KimS.W. LeeJ.H. KimH. LeeS.H. JeongD. KimH.S. LeeC.J. KimD.Y. YookT.H. YangG. Improvement effect of soyeom pharmacopuncture on gout via NLRP3 inflammasome regulation.J. Pharmacopuncture202225439640310.3831/KPI.2022.25.4.396 36628347
    [Google Scholar]
  58. YokoseK. SatoS. AsanoT. YashiroM. KobayashiH. WatanabeH. SuzukiE. SatoC. KozuruH. YatsuhashiH. MigitaK. TNF- α potentiates uric acid-induced interleukin-1 β (IL-1 β) secretion in human neutrophils.Mod. Rheumatol.201828351351710.1080/14397595.2017.1369924 28880687
    [Google Scholar]
  59. ShengD. MaW. ZhangR. ZhouL. DengQ. TuJ. ChenW. ZhangF. GaoN. DongM. WangD. LiF. LiuY. HeX. DuanS. ZhangL. LiuT. LiuS. Ccl3 enhances docetaxel chemosensitivity in breast cancer by triggering proinflammatory macrophage polarization.J. Immunother. Cancer2022105e00379310.1136/jitc‑2021‑003793 35613826
    [Google Scholar]
  60. DapuntU. MaurerS. GieseT. GaidaM.M. HänschG.M. The macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) in implant-associated osteomyelitis: Linking inflammation to bone degradation.Mediators Inflamm.2014201472861910.1155/2014/728619 24795505
    [Google Scholar]
  61. CarowB. RottenbergM.E. SOCS3, a major regulator of infection and inflammation.Front. Immunol.201455810.3389/fimmu.2014.00058 24600449
    [Google Scholar]
  62. OrjiO.C. López-DomínguezM.B. Sandoval-PlataG. Guetta-BaranesT. ValdesA.M. DohertyM. MorganK. AbhishekA. Upregulated expression of FFAR2 and SOC3 genes is associated with gout.Rheumatology202362297798310.1093/rheumatology/keac360 35731142
    [Google Scholar]
  63. MasjediA. HajizadehF. Beigi DarganiF. BeyzaiB. AksounM. Hojjat-FarsangiM. ZekiyA. Jadidi-NiaraghF. OncostatinM. Oncostatin M: A mysterious cytokine in cancers.Int. Immunopharmacol.20219010715810.1016/j.intimp.2020.107158 33187910
    [Google Scholar]
  64. DuQ. QianY. XueW. Molecular simulation of oncostatin M and receptor (OSM–OSMR) interaction as a potential therapeutic target for inflammatory bowel disease.Front. Mol. Biosci.202072910.3389/fmolb.2020.00029 32195265
    [Google Scholar]
  65. GarciaJ.P. UtomoL. Rudnik-JansenI. DuJ. ZuithoffN.P.A. KrouwelsA. van OschG.J.V.M. CreemersL.B. Association between oncostatin M expression and inflammatory phenotype in experimental arthritis models and osteoarthritis patients.Cells202110350810.3390/cells10030508 33673583
    [Google Scholar]
  66. HermansD. HoubenE. BaetenP. SlaetsH. JanssensK. HoeksC. HosseinkhaniB. DuranG. BormansS. GowingE. HoornaertC. BeckersL. FungW.K. SchrotenH. IshikawaH. FraussenJ. ThoelenR. de VriesH.E. KooijG. ZandeeS. PratA. HellingsN. BrouxB. Oncostatin M triggers brain inflammation by compromising blood–brain barrier integrity.Acta Neuropathol.2022144225928110.1007/s00401‑022‑02445‑0 35666306
    [Google Scholar]
  67. ZhangL. LiC. SuX. Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers.J. Exp. Clin. Cancer Res.202039127110.1186/s13046‑020‑01784‑8 33267888
    [Google Scholar]
  68. LongH. LiQ. XiaoZ. YangB. LncRNA MIR22HG promotes osteoarthritis progression via regulating miR-9-3p/ADAMTS5 pathway.Bioengineered20211213148315810.1080/21655979.2021.1945362 34187303
    [Google Scholar]
  69. WenJ. LiuJ. JiangH. WanL. XinL. SunY. ZhangP. SunY. ZhangY. DuX. WangX. WangJ. lncRNA expression profiles related to apoptosis and autophagy in peripheral blood mononuclear cells of patients with rheumatoid arthritis.FEBS Open Bio20201081642165410.1002/2211‑5463.12913 32569434
    [Google Scholar]
  70. GaoL. XiongD. HeR. YangX. LaiZ. LiuL. HuangZ. WuH. YangL. MaJ. LiS. LinP. YangH. LuoD. DangY. ChenG. MIR22HG as a tumor suppressive lncRNA In HCC: a comprehensive analysis integrating RT-qPCR, mRNA-Seq, and microarrays.OncoTargets Ther.2019129827984810.2147/OTT.S227541 31819482
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073262471231011043339
Loading
/content/journals/cchts/10.2174/0113862073262471231011043339
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test