Skip to content
2000
Volume 27, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Gastric cancer, one of the most familiar adenocarcinomas of the gastrointestinal tract, ranks third in the world in cancer-related deaths. Traditional Chinese medicine can suppress the growth of tumors, and the underlying mechanism may be associated with the tumor microenvironment. Here, we investigated the anti-cancer effects of the on gastric cancer and the underlying molecular mechanism.

Methods

An nude mouse model was established, and the expression of CD206, CD80, and M2 phenotype-related proteins (Arg-1, Fizz1) was obtained by flow cytometry and western blotting. The expressions of the M2 phenotype-related cytokines were examined by ELISA.

Results

inhibited gastric tumor growth and downregulated the expression of CD206, IFN-γ, IL-13, IL-4, and TNF-α . deceased M2 phenotypic polarization by upregulating microRNA (miR)-29a-3p level. Luciferase activity assays showed that HDAC4 is a potential target of miR-29a-3p. In cells co-transfected with HDAC4 siRNA and miR-29a-3p inhibitor and treated with IL-4 and , the miR-29a-3p inhibitor-induced increase of M2 phenotypic polarization was reversed.

Conclusion

In summary, these results suggested that the regulated M2 macrophage polarization by regulating miR-29a-3p/HDAC4, providing a different and innovative treatment for gastric cancer.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073263776231009115524
2023-10-16
2025-01-13
Loading full text...

Full text loading...

References

  1. JohnstonF.M. BeckmanM. Updates on management of gastric cancer.Curr. Oncol. Rep.20192186710.1007/s11912‑019‑0820‑4 31236716
    [Google Scholar]
  2. SmythE.C. NilssonM. GrabschH.I. van GriekenN.C.T. LordickF. Gastric cancer.Lancet20203961025163564810.1016/S0140‑6736(20)31288‑5 32861308
    [Google Scholar]
  3. PatelT.H. CecchiniM. Targeted therapies in advanced gastric cancer.Curr. Treat. Options Oncol.20202197010.1007/s11864‑020‑00774‑4 32725377
    [Google Scholar]
  4. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  5. MurataM. Inflammation and cancer.Environ. Health Prev. Med.20182315010.1186/s12199‑018‑0740‑1 30340457
    [Google Scholar]
  6. LiY. XiaR. ZhangB. LiC. Chronic atrophic gastritis: A review.J. Environ. Pathol. Toxicol. Oncol.201837324125910.1615/JEnvironPatholToxicolOncol.2018026839 30317974
    [Google Scholar]
  7. PiazueloM.B. RiechelmannR.P. WilsonK.T. AlgoodH.M.S. Resolution of gastric cancer-promoting inflammation: A novel strategy for anti-cancer therapy.Curr. Top. Microbiol. Immunol.201942131935910.1007/978‑3‑030‑15138‑6_13 31123895
    [Google Scholar]
  8. XiangY. GuoZ. ZhuP. ChenJ. HuangY. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science.Cancer Med.2019851958197510.1002/cam4.2108 30945475
    [Google Scholar]
  9. WangY. ZhangQ. ChenY. LiangC.L. LiuH. QiuF. DaiZ. Antitumor effects of immunity-enhancing traditional Chinese medicine.Biomed. Pharmacother.202012110957010.1016/j.biopha.2019.109570 31710893
    [Google Scholar]
  10. YuJ. SongS. JiaoJ. LiuX. ZhuH. XiuL. SunD. LiQ. YueX. ZiYinHuaTan recipe inhibits cell proliferation and promotes apoptosis in gastric cancer by suppressing PI3K/AKT pathway.BioMed Res. Int.2020202011010.1155/2020/2018162 32382534
    [Google Scholar]
  11. YuanM. ZouX. LiuS. XuX. WangH. ZhuM. XieX. WangH. WuJ. SunQ. Modified Jian-pi-yang-zheng decoction inhibits gastric cancer progression via the macrophage immune checkpoint PI3Kγ.Biomed. Pharmacother.202012911044010.1016/j.biopha.2020.110440 32768942
    [Google Scholar]
  12. LiuX. JiQ. DengW. ChaiN. FengY. ZhouL. SuiH. LiC. SunX. LiQ. JianPi JieDu recipe inhibits epithelial-to-mesenchymal transition in colorectal cancer through TGF- β/smad mediated snail/E-cadherin expression.BioMed Res. Int.2017201711110.1155/2017/2613198 28299321
    [Google Scholar]
  13. DaiY. QiangW. YuX. CaiS. LinK. XieL. LanX. WangD. Guizhi fuling decoction inhibiting the pi3k and mapk pathways in breast cancer cells revealed by HTS2 technology and systems pharmacology.Comput. Struct. Biotechnol. J.2020181121113610.1016/j.csbj.2020.05.004 32489526
    [Google Scholar]
  14. GongH. ChenW. MiL. WangD. ZhaoY. YuC. ZhaoA. Qici Sanling decoction suppresses bladder cancer growth by inhibiting the Wnt/Β-catenin pathway.Pharm. Biol.201957150751310.1080/13880209.2019.1626449 31401919
    [Google Scholar]
  15. ChenP.F. PanL. JinY.Q. [Effects of qingre xiaoji recipe on the migration, chemotaxis, and tube formation capability of human lung adenocarcinoma cell induced human umbilical vein endothelial cells].Chung Kuo Chung Hsi I Chieh Ho Tsa Chih2013334497501 23841271
    [Google Scholar]
  16. PengF. XieX. PengC. Chinese herbal medicine-based cancer therapy: Novel anticancer agents targeting MicroRNAs to regulate tumor growth and metastasis.Am. J. Chin. Med.20194781711173510.1142/S0192415X19500873 31801358
    [Google Scholar]
  17. QiuW. WangZ. ChenR. ShiH. MaY. ZhouH. LiM. LiW. ChenH. ZhouH. Xiaoai Jiedu Recipe suppresses hepatocellular carcinogenesis through the miR‐200b-3p/Notch1 axis.Cancer Manag. Res.202012111211113110.2147/CMAR.S269991 33173345
    [Google Scholar]
  18. XiaoJ. LiuL. ZhongZ. XiaoC. ZhangJ. Mangiferin regulates proliferation and apoptosis in glioma cells by induction of microRNA-15b and inhibition of MMP-9 expression.Oncol. Rep.20153362815282010.3892/or.2015.3919 25901555
    [Google Scholar]
  19. WangC. WangJ. GaoM. GaoP. GaoD. ZhangH. MuX. QiaoM. Radix Ranunculi ternati: Review of its chemical constituents, pharmacology, quality control and clinical applications.J. Pharm. Pharmacol.202274793095210.1093/jpp/rgac018 35596792
    [Google Scholar]
  20. WuX. XuN. YeZ. ZhaoQ. LiuJ. LiJ. WuM. ZhengY. LiX. LiW. ZhangT. HuX. ZhangQ. Polysaccharide from Scutellaria barbata D. Don attenuates inflammatory response and microbial dysbiosis in ulcerative colitis mice.Int. J. Biol. Macromol.20222061910.1016/j.ijbiomac.2022.02.119 35218798
    [Google Scholar]
  21. ZhouW. WangG. ZhaoX. XiongF. ZhouS. PengJ. ChengY. XuS. XuX. A multiplex qPCR gene dosage assay for rapid genotyping and large-scale population screening for deletional α-thalassemia.J. Mol. Diagn.201315564265110.1016/j.jmoldx.2013.05.007 23810501
    [Google Scholar]
  22. WuJ.Y. HuangT.W. HsiehY.T. WangY.F. YenC.C. LeeG.L. YehC.C. PengY.J. KuoY.Y. WenH.T. LinH.C. HsiaoC.W. WuK.K. KungH.J. HsuY.J. KuoC.C. Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor.Mol. Cell2020772213227.e510.1016/j.molcel.2019.10.023 31735641
    [Google Scholar]
  23. ChengH. WangZ. FuL. XuT. Macrophage polarization in the development and progression of ovarian cancers: An overview.Front. Oncol.2019942110.3389/fonc.2019.00421 31192126
    [Google Scholar]
  24. WangX. LuoG. ZhangK. CaoJ. HuangC. JiangT. LiuB. SuL. QiuZ. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis.Cancer Res.201878164586459810.1158/0008‑5472.CAN‑17‑3841 29880482
    [Google Scholar]
  25. TengF. TianW.Y. WangY.M. ZhangY.F. GuoF. ZhaoJ. GaoC. XueF.X. Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis.J. Hematol. Oncol.201691810.1186/s13045‑015‑0231‑4 26851944
    [Google Scholar]
  26. YinM. ShenJ. YuS. FeiJ. ZhuX. ZhaoJ. ZhaiL. SadhukhanA. ZhouJ. Tumor-associated macrophages (TAMs): A critical activator in ovarian cancer metastasis.OncoTargets Ther.2019128687869910.2147/OTT.S216355 31695427
    [Google Scholar]
  27. YuM. QiB. XiaoxiangW. XuJ. LiuX. Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway.Biomed. Pharmacother.20179067768510.1016/j.biopha.2017.04.001 28415048
    [Google Scholar]
  28. YanW. MaX. ZhaoX. ZhangS. Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro.Drug Des. Devel. Ther.2018123961397210.2147/DDDT.S181939 30510404
    [Google Scholar]
  29. CaiJ. YiM. TanY. LiX. LiG. ZengZ. XiongW. XiangB. Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-II.J. Exp. Clin. Cancer Res.202140119010.1186/s13046‑021‑01995‑7 34108030
    [Google Scholar]
  30. NotarteK.I.R. QuimqueM.T.J. MacaranasI.T. KhanA. PastranaA.M. VillafloresO.B. ArturoH.C.P. PilapilD.Y.H.IV TanS.M.M. WeiD.Q. Wenzel-StorjohannA. TasdemirD. YenC.H. JiS.Y. KimG.Y. ChoiY.H. MacabeoA.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB pathway and the increased NRF2 level by a flavonol-enriched n -butanol fraction from uvaria alba.ACS Omega2023865377539210.1021/acsomega.2c06451 36816691
    [Google Scholar]
  31. KimS.J. ChungW.S. KimS.S. KoS.G. UmJ.Y. Antiinflammatory effect of Oldenlandia diffusa and its constituent, hentriacontane, through suppression of caspase-1 activation in mouse peritoneal macrophages.Phytother. Res.201125101537154610.1002/ptr.3443 21394806
    [Google Scholar]
  32. LiaoH. YeJ. GaoL. LiuY. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review.Biomed. Pharmacother.202113311091710.1016/j.biopha.2020.110917 33217688
    [Google Scholar]
  33. LeiX. LiN. BaiZ. DiJ. ZhangH. DongP. ZhangP. Chemical constituent from the peel of Trichosanthes kirilowii Maxim and their NF-κB inhibitory activity.Nat. Prod. Res.202135235132513710.1080/14786419.2020.1786825 32744101
    [Google Scholar]
  34. YuM. ChenT.T. ZhangT. JiaH.M. LiJ.J. ZhangH.W. ZouZ.M. Anti-inflammatory constituents in the root and rhizome of Polygonum cuspidatum by UPLC-PDA-QTOF/MS and lipopolysaccharide-activated RAW264.7 macrophages.J. Pharm. Biomed. Anal.202119511383910.1016/j.jpba.2020.113839 33388645
    [Google Scholar]
  35. ShenS. WangK. ZhiY. DongY. Gypenosides counteract hepatic steatosis and intestinal barrier injury in rats with metabolic associated fatty liver disease by modulating the adenosine monophosphate activated protein kinase and Toll-like receptor 4/nuclear factor kappa B pathways.Pharm. Biol.20226011949195910.1080/13880209.2022.2126503 36205541
    [Google Scholar]
  36. WangZ.F. LiuJ. YangY.A. ZhuH.L. A review: The anti-inflammatory, anticancer and antibacterial properties of four kinds of licorice flavonoids isolated from licorice.Curr. Med. Chem.202027121997201110.2174/0929867325666181001104550 30277142
    [Google Scholar]
  37. AshrafizadehM. ZarrabiA. OroueiS. Kiavash Hushmandi HakimiA. Amirhossein Zabolian DaneshiS. SamarghandianS. BaradaranB. NajafiM. MicroRNA-mediated autophagy regulation in cancer therapy: The role in chemoresistance/chemosensitivity.Eur. J. Pharmacol.202189217366010.1016/j.ejphar.2020.173660 33310181
    [Google Scholar]
  38. HussenB.M. HidayatH.J. SalihiA. SabirD.K. TaheriM. Ghafouri-FardS. MicroRNA: A signature for cancer progression.Biomed. Pharmacother.202113811152810.1016/j.biopha.2021.111528 33770669
    [Google Scholar]
  39. HanM. GuY. LuP. LiJ. CaoH. LiX. QianX. YuC. YangY. YangX. HanN. DouD. HuJ. DongH. Retracted Article: Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation.Mol. Cancer20201912610.1186/s12943‑020‑1145‑5 32020881
    [Google Scholar]
  40. BaoL. LiX. MicroRNA-32 targeting PTEN enhances M2 macrophage polarization in the glioma microenvironment and further promotes the progression of glioma.Mol. Cell. Biochem.20194601-2677910.1007/s11010‑019‑03571‑2 31218569
    [Google Scholar]
  41. AlizadehM. SafarzadehA. BeyranvandF. AhmadpourF. HajiasgharzadehK. BaghbanzadehA. BaradaranB. The potential role of miR‐29 in health and cancer diagnosis, prognosis, and therapy.J. Cell. Physiol.201923411192801929710.1002/jcp.28607 30950056
    [Google Scholar]
  42. ChengC. YangJ. LiS.W. HuangG. LiC. MinW.P. SangY. HDAC4 promotes nasopharyngeal carcinoma progression and serves as a therapeutic target.Cell Death Dis.202112213710.1038/s41419‑021‑03417‑0 33542203
    [Google Scholar]
  43. Di GiorgioE. HancockW.W. BrancoliniC. MEF2 and the tumorigenic process, hic sunt leones.Biochim. Biophys. Acta Rev. Cancer20181870226127310.1016/j.bbcan.2018.05.007 29879430
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073263776231009115524
Loading
/content/journals/cchts/10.2174/0113862073263776231009115524
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): gastric cancer; HDAC4; M2; miR-29; Qingrexiaoji recipe; tumor-associated macrophages (TAMs)
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test