Skip to content
2000
Volume 28, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Silybin, a major flavonoid extracted from the seeds of milk thistle, has a strong hepatoprotective but weak anti-hepatoma activity. Screening another natural ingredient and combining it with silybin is expected to improve the anti-hepatoma efficacy of silybin.

Objective

The objective of this study was to investigate the synergistic anti-hepatoma effect of resveratrol and silybin on HepG2 cells and H22 tumor-bearing mice in hepatocellular carcinoma (HCC) and , respectively.

Methods

Cell viability, scratch wound, clone formation, cell apoptosis, cell cycle, and western blot analysis of HepG2 cells were used to investigate the synergistic effects of the combination resveratrol with silybin. Growth rates, tumor weights, organ indexes, and histological pathological examination in H22 tumor-bearing mice were used to investigate the synergistic effects .

Results

The combination of resveratrol (50 µg/mL) and silybin (100 µg/mL) significantly suppressed cell viability, whose combination index (CI) was 1.63 (>1.15), indicating the best synergism. The combination exhibited the synergistic effect in blocking the migration and proliferative capacity of HepG2 cells in the measurement . In particular, resveratrol enhanced the upregulation of Bcl-2 expression and the downregulation of Bax expression with a concurrent increase in the Bax/Bcl-2 ratio. The combination of resveratrol (50 mg/kg) and silybin (100 mg/kg) reduced the tumor weight, inhibited the growth rate, increased the organ indexes, and destroyed the tumor tissue morphology in H22 tumor-bearing mice.

Conclusion

Resveratrol was found to exhibit synergistic anti-cancer effects with silybin on HepG2 cells and H22 tumor-bearing mice.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073263408231101105647
2024-01-10
2025-01-19
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. BruixJ. GoresG.J. MazzaferroV. Hepatocellular carcinoma: clinical frontiers and perspectives.Gut201463584485510.1136/gutjnl‑2013‑306627 24531850
    [Google Scholar]
  3. LiX. WangY. YeX. LiangP. Locoregional combined with systemic therapies for advanced hepatocellular carcinoma: An inevitable trend of rapid development.Front. Mol. Biosci.2021863524310.3389/fmolb.2021.635243 33928118
    [Google Scholar]
  4. BassiounyA.R. ZakyA. NeenaaH.M. Synergistic effect of celecoxib on 5-fluorouracil-induced apoptosis in hepatocellular carcinoma patients.Ann. Hepatol.20109441041810.1016/S1665‑2681(19)31617‑5 21057160
    [Google Scholar]
  5. KimW. YoonJ.H. KimJ.R. JangI.J. BangY.J. KimY.J. LeeH.S. Synergistic anti-tumor efficacy of lovastatin and protein kinase C-beta inhibitor in hepatocellular carcinoma.Cancer Chemother. Pharmacol.200964349750710.1007/s00280‑008‑0897‑1 19096848
    [Google Scholar]
  6. RatherR.A. BhagatM. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities.Front. Cell Dev. Biol.201861010.3389/fcell.2018.00010 29497610
    [Google Scholar]
  7. BiX. YuanZ. QuB. ZhouH. LiuZ. XieY. Piperine enhances the bioavailability of silybin via inhibition of efflux transporters BCRP and MRP2.Phytomedicine2019549810810.1016/j.phymed.2018.09.217 30668388
    [Google Scholar]
  8. PatialV. SM. SharmaS PratapK. SinghD. PadwadY.S. Synergistic effect of curcumin and piperine in suppression of DENA-induced hepatocellular carcinoma in rats.Environ. Toxicol. Pharmacol.201540244545210.1016/j.etap.2015.07.012 26278679
    [Google Scholar]
  9. WangXiumei P.W. Progress in effects mechanism of piperine on the enhanced bioavailability of drugs.Chin. J. Clin. Pharmacol.2010264
    [Google Scholar]
  10. ChenJ. LiL. SuJ. ChenT. Natural borneol enhances bisdemethoxycurcumin-induced cell cycle arrest in the G2/M phase through up-regulation of intracellular ROS in HepG2 cells.Food Funct.20156374074810.1039/C4FO00807C 25537301
    [Google Scholar]
  11. GuH.R. ParkS.C. ChoiS.J. LeeJ.C. KimY.C. HanC.J. KimJ. YangK.Y. KimY.J. NohG.Y. NoS.H. JeongJ.H. Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells.Clin. Mol. Hepatol.2015211495910.3350/cmh.2015.21.1.49 25834802
    [Google Scholar]
  12. MaoJ. YangH. CuiT. PanP. KabirN. ChenD. MaJ. ChenX. ChenY. YangY. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT.Eur. J. Pharmacol.2018832394910.1016/j.ejphar.2018.05.027 29782854
    [Google Scholar]
  13. RigalliJ.P. CiriaciN. AriasA. CeballosM.P. VillanuevaS.S.M. LuquitaM.G. MottinoA.D. GhanemC.I. CataniaV.A. RuizM.L. Regulation of multidrug resistance proteins by genistein in a hepatocarcinoma cell line: impact on sorafenib cytotoxicity.PLoS One2015103e011950210.1371/journal.pone.0119502 25781341
    [Google Scholar]
  14. KomoriY. ArisawaS. TakaiM. YokoyamaK. HondaM. HayashiK. IshigamiM. KatanoY. GotoH. UeyamaJ. IshikawaT. WakusawaS. Ursodeoxycholic acid inhibits overexpression of P-glycoprotein induced by doxorubicin in HepG2 cells.Eur. J. Pharmacol.201472416116710.1016/j.ejphar.2013.12.023 24370495
    [Google Scholar]
  15. SunB.T. ZhengL.H. BaoY.L. YuC.L. WuY. MengX.Y. LiY.X. Reversal effect of Dioscin on multidrug resistance in human hepatoma HepG2/adriamycin cells.Eur. J. Pharmacol.2011654212913410.1016/j.ejphar.2010.12.018 21195709
    [Google Scholar]
  16. LiJ. DuanB. GuoY. ZhouR. SunJ. BieB. YangS. HuangC. YangJ. LiZ. Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity.Biomed. Pharmacother.20189880681210.1016/j.biopha.2018.01.002 29571250
    [Google Scholar]
  17. ShinS.C. LiC. ChoiJ.S. Effects of baicalein, an antioxidant, on the bioavailability of doxorubicin in rats: possible role of P-glycoprotein inhibition by baicalein.Pharmazie2009649579583 19827298
    [Google Scholar]
  18. HuangF. WuX.N. ChenJ. WangW.X. LuZ.F. Resveratrol reverses multidrug resistance in human breast cancer doxorubicin-resistant cells.Exp. Ther. Med.2014761611161610.3892/etm.2014.1662 24926353
    [Google Scholar]
  19. KimT.H. ShinY.J. WonA.J. LeeB.M. ChoiW.S. JungJ.H. ChungH.Y. KimH.S. Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin.Biochim. Biophys. Acta, Gen. Subj.20141840161562510.1016/j.bbagen.2013.10.023 24161697
    [Google Scholar]
  20. RaiG. MishraS. SumanS. ShuklaY. Resveratrol improves the anticancer effects of doxorubicin in vitro and in vivo models: A mechanistic insight.Phytomedicine201623323324210.1016/j.phymed.2015.12.020 26969377
    [Google Scholar]
  21. ChoiJ.S. ChoiB.C. KangK.W. Effect of resveratrol on the pharmacokinetics of oral and intravenous nicardipine in rats: possible role of P-glycoprotein inhibition by resveratrol.Pharmazie20096414952 19216231
    [Google Scholar]
  22. PolachiN. BaiG. LiT. ChuY. WangX. LiS. GuN. WuJ. LiW. ZhangY. ZhouS. SunH. LiuC. Modulatory effects of silibinin in various cell signaling pathways against liver disorders and cancer-A comprehensive review.Eur. J. Med. Chem.201612357759510.1016/j.ejmech.2016.07.070 27517806
    [Google Scholar]
  23. VargheseL. AgarwalC. TyagiA. SinghR.P. AgarwalR. Silibinin efficacy against human hepatocellular carcinoma.Clin. Cancer Res.200511238441844810.1158/1078‑0432.CCR‑05‑1646 16322307
    [Google Scholar]
  24. LiJ.T. ZhangJ.L. HeH. MaZ.L. NieZ.K. WangZ.Z. XuX.G. Apoptosis in human hepatoma HepG2 cells induced by corn peptides and its anti-tumor efficacy in H22 tumor bearing mice.Food Chem. Toxicol.20135129730510.1016/j.fct.2012.09.038 23063592
    [Google Scholar]
  25. WuJ. LiX. FangH. YiY. ChenD. LongY. GaoX. WeiX. ChenC.Y.O. Investigation of synergistic mechanism and identification of interaction site of aldose reductase with the combination of gigantol and syringic acid for prevention of diabetic cataract.BMC Complement. Altern. Med.201616128610.1186/s12906‑016‑1251‑5 27520089
    [Google Scholar]
  26. ZhuH. HuangM. RenD. HeJ. ZhaoF. YiC. HuangY. The synergistic effects of low dose fluorouracil and TRAIL on TRAIL-resistant human gastric adenocarcinoma AGS cells.BioMed Res. Int.2013201311010.1155/2013/293874 24324958
    [Google Scholar]
  27. ManovI. BashenkoY. HirshM. IancuT.C. Involvement of the multidrug resistance P-glycoprotein in acetaminophen-induced toxicity in hepatoma-derived HepG2 and Hep3B cells.Basic Clin. Pharmacol. Toxicol.200699321322410.1111/j.1742‑7843.2006.pto_443.x 16930294
    [Google Scholar]
  28. LeeS. LeeS.K. JungJ. Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cells.Oncol. Lett.202121124 33240430
    [Google Scholar]
  29. LiW. MaG. DengY. WuQ. WangZ. ZhouQ. Artesunate exhibits synergistic anti-cancer effects with cisplatin on lung cancer A549 cells by inhibiting MAPK pathway.Gene202176614513410.1016/j.gene.2020.145134 32898605
    [Google Scholar]
  30. ChangY. GuoA. JingY. LinJ. SunY. KongL. ZhengH. DengY. Immunomodulatory activity of puerarin in RAW264.7 macrophages and cyclophosphamide-induced immunosuppression mice.Immunopharmacol. Immunotoxicol.202143222322910.1080/08923973.2021.1885043 33583301
    [Google Scholar]
  31. ChouP.Y. LinS.R. LeeM.H. SchultzL. SzeC.I. ChangN.S.A. p53/TIAF1/WWOX triad exerts cancer suppression but may cause brain protein aggregation due to p53/WWOX functional antagonism.Cell Commun. Signal.20191717610.1186/s12964‑019‑0382‑y 31315632
    [Google Scholar]
  32. LombardiA.P.G. VicenteC.M. PortoC.S. Estrogen receptors promote migration, invasion and colony formation of the androgen-independent prostate cancer cells pc-3 through β-catenin pathway.Front. Endocrinol. (Lausanne)20201118410.3389/fendo.2020.00184 32328032
    [Google Scholar]
  33. ParkS. LimJ. KimJ.R. ChoS. Inhibitory effects of resveratrol on hepatitis B virus X protein-induced hepatocellular carcinoma.J. Vet. Sci.201718441942910.4142/jvs.2017.18.4.419 28385009
    [Google Scholar]
  34. AdanA. AlizadaG. KirazY. BaranY. NalbantA. Flow cytometry: basic principles and applications.Crit. Rev. Biotechnol.201737216317610.3109/07388551.2015.1128876 26767547
    [Google Scholar]
  35. VorobjevI.A. BartenevaN.S. Multi-parametric imaging of cell heterogeneity in apoptosis analysis.Methods201711210512310.1016/j.ymeth.2016.07.003 27392934
    [Google Scholar]
  36. KulsoomB. ShamsiT.S. AfsarN. MemonZ. AhmedN. HasnainS.N. Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl-2-directed therapy?Cancer Manag. Res.20181040341610.2147/CMAR.S154608 29535553
    [Google Scholar]
  37. BishayeeA. DhirN. Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: Inhibition of cell proliferation and induction of apoptosis.Chem. Biol. Interact.20091792-313114410.1016/j.cbi.2008.11.015 19073162
    [Google Scholar]
  38. OuX. ChenY. ChengX. ZhangX. HeQ. Potentiation of resveratrol-induced apoptosis by matrine in human hepatoma HepG2 cells.Oncol. Rep.20143262803280910.3892/or.2014.3512 25269486
    [Google Scholar]
  39. CaoW. HuC. WuL. XuL. JiangW. Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice.J. Pharmacol. Sci.2016132213113710.1016/j.jphs.2016.09.003 27707649
    [Google Scholar]
  40. RenF. LiJ. WangY. WangY. FengS. YuanZ. QianX. The effects of angelica sinensis polysaccharide on tumor growth and iron metabolism by regulating hepcidin in tumor-bearing mice.Cell. Physiol. Biochem.20184710841094
    [Google Scholar]
  41. WangX. BaoH. BauT. Investigation of the possible mechanism of two kinds of sterols extracted from Leucocalocybe mongolica in inducing HepG2 cell apoptosis and exerting anti-tumor effects in H22 tumor-bearing mice.Steroids202016310869210.1016/j.steroids.2020.108692 32645329
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073263408231101105647
Loading
/content/journals/cchts/10.2174/0113862073263408231101105647
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test