Skip to content
2000
Volume 28, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Thunb. (DST) has demonstrated therapeutic potential in the treatment of gout and its associated complications. However, the underlying mechanisms of DST’s pharmacological activity remain unclear. This study aims to investigate the pharmacological substances and network regulatory mechanisms of DST in treating gout and its complications using network pharmacology.

Methods

According to ultra-high performance liquid chromatography coupled with hybrid quadrupole-Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap-MS) data and Lipinski’s rule of five, 24 bioactive phytochemicals from DST were identified. The targets of gout were retrieved from Gene Expression Omnibus (GEO), GeneCards, and DisGeNET databases, followed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG pathway) enrichment analysis. The Cytoscape network analysis was used to identify the primary pathological pathways and key targets. Finally, LeDock was used for molecular docking to verify the active components of DST and their core target proteins.

Results

DST contains several core active ingredients, such as tetrahydroimidazo[1,2-a]pyridine-2,5-dione, diosgenin, beta-sitosterol, dioscorol B, montroumarin and 9,10-dihydro-5,7-dimethoxy-3,4-phenanthrenediol. Moreover, these active components were found to strongly bind to the key targets for treating gout and its complications, including HSP90AA1, STAT3, PTGS2, PPARG, MTOR, HIF1A, MMP9, ESR1, and TLR4. As a result, DST alleviates gout and its complications by inhibiting xanthine dehydrogenase (XDH) to reduce uric acid levels and regulating the HIF-1α, EZH2/STAT3, and COX-2/PPAR-γ pathways to reduce inflammation. Additionally, it also plays an analgesic role by regulating the neuroactive ligand-receptor interaction pathway and calcium ion signaling pathway.

Conclusion

This study has provided insights into the underlying mechanisms of DST in the treatment of gout and its complications, which could serve as a scientific foundation for its clinical translation.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073258523231025095117
2023-11-10
2025-01-31
Loading full text...

Full text loading...

References

  1. AbhishekA. Managing gout flares in the elderly: Practical considerations.Drugs Aging2017341287388010.1007/s40266‑017‑0512‑4 29214511
    [Google Scholar]
  2. TangY.M. ZhangL. ZhuS.Z. PanJ.J. ZhouS.H. HeT.J. LiQ. Gout in China, 1990-2017: The global burden of disease study 2017.Public Health2021191333810.1016/j.puhe.2020.06.029 33482625
    [Google Scholar]
  3. LatourteA. DumurgierJ. PaquetC. RichetteP. Hyperuricemia, gout, and the brain-an update.Curr. Rheumatol. Rep.202123128210.1007/s11926‑021‑01050‑6 34971414
    [Google Scholar]
  4. AfinogenovaY. DanveA. NeogiT. Update on gout management: What is old and what is new.Curr. Opin. Rheumatol.202234211812410.1097/BOR.0000000000000861 34907116
    [Google Scholar]
  5. WangX. WangY. Progress in treatment of gout using chinese and western medicine.Chin. J. Integr. Med.202026181310.1007/s11655‑019‑3058‑y 30659455
    [Google Scholar]
  6. ChenC. ZengC.H. ZhangS.Q. WeiL. Research progress of Bixie.Zhongguo Zhongyao Zazhi2017421834883496 29218932
    [Google Scholar]
  7. ZhangZ.B. ShiD.L. DuX.Z. YangS.X. Clinical efficacy of modified Bixie Shengshitang on acute gouty arthritis due to hot and humid syndrome.Zhongguo Shiyan Fangjixue Zazhi202026226570
    [Google Scholar]
  8. AzamS. KimY.S. JakariaM. YuY.J. AhnJ.Y. KimI.S. ChoiD.K. Dioscorea nipponica makino rhizome extract and its active compound dioscin protect against neuroinflammation and scopolamine-induced memory deficits.Int. J. Mol. Sci.20222317992310.3390/ijms23179923 36077321
    [Google Scholar]
  9. LiX. LiangJ. QinA. WangT. LiuS. LiW. YuanC. QuL. ZouW. Protective effect of Di’ao Xinxuekang capsule against doxorubicin-induced chronic cardiotoxicity.J. Ethnopharmacol.202228711494310.1016/j.jep.2021.114943 34954266
    [Google Scholar]
  10. NieC. ZhouJ. QinX. ShiX. ZengQ. LiuJ. YanS. ZhangL. Diosgenin-induced autophagy and apoptosis in a human prostate cancer cell line.Mol. Med. Rep.20161454349435910.3892/mmr.2016.5750 27667394
    [Google Scholar]
  11. HeT. LiuY. XiongR.F. LiX.Y. WangS.F. ChengC.R. A new phenanthropyran and a new biphenanthrene from the rhizomes of Dioscorea septemloba and their antioxidant activities.Nat. Prod. Res.202034152202220710.1080/14786419.2019.1585844 30887832
    [Google Scholar]
  12. LingY. ChenL. WangD. XiaoX. XuW. YanH. YuH. ZhangQ. QuW. ChenJ. JiX. YuQ. Chemical profiling of Dioscorea septemloba by high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry.J. Chromatogr. Sci.202058870971710.1093/chromsci/bmaa039 32676674
    [Google Scholar]
  13. XianfeiW. RongfengL. XuanZ. YuanyuanL. QinD. YuguangC. JiajunL. Analysis of chemical composition of Dioscorea spongiosa by UPLC-Q-Exactive Orbitrap-MS.Zhongyao Xinyao Yu Linchuang Yaoli20223305688699
    [Google Scholar]
  14. DengX.K. YuH.F. LiuZ. ShuG.W. ZhengY. DuanH. Study on the chemical composition of Dioscorea septemloba Thunb. J. South-Cent. Univ. Natl.Nat. Sci. Educ.20193803411414
    [Google Scholar]
  15. ZhangY. ChaoL. RuanJ. ZhengC. YuH. QuL. HanL. WangT. Bioactive constituents from the rhizomes of Dioscorea septemloba Thunb.Fitoterapia201611516517210.1016/j.fitote.2016.10.011 27984165
    [Google Scholar]
  16. ZhangY. RuanJ. LiJ. ChaoL. ShiW. YuH. GaoX. WangT. Bioactive diarylheptanoids and stilbenes from the rhizomes of Dioscorea septemloba Thunb.Fitoterapia2017117283310.1016/j.fitote.2017.01.004 28065697
    [Google Scholar]
  17. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  18. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab255 33893803
    [Google Scholar]
  19. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky318 29718510
    [Google Scholar]
  20. WeiZ. GaoY. MengF. ChenX. GongY. ZhuC. JuB. ZhangC. LiuZ. LiuQ. iDMer: An integrative and mechanism-driven response system for identifying compound interventions for sudden virus outbreak.Brief. Bioinform.202122297698710.1093/bib/bbaa341 33302292
    [Google Scholar]
  21. GalloK. GoedeA. PreissnerR. GohlkeB.O. SuperPred 3.0: Drug classification and target prediction—a machine learning approach.Nucleic Acids Res.202250W1W726W73110.1093/nar/gkac297 35524552
    [Google Scholar]
  22. QingY.F. ZhengJ.X. TangY.P. DaiF. DongZ.R. ZhangQ.B. LncRNAs Landscape in the patients of primary gout by microarray analysis.PLoS One2021162e023291810.1371/journal.pone.0232918 33600466
    [Google Scholar]
  23. YuG. WangL.G. YanG.R. HeQ.Y. DOSE: An R/Bioconductor package for disease ontology semantic and enrichment analysis.Bioinformatics201531460860910.1093/bioinformatics/btu684 25677125
    [Google Scholar]
  24. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  25. WangZ. SunH. YaoX. LiD. XuL. LiY. TianS. HouT. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power.Phys. Chem. Chem. Phys.20161818129641297510.1039/C6CP01555G 27108770
    [Google Scholar]
  26. ZengP. LiuY.C. WangX.M. YeC.Y. SunY.W. SuH.F. QiuS.W. LiY.N. WangY. WangY.C. MaJ. LiM. TianQ. Targets and mechanisms of Alpinia oxyphylla Miquel fruits in treating neurodegenerative dementia.Front. Aging Neurosci.202214101389110.3389/fnagi.2022.1013891 36533181
    [Google Scholar]
  27. ShiC. ZhouZ. ChiX. XiuS. YiC. JiangZ. ChenR. ZhangL. LiuZ. Recent advances in gout drugs.Eur. J. Med. Chem.2023245Pt 111489010.1016/j.ejmech.2022.114890 36335742
    [Google Scholar]
  28. OkamotoK. EgerB.T. NishinoT. KondoS. PaiE.F. NishinoT. An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition.J. Biol. Chem.200327831848185510.1074/jbc.M208307200 12421831
    [Google Scholar]
  29. ZhangW.Z. Why does hyperuricemia not necessarily induce gout?Biomolecules202111228010.3390/biom11020280 33672821
    [Google Scholar]
  30. HeitelP. GellrichL. HeeringJ. GoebelT. KahntA. ProschakE. Schubert-ZsilaveczM. MerkD. Urate transporter inhibitor lesinurad is a selective peroxisome proliferator-activated receptor gamma modulator (sPPARγM) in vitro.Sci. Rep.2018811355410.1038/s41598‑018‑31833‑4 30202096
    [Google Scholar]
  31. van DurmeC.M. WechalekarM.D. LandewéR.B. Pardo PardoJ. CyrilS. van der HeijdeD. BuchbinderR. Non-steroidal anti-inflammatory drugs for acute gout.Cochrane Database Syst. Rev.20211212CD010120 34882311
    [Google Scholar]
  32. QiQ. HeX. WangG. ShaN.A. LeiL.V. ChenG. Anti-inflammatory and analgesic effects of total saponin of Dioscorea.Chin. J. Clin. Pharmacol. Ther.2020253257
    [Google Scholar]
  33. WangZ.Y. WangX. ZhangD.Y. HuY.J. LiS. Traditional Chinese medicine network pharmacology: Development in new era under guidance of network pharmacology evaluation method guidance.Zhongguo Zhongyao Zazhi2022471717 35178906
    [Google Scholar]
  34. JenkinsC. HwangJ.H. KoppJ.B. WinklerC.A. ChoS.K. Review of urate-lowering therapeutics: From the past to the future.Front. Pharmacol.20221392521910.3389/fphar.2022.925219 36081938
    [Google Scholar]
  35. FanP. ChangT. ZhaoY. Experimental study of Bixie Chubi Tang in treating gout.Zhongguo Shiyan Fangjixue Zazhi2015219129132
    [Google Scholar]
  36. WangQ. ZhouB. YangQ. Effect of Bixie deacidification fang on hyperuricemia mouse model and its effect on the expression of renal urate transporter.J. Pharm. Pract.20224002143145
    [Google Scholar]
  37. OrhanI.E. DenizF.S.S. Natural products and extracts as xantine oxidase inhibitors-a hope for gout disease?Curr. Pharm. Des.202127214315810.2174/18734286MTA4lNTc95 32723252
    [Google Scholar]
  38. XuR. WangF. YangH. WangZ. Action sites and clinical application of HIF-1α inhibitors.Molecules20222711342610.3390/molecules27113426 35684364
    [Google Scholar]
  39. MianWu Zhang, M.; Ma, Y.; Liu, F.; Chen, S.; Lu, J.; Chen, H. Chaetocin attenuates gout in mice through inhibiting HIF-1α and NLRP3 inflammasome-dependent IL-1β secretion in macrophages.Arch. Biochem. Biophys.20196709410310.1016/j.abb.2019.06.010 31255694
    [Google Scholar]
  40. AlbadariN. DengS. LiW. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy.Expert Opin. Drug Discov.201914766768210.1080/17460441.2019.1613370 31070059
    [Google Scholar]
  41. ZhaoL. YeW. ZhuY. ChenF. WangQ. LvX. HuaY. DuZ. ZhuX. YuY. ZouH. LiuL. XueY. Distinct macrophage polarization in acute and chronic gout.Lab. Invest.2022102101054106310.1038/s41374‑022‑00798‑4 35614340
    [Google Scholar]
  42. YangS. YuanH.Q. HaoY.M. RenZ. QuS.L. LiuL.S. WeiD.H. TangZ.H. ZhangJ.F. JiangZ.S. Macrophage polarization in atherosclerosis.Clin. Chim. Acta202050114214610.1016/j.cca.2019.10.034 31730809
    [Google Scholar]
  43. ChiG. PeiJ.H. LiX.Q. EZH2-mediated H3K27me3 promotes autoimmune hepatitis progression by regulating macrophage polarization.Int. Immunopharmacol.202210610861210.1016/j.intimp.2022.108612 35193055
    [Google Scholar]
  44. WangJ. LiP. XuX. ZhangB. ZhangJ. MicroRNA-200a inhibits inflammation and atherosclerotic lesion formation by disrupting EZH2-mediated methylation of STAT3.Front. Immunol.20201190710.3389/fimmu.2020.00907 32655542
    [Google Scholar]
  45. ShiL. YuanZ. LiuJ. CaiR. HasnatM. YuH. FengJ. WangZ. ZhaoQ. WuM. HuangX. ShenF. YinL. YuY. LiangT. Modified Simiaowan prevents articular cartilage injury in experimental gouty arthritis by negative regulation of STAT3 pathway.J. Ethnopharmacol.202127011382510.1016/j.jep.2021.113825 33460754
    [Google Scholar]
  46. CuiJ. JiaJ. Natural COX-2 inhibitors as promising anti-inflammatory agents: An update.Curr. Med. Chem.202128183622364610.2174/1875533XMTEwdMDIn5 32942970
    [Google Scholar]
  47. LiL. SluterM.N. YuY. JiangJ. Prostaglandin E receptors as targets for ischemic stroke: Novel evidence and molecular mechanisms of efficacy.Pharmacol. Res.202116310523810.1016/j.phrs.2020.105238 33053444
    [Google Scholar]
  48. MannanA. GargN. SinghT.G. KangH.K. Peroxisome proliferator-activated receptor-gamma (PPAR-ɣ): Molecular effects and its importance as a novel therapeutic target for cerebral ischemic injury.Neurochem. Res.202146112800283110.1007/s11064‑021‑03402‑1 34282491
    [Google Scholar]
  49. CuiC.Y. LiuX. PengM.H. LiuQ. ZhangY. Identification of key candidate genes and biological pathways in neuropathic pain.Comput. Biol. Med.202215010613510.1016/j.compbiomed.2022.106135 36166989
    [Google Scholar]
  50. ZhouJ. JinY. MaR. SongH. ChenQ. ChaiY. LiangY. ZhouY. FangJ. Electroacupuncture alleviates experimental chronic inflammatory pain by inhibiting calcium voltage-gated channel-mediated inflammation.Evid. Based Complement. Alternat. Med.2020202011010.1155/2020/7061972 32104194
    [Google Scholar]
  51. ZhouH. ZhengX. WangH. ZengQ. DengL. DingW. Difference in network mechanism of shoutaiwan and juyuanjian in reversing pathology of decidua of spontaneous abortion patients: Based on “uterine collaterals connecting kidney” and “fetal collaterals connecting spleen” theory.Zhongguo Shiyan Fangjixue Zazhi20222820186200
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073258523231025095117
Loading
/content/journals/cchts/10.2174/0113862073258523231025095117
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. Fig. : Chemical structures of phytochemicals in DST. Fig. : PPI network showing DST targets interact with gout. Fig. : PPI network showing DST targets interact with hyperuricemia (Supplementary Materials).

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test