Skip to content
2000
Volume 28, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Poor ovarian response (POR) reduces the success rate of fertilization mainly because of fewer oocytes retrieved. Acupuncture (Ac) therapy can improve the number of retrieved oocytes in the controlled ovarian stimulation program. The role of Ac in the corresponding epigenetic mechanism of POR has not been studied.

Objective

This study was conducted to determine the effect of Ac on the number of retrieved oocytes and its role in DNA methylation in a mouse model of POR.

Methods

Forty C57BL/6N female mice with normal estrous cycles were randomly classified into 4 groups of 10 each: control (Con) group, Ac-Con group, POR group, and Ac-POR group. Mice in POR and Ac-POR groups received a gastric gavage of Tripterygium wilfordii polyglycoside suspension of 50 mg/kg-1 once a day for 14 consecutive days. Ac was applied at “Shenting” (DU 24), “Guanyuan” (CV 4), “Zusanli” (ST 36), and “Shenshu” (BL 23) in the Ac-POR group for 10 min per session, once a day for 14 consecutive days. All four groups were stimulated with pregnant mare serum gonadotropin and human chorionic gonadotropin, and the number of retrieved oocytes and proportion of mature oocytes were recorded. The DNA methylation level in a single mouse oocyte in each group was analyzed using single-cell genome-wide bisulfite sequencing (scBS-seq), and key pathways were identified using GO and KEGG enrichment analyses.

Results

A dissecting microscope revealed that the Ac therapy improved the number of retrieved oocytes compared with the POR group ( < 0.05). ScBS-seq showed that there was no significant change in global DNA methylation levels between the POR model and control group mice. However, differences were primarily observed in the differentially methylated regions (DMRs) of each chromosome, and Ac decreased global DNA methylation. DMR analysis identified 13 genes that may be associated with Ac treatment. Cdk5rap2 and Igf1r, which mediate germ cell apoptosis, growth, and development, maybe most closely related to the Ac treatment of POR. KEGG analysis revealed that differentially expressed genes were mainly enriched in Wnt, GnRH, and calcium signaling pathways. The genes were closely related to the regulation of POR Ac.

Conclusion

The results suggest that DNA methylation in oocytes is related to the development of POR and that the role of Ac in affecting DNA methylation in oocytes is associated with the Wnt, GnRH, and calcium signaling pathways as well as Cdk5rap2 and Igf1r in POR mice.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073264460231113052942
2023-11-27
2025-01-31
Loading full text...

Full text loading...

References

  1. UbaldiF. VaiarelliA. D’AnnaR. RienziL. Management of poor responders in IVF: Is there anything new?BioMed Res. Int.2014201411010.1155/2014/352098 25136579
    [Google Scholar]
  2. FerrarettiA.P. La MarcaA. FauserB.C.J.M. TarlatzisB. NargundG. GianaroliL. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: The Bologna criteria.Hum. Reprod.20112671616162410.1093/humrep/der092 21505041
    [Google Scholar]
  3. MooreL.D. LeT. FanG. DNA methylation and its basic function.Neuropsychopharmacology2013381233810.1038/npp.2012.112 22781841
    [Google Scholar]
  4. Moore-MorrisT. van VlietP.P. AndelfingerG. PuceatM. Role of epigenetics in cardiac development and congenital diseases.Physiol. Rev.20189842453247510.1152/physrev.00048.2017 30156497
    [Google Scholar]
  5. DengM. ZhangG. CaiY. LiuZ. ZhangY. MengF. WangF. WanY. DNA methylation dynamics during zygotic genome activation in goat.Theriogenology202015614415410.1016/j.theriogenology.2020.07.008 32731098
    [Google Scholar]
  6. AftabsavadS. NoormohammadiZ. MoiniA. KarimipoorM. Effect of bisphenol A on alterations of ICAM-1 and HLA-G genes expression and DNA methylation profiles in cumulus cells of infertile women with poor response to ovarian stimulation.Sci. Rep.2021111959510.1038/s41598‑021‑87175‑1 33953208
    [Google Scholar]
  7. ChibaH. HiuraH. OkaeH. MiyauchiN. SatoF. SatoA. ArimaT. DNA methylation errors in imprinting disorders and assisted reproductive technology.Pediatr. Int.201355554254910.1111/ped.12185 23919517
    [Google Scholar]
  8. SmithZ.D. ChanM.M. HummK.C. KarnikR. MekhoubadS. RegevA. EgganK. MeissnerA. DNA methylation dynamics of the human preimplantation embryo.Nature2014511751161161510.1038/nature13581 25079558
    [Google Scholar]
  9. XieZ. PengZ. YaoB. ChenL. MuY. ChengJ. LiQ. LuoX. YangP. XiaY. The effects of acupuncture on pregnancy outcomes of in vitro fertilization: A systematic review and meta-analysis.BMC Complement. Altern. Med.201919113110.1186/s12906‑019‑2523‑7 31200701
    [Google Scholar]
  10. DjaaliW. AbdurrohimK. HelianthiD.R. Management of acupuncture as adjuvant therapy for In Vitro fertilization.Med. Acupunct.201931636136510.1089/acu.2019.1394 31871523
    [Google Scholar]
  11. JangS. KimK.H. JunJ.H. YouS. Acupuncture for in vitro fertilization in women with poor ovarian response: A systematic review.Integr. Med. Res.20209210039510.1016/j.imr.2020.02.003 32322482
    [Google Scholar]
  12. FuS.P. HeS.Y. XuB. HuC.J. LuS.F. ShenW.X. HuangY. HongH. LiQ. WangN. LiuX.L. LiangF. ZhuB.M. Acupuncture promotes angiogenesis after myocardial ischemia through H3K9 acetylation regulation at VEGF gene.PLoS One201494e9460410.1371/journal.pone.0094604 24722278
    [Google Scholar]
  13. LuS. HuangY. WangN. ShenW. FuS. LiQ. YuM. LiuW. ChenX. JingX. ZhuB. Cardioprotective effect of electroacupuncture pretreatment on myocardial ischemia/reperfusion injury via antiapoptotic signaling.Evid. Based Complement. Alternat. Med.201620161910.1155/2016/4609784 27313648
    [Google Scholar]
  14. CuiP. MaT. TamadonA. HanS. LiB. ChenZ. AnX. ShaoL.R. WangY. FengY. Hypothalamic DNA methylation in rats with dihydrotestosterone‐induced polycystic ovary syndrome: Effects of low‐frequency electro‐acupuncture.Exp. Physiol.2018103121618163210.1113/EP087163 30204276
    [Google Scholar]
  15. ByersS.L. WilesM.V. DunnS.L. TaftR.A. Mouse estrous cycle identification tool and images.PLoS One201274e3553810.1371/journal.pone.0035538 22514749
    [Google Scholar]
  16. XuD.S. ZhaoS. CuiJ.J. MaT.M. XuB. YuX.C. ZhuB. JingX.H. BaiW.Z. A new attempt of re-mapping acupoint atlas in the rat.Zhen Ci Yan Jiu20194416265 30773865
    [Google Scholar]
  17. SmallwoodS.A. LeeH.J. AngermuellerC. KruegerF. SaadehH. PeatJ. AndrewsS.R. StegleO. ReikW. KelseyG. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity.Nat. Methods201411881782010.1038/nmeth.3035 25042786
    [Google Scholar]
  18. KanehisaM. ArakiM. GotoS. HattoriM. HirakawaM. ItohM. KatayamaT. KawashimaS. OkudaS. TokimatsuT. YamanishiY. KEGG for linking genomes to life and the environment.Nucleic Acids Res.200836Database issueD480D484 18077471
    [Google Scholar]
  19. EstevesS.C. RoqueM. BedoschiG.M. ConfortiA. HumaidanP. AlviggiC. Defining low prognosis patients undergoing assisted reproductive technology: POSEIDON Criteria: The Why.Front. Endocrinol.2018946110.3389/fendo.2018.00461 30174650
    [Google Scholar]
  20. WallaceW.H.B. KelseyT.W. Human ovarian reserve from conception to the menopause.PLoS One201051e877210.1371/journal.pone.0008772 20111701
    [Google Scholar]
  21. ZhangY.P. YuNaWei. CY.; ShanShani, J.; YaJing, W.; QiaoYan, P. Effect of danggui shaoyaosan on diminished ovarian reserve in model rats: An exploration based on TGF-β1/Smads signaling pathway.Zhongguo Shiyan Fangjixue Zazhi20212721
    [Google Scholar]
  22. NargundG. ChengW.C. ParsonsJ. The impact of ovarian cystectomy on ovarian response to stimulation during in-vitro fertilization cycles.Hum. Reprod.1996111818310.1093/oxfordjournals.humrep.a019043 8671163
    [Google Scholar]
  23. KummerN. MartinJ.R. PalL. Diminished ovarian reserve in a woman with a balanced 13;21 translocation.Fertil. Steril.2009913931.e3931.e510.1016/j.fertnstert.2008.07.1726 18829026
    [Google Scholar]
  24. MolloyD. MartinM. SpeirsA. LopataA. ClarkeG. McBainJ. NguA. JohnstonI.H. Performance of patients with a “frozen pelvis” in an in vitro fertilization program.Fertil. Steril.198747345045510.1016/S0015‑0282(16)59054‑2 3556623
    [Google Scholar]
  25. JohnsonJ. CanningJ. KanekoT. PruJ.K. TillyJ.L. Germline stem cells and follicular renewal in the postnatal mammalian ovary.Nature2004428697914515010.1038/nature02316 15014492
    [Google Scholar]
  26. GongY. Li-LingJ. XiongD. WeiJ. ZhongT. TanH. Age-related decline in the expression of GDF9 and BMP15 genes in follicle fluid and granulosa cells derived from poor ovarian responders.J. Ovarian Res.2021141110.1186/s13048‑020‑00757‑x 33397408
    [Google Scholar]
  27. UbaldiF.M. RienziL. FerreroS. BaroniE. SapienzaF. CobellisL. GrecoE. Management of poor ovarian responders in IVF.Reprod. Biomed. Online200510223524610.1016/S1472‑6483(10)60946‑7 15823231
    [Google Scholar]
  28. MovahedE. SoleimaniM. HosseiniS. Akbari SeneA. SalehiM. Aberrant expression of miR‐29a/29b and methylation level of mouse embryos after in vitro fertilization and vitrification at two‐cell stage.J. Cell. Physiol.201923410189421895010.1002/jcp.28534 30916357
    [Google Scholar]
  29. XiaoyunS. ShilingC. HaiyanZ. The impact of in vitro rescue-maturation on dna methylation of imprinted genes in human oocytes.J. Guizh. Med. Univ.20164110
    [Google Scholar]
  30. YuLingHuang S C.; Xiao Lin, L.; XiangJin, T. Genome-wide comparison of CpG island methylation patterns in IVM and IVO morula.J. Pract. Med.20153109
    [Google Scholar]
  31. LiangY. FuX.W. LiJ.J. YuanD.S. ZhuS.E. DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos: Effect of oocyte vitrification.Zygote201422213814510.1017/S0967199412000512 23174120
    [Google Scholar]
  32. YanL.Y. YanJ. QiaoJ. ZhaoP.L. LiuP. Effects of oocyte vitrification on histone modifications.Reprod. Fertil. Dev.201022692092510.1071/RD09312 20591326
    [Google Scholar]
  33. CaoZ. ZhangM. XuT. ChenZ. TongX. ZhangD. WangY. ZhangL. GaoD. LuoL. KhanI.M. ZhangY. Vitrification of murine mature metaphase II oocytes perturbs DNA methylation reprogramming during preimplantation embryo development.Cryobiology201987919810.1016/j.cryobiol.2019.01.012 30707961
    [Google Scholar]
  34. IssaL. KraemerN. RickertC.H. SifringerM. NinnemannO. Stoltenburg-DidingerG. KaindlA.M. CDK5RAP2 expression during murine and human brain development correlates with pathology in primary autosomal recessive microcephaly.Cereb. Cortex20132392245226010.1093/cercor/bhs212 22806269
    [Google Scholar]
  35. KraemerN. IssaL. HauckS.C.R. ManiS. NinnemannO. KaindlA.M. What’s the hype about CDK5RAP2?Cell. Mol. Life Sci.201168101719173610.1007/s00018‑011‑0635‑4 21327915
    [Google Scholar]
  36. KaindlA.M. PassemardS. KumarP. KraemerN. IssaL. ZwirnerA. GerardB. VerloesA. ManiS. GressensP. Many roads lead to primary autosomal recessive microcephaly.Prog. Neurobiol.201090336338310.1016/j.pneurobio.2009.11.002 19931588
    [Google Scholar]
  37. LizarragaS.B. MargossianS.P. HarrisM.H. CampagnaD.R. HanA.P. BlevinsS. MudbharyR. BarkerJ.E. WalshC.A. FlemingM.D. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors.Development2010137111907191710.1242/dev.040410 20460369
    [Google Scholar]
  38. RussellE.S. McFarlandE.C. PetersH. Gametic and pleiotropic defects in mouse fetuses with Hertwig’s macrocytic anemia.Dev. Biol.1985110233133710.1016/0012‑1606(85)90092‑2 4018402
    [Google Scholar]
  39. ZaqoutS. BessaP. KrämerN. Stoltenburg-DidingerG. KaindlA.M. CDK5RAP2 is required to maintain the germ cell pool during embryonic development.Stem Cell Reports20178219820410.1016/j.stemcr.2017.01.002 28162995
    [Google Scholar]
  40. AitkenR.J. FindlayJ.K. HuttK.J. KerrJ.B. Apoptosis in the germ line.Reproduction2011141213915010.1530/REP‑10‑0232 21148286
    [Google Scholar]
  41. WuH. ZhangJ. SunZ. XiangS. QiaoY. LianF. Effects of electroacupuncture on expression of PI3K/Akt/Foxo3a in Granulosa Cells from Women with Shen (Kidney) deficiency syndrome undergoing in vitro fertilization-embryo transfer.Chin. J. Integr. Med.201925425225810.1007/s11655‑019‑2948‑3 31236889
    [Google Scholar]
  42. KumarT.R. WangY. LuN. MatzukM.M. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility.Nat. Genet.199715220120410.1038/ng0297‑201 9020850
    [Google Scholar]
  43. ZhouP. BaumgartenS.C. WuY. BennettJ. WinstonN. Hirshfeld-CytronJ. StoccoC. IGF-I signaling is essential for FSH stimulation of AKT and steroidogenic genes in granulosa cells.Mol. Endocrinol.201327351152310.1210/me.2012‑1307 23340251
    [Google Scholar]
  44. BaumgartenS.C. ConvissarS.M. FierroM.A. WinstonN.J. ScocciaB. StoccoC. IGF1R signaling is necessary for FSH-induced activation of AKT and differentiation of human Cumulus granulosa cells.J. Clin. Endocrinol. Metab.20149982995300410.1210/jc.2014‑1139 24848710
    [Google Scholar]
  45. BaumgartenS.C. ConvissarS.M. ZamahA.M. FierroM.A. WinstonN.J. ScocciaB. StoccoC. FSH Regulates IGF-2 Expression in human granulosa cells in an akt-dependent manner.J. Clin. Endocrinol. Metab.20151008E1046E105510.1210/jc.2015‑1504 26066673
    [Google Scholar]
  46. BaumgartenS.C. ArmoutiM. KoC. StoccoC. IGF1R expression in ovarian granulosa cells is essential for steroidogenesis, follicle survival, and fertility in female mice.Endocrinology201715872309231810.1210/en.2017‑00146 28407051
    [Google Scholar]
  47. KuceraR. BabuskaV. Ulcova-GallovaZ. KuldaV. TopolcanO. Follicular fluid levels of anti-Müllerian hormone, insulin-like growth factor 1 and leptin in women with fertility disorders.Syst Biol Reprod Med201864322022310.1080/19396368.2018.1450906 29595066
    [Google Scholar]
  48. KumarM. CamlinN.J. HoltJ.E. TeixeiraJ.M. McLaughlinE.A. TanwarP.S. Germ cell specific overactivation of WNT/βcatenin signalling has no effect on folliculogenesis but causes fertility defects due to abnormal foetal development.Sci. Rep.2016612727310.1038/srep27273 27265527
    [Google Scholar]
  49. HarwoodB.N. CrossS.K. RadfordE.E. HaacB.E. De VriesW.N. Members of the WNT signaling pathways are widely expressed in mouse ovaries, oocytes, and cleavage stage embryos.Dev. Dyn.200823741099111110.1002/dvdy.21491 18351675
    [Google Scholar]
  50. ShiM. ChengJ. HeY. JiangZ. BodingaB.M. LiuB. ChenH. LiQ. Effect of FH 535 on in vitro maturation of porcine oocytes by inhibiting WNT signaling pathway.Anim. Sci. J.201889463163910.1111/asj.12982 29284185
    [Google Scholar]
  51. WangH.X. TekpeteyF.R. KidderG.M. Identification of WNT/-CATENIN signaling pathway components in human cumulus cells.Mol. Hum. Reprod.2009151111710.1093/molehr/gan070 19038973
    [Google Scholar]
  52. FanH.Y. O’ConnorA. ShitanakaM. ShimadaM. LiuZ. RichardsJ.S. Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization.Mol. Endocrinol.20102481529154210.1210/me.2010‑0141 20610534
    [Google Scholar]
  53. WuH.M. WangH.S. HuangH.Y. SoongY.K. MacCalmanC.D. LeungP.C.K. GnRH signaling in intrauterine tissues.Reproduction2009137576977710.1530/REP‑08‑0397 19208750
    [Google Scholar]
  54. BlissS.P. NavratilA.M. XieJ. RobersonM.S. GnRH signaling, the gonadotrope and endocrine control of fertility.Front. Neuroendocrinol.201031332234010.1016/j.yfrne.2010.04.002 20451543
    [Google Scholar]
  55. MiaoY.L. SteinP. JeffersonW.N. Padilla-BanksE. WilliamsC.J. Calcium influx-mediated signaling is required for complete mouse egg activation.Proc. Natl. Acad. Sci.2012109114169417410.1073/pnas.1112333109 22371584
    [Google Scholar]
  56. MiaoY.L. WilliamsC.J. Calcium signaling in mammalian egg activation and embryo development: The influence of subcellular localization.Mol. Reprod. Dev.2012791174275610.1002/mrd.22078 22888043
    [Google Scholar]
  57. HomaS.T. Calcium and meiotic maturation of the mammalian oocyte.Mol. Reprod. Dev.199540112213410.1002/mrd.1080400116 7702866
    [Google Scholar]
  58. PaleosG.A. PowersR.D. The effect of calcium on the first meiotic division of the mammalian oocyte.J. Exp. Zool.1981217340941610.1002/jez.1402170312 7338717
    [Google Scholar]
  59. OrreniusS. ZhivotovskyB. NicoteraP. Regulation of cell death: The calcium–apoptosis link.Nat. Rev. Mol. Cell Biol.20034755256510.1038/nrm1150 12838338
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073264460231113052942
Loading
/content/journals/cchts/10.2174/0113862073264460231113052942
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test