Skip to content
2000
Volume 27, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Acute lung injury (ALI) is a serious lung disease characterized by acute and severe inflammation. Upregulation of ACE2 and inhibition of the NF-κB signaling pathway attenuate LPS-induced ALI.

Objective

To explore whether Zang Siwei Qingfei Mixture inhibits the development of ALI through the ACE2/NF-κB signaling pathway.

Methods

Alveolar type II epithelial cells (AEC II) were identified by immunofluorescence staining and flow cytometry. C57BL/6J mice were treated with LPS to establish an ALI model. Cell viability was assessed using CCK8 assays. The levels of ACE, ACE2, p-p38/p38, p-ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 were analyzed by Western blotting. ELISA was applied to detect the levels of TNF-a, IL-6, AGT, and Ang1-7. HE staining was used to observe lung injury. The mRNA expression of ACE, ACE2, and Mas was measured by RT-qPCR.

Results

AEC II cells were successfully isolated. Treatment with the Zang Siwei Qingfei Mixture resulted in a decrease in ACE, p-p38/p38, p-ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκB-α, p-NF-κBp65 levels, while increasing ACE2 levels. Zang Siwei Qingfei mixture also led to a reduction in TNF-α, IL6, and AGT levels, while increasing Ang1-7 level. Histological analysis showed that Zang Siwei Qingfei Mixture treatment improved the alveolar structure of ALI mice and reduced inflammatory infiltration. The pretreatment with MLN-4760, an ACE2 inhibitor, resulted in opposite effects compared to Zang Siwei Qingfei Mixture treatment.

Conclusion

Zang Siwei Qingfei mixture attenuates ALI by regulating the ACE2/NF-κB signaling pathway in mice. This study provides a theoretical foundation for the development of improved ALI treatments.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073259884231024111447
2024-12-01
2025-01-24
Loading full text...

Full text loading...

References

  1. LiY. CaoY. XiaoJ. ShangJ. TanQ. PingF. HuangW. WuF. ZhangH. ZhangX. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury.Cell Death Differ.20202792635265010.1038/s41418‑020‑0528‑x 32203170
    [Google Scholar]
  2. HongH. LouS. ZhengF. GaoH. WangN. TianS. HuangG. ZhaoH. Hydnocarpin D attenuates lipopolysaccharide-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway.Phytomedicine202210115414310.1016/j.phymed.2022.154143 35537248
    [Google Scholar]
  3. LaskinD.L. MalaviyaR. LaskinJ.D. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants.Toxicol. Sci.2019168228730110.1093/toxsci/kfy309 30590802
    [Google Scholar]
  4. ChangY.W. TsengC.P. LeeC.H. HwangT.L. ChenY.L. SuM.T. ChongK.Y. LanY.W. WuC.C. ChenK.J. LuF.H. LiaoH.R. HsuehC. HsiehP.W. β-Nitrostyrene derivatives attenuate LPS-mediated acute lung injury via the inhibition of neutrophil-platelet interactions and NET release.Am. J. Physiol. Lung Cell. Mol. Physiol.20183144L654L66910.1152/ajplung.00501.2016 29351433
    [Google Scholar]
  5. JansingJ.C. FiedlerJ. PichA. ViereckJ. ThumT. MühlfeldC. BrandenbergerC. miR-21-KO Alleviates alveolar structural remodeling and inflammatory signaling in acute lung injury.Int. J. Mol. Sci.202021382210.3390/ijms21030822 32012801
    [Google Scholar]
  6. SapoznikovA. GalY. FalachR. SagiI. EhrlichS. LererE. MakovitzkiA. AloshinA. KronmanC. SaboT. Early disruption of the alveolar-capillary barrier in a ricin-induced ARDS mouse model: Neutrophil-dependent and -independent impairment of junction proteins.Am. J. Physiol. Lung Cell. Mol. Physiol.20193161L255L26810.1152/ajplung.00300.2018 30382767
    [Google Scholar]
  7. ZhuP. ZhangW. FengF. QinL. JiW. LiD. LiangR. ZhangY. WangY. LiM. WuW. JinY. DuanG. Role of angiotensin-converting enzyme 2 in fine particulate matter-induced acute lung injury.Sci. Total Environ.202282515396410.1016/j.scitotenv.2022.153964 35182631
    [Google Scholar]
  8. HrenakJ. SimkoF. Renin-angiotensin system: An important player in the pathogenesis of acute respiratory distress syndrome.Int. J. Mol. Sci.20202121803810.3390/ijms21218038 33126657
    [Google Scholar]
  9. ChenQ. LiuJ. WangW. LiuS. YangX. ChenM. ChengL. LuJ. GuoT. HuangF. Sini decoction ameliorates sepsis-induced acute lung injury via regulating ACE2-Ang (1-7)-Mas axis and inhibiting the MAPK signaling pathway.Biomed. Pharmacother.201911510897110.1016/j.biopha.2019.108971 31102910
    [Google Scholar]
  10. ZhouQ. HeD.X. DengY.L. WangC.L. ZhangL.L. JiangF.M. IrakozeL. LiangZ.A. MiR-124-3p targeting PDE4B attenuates LPS-induced ALI through the TLR4/NF-κB signaling pathway.Int. Immunopharmacol.202210510854010.1016/j.intimp.2022.108540 35063752
    [Google Scholar]
  11. HanS. YuanR. CuiY. HeJ. WangQ.Q. ZhuoY. YangS. GaoH. HederasaponinC. Hederasaponin C alleviates lipopolysaccharide-induced acute lung injury in vivo and in vitro through the PIP2/NF-κB/NLRP3 signaling pathway.Front. Immunol.20221384638410.3389/fimmu.2022.846384 35281058
    [Google Scholar]
  12. ChenY. QuL. LiY. ChenC. HeW. ShenL. ZhangR. Glycyrrhizic acid alleviates lipopolysaccharide (LPS)-induced acute lung injury by regulating angiotensin-converting enzyme-2 (ACE2) and caveolin-1 signaling pathway.Inflammation202245125326610.1007/s10753‑021‑01542‑8 34427852
    [Google Scholar]
  13. YanL.S. CuiS. ChengB.C.Y. YinX.B. WangY.W. QiuX.Y. NimaC.R. ZhangY. ZhangS.F. Sichen formula ameliorates lipopolysaccharide-induced acute lung injury via blocking the TLR4 signaling pathways.Drug Des. Devel. Ther.20231729731210.2147/DDDT.S372981 36756190
    [Google Scholar]
  14. WangC. RenL. ChenS. ZhengH. YangY. GuT. LiY. WangC. Longdan Xiegan Tang attenuates liver injury and hepatic insulin resistance by regulating the angiotensin-converting enzyme 2/Ang (1–7)/Mas axis-mediated anti-inflammatory pathway in rats.J. Ethnopharmacol.202127411407210.1016/j.jep.2021.114072 33781876
    [Google Scholar]
  15. NotarteK.I.R. QuimqueM.T.J. MacaranasI.T. KhanA. PastranaA.M. VillafloresO.B. ArturoH.C.P. PilapilD.Y.H.IV TanS.M.M. WeiD.Q. Wenzel-StorjohannA. TasdemirD. YenC.H. JiS.Y. KimG.Y. ChoiY.H. MacabeoA.P.G. Attenuation of Lipopolysaccharide-Induced Inflammatory Responses through Inhibition of the NF-κB Pathway and the Increased NRF2 Level by a Flavonol-Enriched n -Butanol Fraction from Uvaria alba.ACS Omega2023865377539210.1021/acsomega.2c06451 36816691
    [Google Scholar]
  16. HeY.Q. ZhouC.C. YuL.Y. WangL. DengJ. TaoY.L. ZhangF. ChenW.S. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms.Pharmacol. Res.202116310522410.1016/j.phrs.2020.105224 33007416
    [Google Scholar]
  17. JiangR. LuoS. ZhangM. LanQ. ZhaoX. WangW. ZhuoS. WangX. JiangX. Jianpiyiqi decoction inhibits proliferation and invasion by suppressing the Caspase-1/IRAKs/NF-KB signalling pathway in hepatoma Huh-7 cells.Eur. J. Integr. Med.20235810223010.1016/j.eujim.2023.102230
    [Google Scholar]
  18. DonatiY. BlaskovicS. Ruchonnet-MétraillerI. Lascano MaillardJ. Barazzone-ArgiroffoC. Simultaneous isolation of endothelial and alveolar epithelial type I and type II cells during mouse lung development in the absence of a transgenic reporter.Am. J. Physiol. Lung Cell. Mol. Physiol.20203184L619L63010.1152/ajplung.00227.2019 32022591
    [Google Scholar]
  19. ChenQ. LiuY. Isolation and culture of mouse alveolar type II cells to study type II to type I cell differentiation.STAR Protoc.202121100241
    [Google Scholar]
  20. MaQ. LiR. PanW. HuangW. LiuB. XieY. WangZ. LiC. JiangH. HuangJ. ShiY. DaiJ. ZhengK. LiX. HuiM. FuL. YangZ. Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway.Phytomedicine202078153296
    [Google Scholar]
  21. SaravananR. RamachandranV. Modulating efficacy of Rebaudioside A, a diterpenoid on antioxidant and circulatory lipids in experimental diabetic rats.Environ. Toxicol. Pharmacol.201336247248310.1016/j.etap.2013.05.009 23792234
    [Google Scholar]
  22. WangY. LiL. WangY. ZhuX. JiangM. SongE. SongY. New application of the commercial sweetener rebaudioside a as a hepatoprotective candidate: Induction of the Nrf2 signaling pathway.Eur. J. Pharmacol.201882212813710.1016/j.ejphar.2018.01.020 29355553
    [Google Scholar]
  23. WangJ. YangH. LiQ. WuX. DiG. FanJ. WeiD. GuoC. Novel nanomicelles based on rebaudioside A: A potential nanoplatform for oral delivery of honokiol with enhanced oral bioavailability and antitumor activity.Int. J. Pharm.202059011989910.1016/j.ijpharm.2020.119899 32971177
    [Google Scholar]
  24. KurekJ.M. KrólE. KrejpcioZ. Steviol glycosides supplementation affects lipid metabolism in high-fat fed stz-induced diabetic rats.Nutrients202013111210.3390/nu13010112 33396905
    [Google Scholar]
  25. WangQ.P. BrowmanD. HerzogH. NeelyG.G. NeelyG.G. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice.PLoS One2018137e019908010.1371/journal.pone.0199080 29975731
    [Google Scholar]
  26. TianX. LiuY. LiuX. GaoS. SunX. Glycyrrhizic acid ammonium salt alleviates Concanavalin A-induced immunological liver injury in mice through the regulation of the balance of immune cells and the inhibition of hepatocyte apoptosis.Biomed. Pharmacother.201912010948110.1016/j.biopha.2019.109481 31586906
    [Google Scholar]
  27. BaroneA. CristianoM.C. CilurzoF. LocatelliM. IannottaD. Di MarzioL. CeliaC. PaolinoD. Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: A novel use as an anti-inflammatory agent in topical drug delivery.Colloids Surf. B Biointerfaces202019311115210.1016/j.colsurfb.2020.111152 32535351
    [Google Scholar]
  28. CiarloL. MarzoliF. MinosiP. MatarreseP. PierettiS. Ammonium glycyrrhizinate prevents apoptosis and mitochondrial dysfunction induced by high glucose in SH-SY5Y cell line and counteracts neuropathic pain in streptozotocin-induced diabetic mice.Biomedicines20219660810.3390/biomedicines9060608 34073550
    [Google Scholar]
  29. ShinJ.S. Im, H.T.; Lee, K.T. Saikosaponin B2 suppresses inflammatory responses through IKK/IκBα/NF-κB Signaling inactivation in LPS-induced raw 264.7 macrophages.Inflammation201942134235310.1007/s10753‑018‑0898‑0 30251218
    [Google Scholar]
  30. ZhaoY. FengL. LiuL. ZhaoR. Saikosaponin b2 enhances the hepatotargeting effect of anticancer drugs through inhibition of multidrug resistance-associated drug transporters.Life Sci.201923111655710.1016/j.lfs.2019.116557 31194994
    [Google Scholar]
  31. LinL.T. ChungC.Y. HsuW.C. ChangS.P. HungT.C. ShieldsJ. RussellR.S. LinC.C. LiC.F. YenM.H. TyrrellD.L.J. LinC.C. RichardsonC.D. Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry.J. Hepatol.201562354154810.1016/j.jhep.2014.10.040 25450204
    [Google Scholar]
  32. RenD. LuoJ. LiY. ZhangJ. YangJ. LiuJ. ZhangX. ChengN. XinH. Saikosaponin B2 attenuates kidney fibrosis via inhibiting the Hedgehog Pathway.Phytomedicine20206715316310.1016/j.phymed.2019.153163 31901891
    [Google Scholar]
  33. YouM. FuJ. LvX. WangL. WangH. LiR. Saikosaponin b2 inhibits tumor angiogenesis in liver cancer via down regulation of VEGF/ERK/HIF 1α signaling.Oncol. Rep.202350113610.3892/or.2023.8573
    [Google Scholar]
  34. X, W. Saikosaponin B2 ameliorates depression-induced microglia activation by inhibiting ferroptosis-mediated neuroinflammation and ER stress.J. Ethnopharmacol.2023316116729
    [Google Scholar]
  35. NanJ. Eleutheroside E from pre-treatment of Acanthopanax senticosus (Rupr.etMaxim.) Harms ameliorates high-altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway.Int. Immunopharmacol.2023121110423
    [Google Scholar]
  36. HuijuanL. The protective effect of Eleutheroside E against the mechanical barrier dysfunction triggered by lipopolysaccharide in IPEC-J2 cells.Res. Vet. Sci.202315417
    [Google Scholar]
  37. YaoY. LiaoC. QiuH. LiangL. ZhengW. WuL. MengF. Effect of eleutheroside E on an MPTP-induced parkinson’s disease cell model and its mechanism.Molecules2023289382010.3390/molecules28093820 37175230
    [Google Scholar]
  38. LiuZ. GaoW. XuY. Eleutheroside E alleviates cerebral ischemia-reperfusion injury in a 5-hydroxytryptamine receptor 2C (Htr2c)-dependent manner in rats.Bioengineered2022135117181173110.1080/21655979.2022.2071009 35502892
    [Google Scholar]
  39. MengyaoL. Eleutheroside E reduces intestinal fat accumulation in Caenorhabditis elegans through neuroendocrine signals.J. Sci. Food Agric.20221021252195228
    [Google Scholar]
  40. YipinC. Eleutheroside E functions as anti-cervical cancer drug by inhibiting the phosphatidylinositol 3-kinase pathway and reprogramming the metabolic responses.J. Pharm. Pharmacol.202274912511260
    [Google Scholar]
  41. SongC. DuanF. JuT. QinY. ZengD. ShanS. ShiY. ZhangY. LuW. Eleutheroside E supplementation prevents radiation-induced cognitive impairment and activates PKA signaling via gut microbiota.Commun. Biol.20225168010.1038/s42003‑022‑03602‑7 35804021
    [Google Scholar]
  42. Ana Beatriz FariasD.S. Effects in vitro and in vivo of hesperidin administration in an experimental model of acute lung inflammation.Free Radic. Biol. Med.2022180253262
    [Google Scholar]
  43. YuanX. ZhuJ. KangQ. HeX. GuoD. Protective effect of hesperidin against sepsis-induced lung injury by inducing the heat-stable protein 70 (Hsp70)/toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88) pathway.Med. Sci. Monit.20192510711410.12659/MSM.912490 30608918
    [Google Scholar]
  44. LiuX. YuD. ChenM. SunT. LiG. HuangW. NieH. WangC. ZhangY. GongQ. RenB. Hesperidin ameliorates lipopolysaccharide-induced acute lung injury in mice by inhibiting HMGB1 release.Int. Immunopharmacol.201525237037610.1016/j.intimp.2015.02.022 25724384
    [Google Scholar]
  45. DiH. Hesperidin inhibits lung fibroblast senescence via IL-6/STAT3 signaling pathway to suppress pulmonary fibrosis.Phytomedicine2023112154680
    [Google Scholar]
  46. ParkJ.H. KuH.J. ParkJ.W. Hesperetin mitigates acrolein-induced apoptosis in lung cells in vitro and in vivo.Redox Rep.201823118819310.1080/13510002.2018.1535640 30325253
    [Google Scholar]
  47. RuihongY. Neohesperidin dihydrochalbazone protects against septic acute kidney injury in mice.Phytomedicine2023110154623
    [Google Scholar]
  48. ZhangJ. HuiY. LiuF. YangQ. LuY. ChangY. LiuQ. DingY. Neohesperidin Protects Angiotensin II-Induced Hypertension and Vascular Remodeling.Front. Pharmacol.20221389020210.3389/fphar.2022.890202 35677431
    [Google Scholar]
  49. GuoJ. FangY. JiangF. LiL. ZhouH. XuX. NingW. Neohesperidin inhibits TGF-β1/Smad3 signaling and alleviates bleomycin-induced pulmonary fibrosis in mice.Eur. J. Pharmacol.201986417271210.1016/j.ejphar.2019.172712 31586469
    [Google Scholar]
  50. ShubinW. Neohesperidin induces cell cycle arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells.Am. J. Chin. Med.202149512511274
    [Google Scholar]
  51. NdivhuwoM. Rutin ameliorates inflammation and improves metabolic function: A comprehensive analysis of scientific literature.Pharmacol. Res.2022178106163
    [Google Scholar]
  52. YehC.H. YangJ.J. YangM.L. LiY.C. KuanY.H. Rutin decreases lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and the MAPK–NF-κB pathway.Free Radic. Biol. Med.20146924925710.1016/j.freeradbiomed.2014.01.028 24486341
    [Google Scholar]
  53. ChenW.Y. HuangY.C. YangM.L. LeeC.Y. ChenC.J. YehC.H. PanP.H. HorngC.T. KuoW.H. KuanY.H. Protective effect of rutin on LPS-induced acute lung injury via down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation.Int. Immunopharmacol.201422240941310.1016/j.intimp.2014.07.026 25091621
    [Google Scholar]
  54. HuangY.C. HorngC.T. ChenS.T. LeeS.S. YangM.L. LeeC.Y. KuoW.H. YehC.H. KuanY.H. Rutin improves endotoxin-induced acute lung injury via inhibition of iNOS and VCAM-1 expression.Environ. Toxicol.201631218519110.1002/tox.22033 25080890
    [Google Scholar]
  55. GaneshpurkarA. SalujaA.K. Protective effect of rutin on humoral and cell mediated immunity in rat model.Chem. Biol. Interact.201727315415910.1016/j.cbi.2017.06.006 28606468
    [Google Scholar]
  56. BaiL. LiA. GongC. NingX. WangZ. Protective effect of rutin against bleomycin induced lung fibrosis: Involvement of TGF ‐β1/α‐SMA/Col I and III pathway.Biofactors202046463764410.1002/biof.1629 32233122
    [Google Scholar]
  57. KimC. SimH. BaeJ.S. Benzoylpaeoniflorin activates anti-inflammatory mechanisms to mitigate sepsis in cell-culture and mouse sepsis models.Int. J. Mol. Sci.202223211313010.3390/ijms232113130 36361915
    [Google Scholar]
  58. Wan-ChaoZ. Anti-anaphylactic potential of benzoylpaeoniflorin through inhibiting HDC and MAPKs from Paeonia lactiflora.Chin. J. Nat. Med.20211911825835
    [Google Scholar]
  59. ZhuangH. LvQ. ZhongC. CuiY. HeL. ZhangC. YuJ. Tiliroside ameliorates ulcerative colitis by restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis pathway.Front. Immunol.20211264946310.3389/fimmu.2021.649463
    [Google Scholar]
  60. MengjieX. Anti-influenza properties of tiliroside isolated from Hibiscus mutabilis L.J. Ethnopharmacol.2023303115918
    [Google Scholar]
  61. HanR. YangH. LingC. LuL. Tiliroside suppresses triple-negative breast cancer as a multifunctional CAXII inhibitor.Cancer Cell Int.202222136810.1186/s12935‑022‑02786‑6 36424626
    [Google Scholar]
  62. ZhangC. JiangY. LiuJ. JinM. QinN. ChenY. NiuW. DuanH. AMPK/AS160 mediates tiliroside derivatives-stimulated GLUT4 translocation in muscle cells.Drug Des. Devel. Ther.2018121581158710.2147/DDDT.S164441 29910604
    [Google Scholar]
  63. VelagapudiR. El-BakoushA. OlajideO.A. Activation of Nrf2 pathway contributes to neuroprotection by the dietary flavonoid tiliroside.Mol. Neurobiol.201855108103812310.1007/s12035‑018‑0975‑2 29508282
    [Google Scholar]
  64. RuaroB. SaltonF. BragaL. WadeB. ConfalonieriP. VolpeM.C. BaratellaE. MaiocchiS. ConfalonieriM. The history and mystery of alveolar epithelial type II cells: Focus on their physiologic and pathologic role in lung.Int. J. Mol. Sci.2021225256610.3390/ijms22052566 33806395
    [Google Scholar]
  65. NurekiS.I. TomerY. VenosaA. KatzenJ. RussoS.J. JamilS. BarrettM. NguyenV. KoppM. MulugetaS. BeersM.F. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis.J. Clin. Invest.201812894008402410.1172/JCI99287 29920187
    [Google Scholar]
  66. XuQ. XuJ. WuY. Regulation of inflammation and apoptosis by GPR43 via JNK/ELK1 in acute lung injury.Inflamm. Res.2022715-660361410.1007/s00011‑022‑01556‑4 35306578
    [Google Scholar]
  67. YueQ. ZhangW. LinS. ZhengT. HouY. ZhangY. LiZ. WangK. YueL. AbayB. LiM. FanL. Ejiao ameliorates lipopolysaccharide-induced pulmonary inflammation via inhibition of NFκB regulating NLRP3 inflammasome and mitochondrial ROS.Biomed. Pharmacother.202215211327510.1016/j.biopha.2022.113275 35714510
    [Google Scholar]
  68. MaQ. LiR. PanW. HuangW. LiuB. XieY. WangZ. LiC. JiangH. HuangJ. ShiY. DaiJ. ZhengK. LiX. HuiM. FuL. YangZ. Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway.Phytomedicine20207815329610.1016/j.phymed.2020.153296 32890913
    [Google Scholar]
  69. ZhangC. WangX. WangC. HeC. MaQ. LiJ. WangW. XuY.T. WangT. Qingwenzhike prescription alleviates acute lung injury induced by LPS via inhibiting TLR4/NF-KB pathway and nlrp3 inflammasome activation.Front. Pharmacol.20211279007210.3389/fphar.2021.790072 35002723
    [Google Scholar]
  70. HeY.Q. ZhouC.C. DengJ.L. WangL. ChenW.S. Tanreqing Inhibits LPS-Induced Acute Lung Injury in vivo and in vitro Through Downregulating sting Signaling Pathway.Front. Pharmacol.20211274696410.3389/fphar.2021.746964 34721036
    [Google Scholar]
  71. LiuJ. ChenQ. LiuS. YangX. ZhangY. HuangF. Sini decoction alleviates E. coli induced acute lung injury in mice via equilibrating ACE-AngII-AT1R and ACE2-Ang-(1-7)-Mas axis.Life Sci.201820813914810.1016/j.lfs.2018.07.013 29990483
    [Google Scholar]
  72. HuangH. WangJ. LiuZ. GaoF. The angiotensin-converting enzyme 2/angiotensin (1–7)/mas axis protects against pyroptosis in LPS-induced lung injury by inhibiting NLRP3 activation.Arch. Biochem. Biophys.202069310856210.1016/j.abb.2020.108562 32866470
    [Google Scholar]
  73. XingJ. YuZ. ZhangX. LiW. GaoD. WangJ. MaX. NieX. WangW. Epicatechin alleviates inflammation in lipopolysaccharide-induced acute lung injury in mice by inhibiting the p38 MAPK signaling pathway.Int. Immunopharmacol.20196614615310.1016/j.intimp.2018.11.016 30453148
    [Google Scholar]
  74. SuV.Y.F. YangK.Y. ChiouS.H. ChenN.J. MoM.H. LinC.S. WangC.T. Induced pluripotent stem cells regulate triggering receptor expressed on myeloid cell-1 expression and the p38 mitogen-activated protein kinase pathway in endotoxin-induced acute lung injury.Stem Cells201937563163910.1002/stem.2980 30681755
    [Google Scholar]
  75. LiT. WuY.N. WangH. MaJ.Y. ZhaiS.S. DuanJ. Dapk1 improves inflammation, oxidative stress and autophagy in LPS-induced acute lung injury via p38MAPK/NF-κB signaling pathway.Mol. Immunol.2020120132210.1016/j.molimm.2020.01.014 32045770
    [Google Scholar]
  76. CongZ. YangC. ZengZ. WuC. ZhaoF. ShenZ. XiaoH. ZhuX. α1-adrenoceptor stimulation ameliorates lipopolysaccharide-induced lung injury by inhibiting alveolar macrophage inflammatory responses through NF-κB and ERK1/2 pathway in ARDS.Front. Immunol.202313109077310.3389/fimmu.2022.1090773 36685596
    [Google Scholar]
  77. YaziciogluT. MühlfeldC. AutilioC. HuangC.K. BärC. Dittrich-BreiholzO. ThumT. Pérez-GilJ. SchmiedlA. BrandenbergerC. Aging impairs alveolar epithelial type II cell function in acute lung injury.Am. J. Physiol. Lung Cell. Mol. Physiol.20203195L755L76910.1152/ajplung.00093.2020 32877222
    [Google Scholar]
  78. ParisA.J. HayerK.E. OvedJ.H. AvgoustiD.C. ToulminS.A. ZeppJ.A. ZachariasW.J. KatzenJ.B. BasilM.C. KrempM.M. SlamowitzA.R. JayachandranS. SivakumarA. DaiN. WangP. FrankD.B. EisenlohrL.C. CantuE.III BeersM.F. WeitzmanM.D. MorriseyE.E. WorthenG.S. STAT3–BDNF–TrkB signalling promotes alveolar epithelial regeneration after lung injury.Nat. Cell Biol.202022101197121010.1038/s41556‑020‑0569‑x 32989251
    [Google Scholar]
  79. PenkalaI.J. LibertiD.C. PankinJ. SivakumarA. KrempM.M. JayachandranS. KatzenJ. LeachJ.P. WindmuellerR. StolzK. MorleyM.P. BabuA. ZhouS. FrankD.B. MorriseyE.E. Age-dependent alveolar epithelial plasticity orchestrates lung homeostasis and regeneration.Cell Stem Cell202128101775178910.1016/j.stem.2021.04.026
    [Google Scholar]
  80. LibertiD.C. KrempM.M. LibertiW.A.III PenkalaI.J. LiS. ZhouS. MorriseyE.E. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury.Cell Rep.202135610909210.1016/j.celrep.2021.109092 33979629
    [Google Scholar]
  81. ZhangT. LiM. ZhaoS. ZhouM. LiaoH. WuH. MoX. WangH. GuoC. ZhangH. YangN. HuangY. CaMK4 promotes acute lung injury through nlrp3 inflammasome activation in type II alveolar epithelial cell.Front. Immunol.20221389071010.3389/fimmu.2022.890710 35734175
    [Google Scholar]
  82. ChenF. XieL. KangR. DengR. XiZ. SunD. ZhuJ. WangL. Gentiopicroside inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and JNK signaling pathways.Biomed. Pharmacother.201810014214610.1016/j.biopha.2018.02.014 29428661
    [Google Scholar]
  83. BaiR. YinX. FengX. CaoY. WuY. ZhuZ. LiC. TuP. ChaiX. Corydalis hendersonii Hemsl. protects against myocardial injury by attenuating inflammation and fibrosis via NF-κB and JAK2-STAT3 signaling pathways.J. Ethnopharmacol.201720717418310.1016/j.jep.2017.06.020 28629818
    [Google Scholar]
  84. ShiQ. LiT.T. WuY.M. SunX.Y. LeiC. LiJ.Y. HouA.J. Meroterpenoids with diverse structures and anti-inflammatory activities from Rhododendron anthopogonoides.Phytochemistry202018011252410.1016/j.phytochem.2020.112524 33038550
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073259884231024111447
Loading
/content/journals/cchts/10.2174/0113862073259884231024111447
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test