Skip to content
2000
Volume 27, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Chronic Kidney Disease (CKD) leads to structural and functional abnormalities of the kidneys and seriously jeopardizes human health. Shenyan Oral Liquid (SOLI), a Chinese medicinal preparation, has been reported to protect podocytes in patients with chronic kidney disease (CKD).

Objective

The objective of this study is to investigate the mechanism of action of the Chinese medicinal preparation Senyan Oral Liquid (SOLI) in the treatment of CKD by protecting podocytes through network pharmacology technology and experimental validation.

Methods

Compounds of SOLI and targets of CKD disease were collected and screened. The SOLI network of bioactive compounds targeting CKD and the protein-protein interaction (PPI) network were constructed using Cytoscape software and the STRING online database. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the R software Cluster Profiler package. Molecular docking was performed using Autodock software to verify the binding ability of bioactive compounds and target genes. Subsequently, the potential mechanism of SOLI on CKD predicted by network pharmacological analysis was experimentally studied and verified in an adriamycin-induced nephropathy rat model.

Results

A total of 81 targets of SOLI components acting on CKD were identified. The results of the PPI analysis clarified that five key target genes (TNF, AKT1, IL6, VEGFA, and TP53) play a critical role in the treatment of CKD by SOLI. The GO analysis and KEGG enrichment analysis indicated that SOLI acts through multiple pathways, including the PI3K/AKT signaling pathway against CKD. Molecular docking showed that the main compounds of SOLI and five key genes had strong binding affinity. In a rat model of adriamycin-induced nephropathy, SOLI significantly ameliorated disease symptoms and improved renal histopathology. Mechanistic studies showed that SOLI upregulated the expression level of Nephrin, inhibited the PI3K/AKT pathway in renal tissues, and ultimately suppressed the activation of autophagy-related proteins in CKD.

Conclusion

SOLI exerted a renoprotective effect by regulating the Nephrin-PI3K/AKT autophagy signaling pathway, and these findings provide new ideas for the development of SOLI-based therapeutic approaches for CKD.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073260994231031070916
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. NehusE. Obesity and chronic kidney disease.Curr. Opin. Pediatr.201830224124610.1097/MOP.0000000000000586 29346138
    [Google Scholar]
  2. Ruiz-OrtegaM. Rayego-MateosS. LamasS. OrtizA. Rodrigues-DiezR.R. Targeting the progression of chronic kidney disease.Nat. Rev. Nephrol.202016526928810.1038/s41581‑019‑0248‑y 32060481
    [Google Scholar]
  3. LiuZ.H. Nephrology in China.Nat. Rev. Nephrol.20139952352810.1038/nrneph.2013.146 23877587
    [Google Scholar]
  4. SaranR. RobinsonB. AbbottK.C. AgodoaL.Y.C. AlbertusP. AyanianJ. BalkrishnanR. Bragg-GreshamJ. CaoJ. ChenJ.L.T. CopeE. DharmarajanS. DietrichX. EckardA. EggersP.W. GaberC. GillenD. GipsonD. GuH. HailpernS.M. HallY.N. HanY. HeK. HebertP. HelmuthM. HermanW. HeungM. HuttonD. JacobsenS.J. JiN. JinY. Kalantar-ZadehK. KapkeA. KatzR. KovesdyC.P. KurtzV. LavalleeD. LiY. LuY. McCulloughK. MolnarM.Z. Montez-RathM. MorgensternH. MuQ. MukhopadhyayP. NallamothuB. NguyenD.V. NorrisK.C. O’HareA.M. ObiY. PearsonJ. PisoniR. PlattnerB. PortF.K. PotukuchiP. RaoP. RatkowiakK. RavelV. RayD. RheeC.M. SchaubelD.E. SelewskiD.T. ShawS. ShiJ. ShieuM. SimJ.J. SongP. SoohooM. SteffickD. StrejaE. TamuraM.K. TentoriF. TileaA. TongL. TurfM. WangD. WangM. WoodsideK. WyncottA. XinX. ZengW. ZepelL. ZhangS. ZhoH. HirthR.A. ShahinianV. US renal data system 2016 annual data report: Epidemiology of kidney disease in the united states.Am. J. Kidney Dis.2017693A7A810.1053/j.ajkd.2016.12.004 28236831
    [Google Scholar]
  5. MallettA. PatelC. SalisburyA. WangZ. HealyH. HoyW. The prevalence and epidemiology of genetic renal disease amongst adults with chronic kidney disease in Australia.Orphanet J. Rare Dis.201499810.1186/1750‑1172‑9‑98
    [Google Scholar]
  6. BreyerM.D. SusztakK. Developing treatments for chronic kidney disease in the 21st century.Semin. Nephrol.201636643644710.1016/j.semnephrol.2016.08.001 27987541
    [Google Scholar]
  7. PalmerS.C. MavridisD. NavareseE. CraigJ.C. TonelliM. SalantiG. WiebeN. RuospoM. WheelerD.C. StrippoliG.F.M. Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: A network meta-analysis.Lancet201538599822047205610.1016/S0140‑6736(14)62459‑4 26009228
    [Google Scholar]
  8. ZhongY. DengY. ChenY. ChuangP.Y. CijiangHe. J. Therapeutic use of traditional Chinese herbal medications for chronic kidney diseases.Kidney Int.20138461108111810.1038/ki.2013.276 23868014
    [Google Scholar]
  9. LiX. WangH. Chinese herbal medicine in the treatment of chronic kidney disease.Adv. Chronic Kidney Dis.200512327628110.1016/j.ackd.2005.03.007 16010642
    [Google Scholar]
  10. ZhongY. MenonM.C. DengY. ChenY. HeJ.C. Recent advances in traditional chinese medicine for kidney disease.Am. J. Kidney Dis.201566351352210.1053/j.ajkd.2015.04.013 26015275
    [Google Scholar]
  11. MaoW. YangN. ZhangL. LiC. WuY. OuyangW. XuP. ZouC. PeiC. ShiW. ZhanJ. YangH. ChenH. WangX. TianY. YuanF. SunW. XiongG. ChenM. GuanJ. TangS. ZhangC. LiuY. DengY. LinQ. LuF. HongW. YangA. FangJ. RaoJ. WangL. BaoK. LinF. XuY. LuZ. SuG. Bupi yishen formula versus losartan for non-diabetic stage 4 chronic kidney disease: A randomized controlled trial.Front. Pharmacol.202011627185
    [Google Scholar]
  12. ChenY. DengY. NiZ. ChenN. ChenX. ShiW. ZhanY. YuanF. DengW. ZhongY. Efficacy and safety of traditional chinese medicine (Shenqi particle) for patients with idiopathic membranous nephropathy: A multicenter randomized controlled clinical trial.Am. J. Kidney Dis.20136261068107610.1053/j.ajkd.2013.05.005 23810688
    [Google Scholar]
  13. JiangC.B. Clinical study of Shenyan oral liquid I on 35 cases of chronic nephritis with spleen deficiency and damp heat syndrome. Jiangsu.J. Tradit. Chin. Med.201547103
    [Google Scholar]
  14. JiangC. B Shenyan No.1 prescription combined with western medicine in the treatment of nephrotic syndrome and its effect on coagulation indexes and immune function of patients. Shanxi.J. Tradit. Chin. Med.202041124
    [Google Scholar]
  15. JiangC. LiangG. RenY. XuT. SongY. JinW. An UPLC-MS/MS method for simultaneous quantification of the components of shenyanyihao oral solution in rat plasma.BioMed Res. Int.202020204769267
    [Google Scholar]
  16. LiangG.Q. JiJ. Protective effect of Shenyan oral liquid I in adriamycin-induced nephropathy rats based on “Autophagy-inflammatory reaction.Tradit. Chin. Med.20193711
    [Google Scholar]
  17. ZhangW. HuaiY. MiaoZ. QianA. WangY. Systems pharmacology for investigation of the mechanisms of action of traditional chinese medicine in drug discovery.Front. Pharmacol.20191074310.3389/fphar.2019.00743
    [Google Scholar]
  18. LuoY. LiD. LiaoY. CaiC. WuQ. KeH. LiuX. LiH. HongH. XuY. WangQ. FangJ. FangS. Systems pharmacology approach to investigate the mechanism of kai-xin-san in Alzheimer’s Disease.Front. Pharmacol.20201138110.3389/fphar.2020.00381
    [Google Scholar]
  19. RenY. Research progress and challenges of network pharmacology in the field of traditional Chinese medicine.Chin. Tradit. Herbal Drugs202051189
    [Google Scholar]
  20. HopkinsA.L. Network pharmacology: The next paradigm in drug discovery.Nat. Chem. Biol.200841168269010.1038/nchembio.118 18936753
    [Google Scholar]
  21. XuX. ZhangW. HuangC. LiY. YuH. WangY. DuanJ. LingY. A novel chemometric method for the prediction of human oral bioavailability.Int. J. Mol. Sci.20121366964698210.3390/ijms13066964 22837674
    [Google Scholar]
  22. LiuH. WangJ. ZhouW. WangY. YangL. Systems approaches and polypharmacology for drug discovery from herbal medicines: An example using licorice.J. Ethnopharmacol.2013146377379310.1016/j.jep.2013.02.004 23415946
    [Google Scholar]
  23. WangX.W. TianR.M. YangY.Q. WangK. LiE.N. HanX.D. BaoK. MaoW. XuH.T. LiuB. XuP. Tripterygium glycoside fraction n2 ameliorates adriamycin-induced nephrotic syndrome in rats by suppressing apoptosis.J. Ethnopharmacol.202025711278910.1016/j.jep.2020.112789
    [Google Scholar]
  24. JiangC.B. WeiM.G. TuY. ZhuH. LiC.Q. JingW.M. SunW. Triptolide attenuates podocyte injury by regulating expression of miRNA-344b-3p and miRNA-30b-3p in rats with adriamycin-induced nephropathy.Evid. Based Complement. Alternat. Med.2015201510781410.1155/2015/107814
    [Google Scholar]
  25. YinL. MaoY. SongH. WangY. ZhouW. ZhangZ. Vincristine alleviates adriamycin-induced nephropathy through stabilizing actin cytoskeleton.Cell Biosci.20177110.1186/s13578‑016‑0129‑z
    [Google Scholar]
  26. CarbonS. DouglassE. GoodB.M. UnniD.R. HarrisN.L. MungallC.J. BasuS. ChisholmR.L. DodsonR.J. HartlineE. FeyP. ThomasP.D. AlbouL-P. EbertD. KeslingM.J. MiH. MuruganujanA. HuangX. MushayahamaT. LaBonteS.A. SiegeleD.A. AntonazzoG. AttrillH. BrownN.H. GarapatiP. MarygoldS.J. TroviscoV. dos SantosG. FallsK. TaboneC. ZhouP. GoodmanJ.L. StreletsV.B. ThurmondJ. GarmiriP. IshtiaqR. Rodríguez-LópezM. AcencioM.L. KuiperM. LægreidA. LogieC. LoveringR.C. KramarzB. SaverimuttuS.C.C. PinheiroS.M. GunnH. SuR. ThurlowK.E. ChibucosM. GiglioM. NadendlaS. MunroJ. JacksonR. DuesburyM.J. Del-ToroN. MeldalB.H.M. PaneerselvamK. PerfettoL. PorrasP. OrchardS. ShrivastavaA. ChangH-Y. FinnR.D. MitchellA.L. RawlingsN.D. RichardsonL. Sangrador-VegasA. BlakeJ.A. ChristieK.R. DolanM.E. DrabkinH.J. HillD.P. NiL. SitnikovD.M. HarrisM.A. OliverS.G. RutherfordK. WoodV. HaylesJ. BählerJ. BoltonE.R. De PonsJ.L. DwinellM.R. HaymanG.T. KaldunskiM.L. KwitekA.E. LaulederkindS.J.F. PlastererC. TutajM.A. VediM. WangS-J. D’EustachioP. MatthewsL. BalhoffJ.P. AleksanderS.A. AlexanderM.J. CherryJ.M. EngelS.R. GondweF. KarraK. MiyasatoS.R. NashR.S. SimisonM. SkrzypekM.S. WengS. WongE.D. FeuermannM. GaudetP. MorgatA. BakkerE. BerardiniT.Z. ReiserL. SubramaniamS. HualaE. ArighiC.N. AuchinclossA. AxelsenK. Argoud-PuyG. BatemanA. BlatterM-C. BoutetE. BowlerE. BreuzaL. BridgeA. BrittoR. Bye-A-JeeH. CasasC.C. CoudertE. DennyP. EstreicherA. FamigliettiM.L. GeorghiouG. GosA. Gruaz-GumowskiN. Hatton-EllisE. HuloC. IgnatchenkoA. JungoF. LaihoK. Le MercierP. LieberherrD. LockA. LussiY. MacDougallA. MagraneM. MartinM.J. MassonP. NataleD.A. Hyka-NouspikelN. OrchardS. PedruzziI. PourcelL. PouxS. PundirS. RivoireC. SperettaE. SundaramS. TyagiN. WarnerK. ZaruR. WuC.H. DiehlA.D. ChanJ.N. GroveC. LeeR.Y.N. MullerH-M. RacitiD. Van AukenK. SternbergP.W. BerrimanM. PauliniM. HoweK. GaoS. WrightA. SteinL. HoweD.G. ToroS. WesterfieldM. JaiswalP. CooperL. ElserJ. The Gene Ontology resource: Enriching a Gold mine.Nucleic Acids Res.202149D1D325D33410.1093/nar/gkaa1113 33290552
    [Google Scholar]
  27. KanehisaM. SatoY. KawashimaM. FurumichiM. TanabeM. KEGG as a reference resource for gene and protein annotation.Nucleic Acids Res.201644D1D457D46210.1093/nar/gkv1070 26476454
    [Google Scholar]
  28. WangY. FengY. LiM. YangM. ShiG. XuanZ. YinD. XuF. Traditional chinese medicine in the treatment of chronic kidney diseases: Theories, applications, and mechanisms.Front. Pharmacol.20221391797510.3389/fphar.2022.917975 35924053
    [Google Scholar]
  29. QiZ.Q. Application of dispelling discharge in the treatment of chronic kidney disease with damp-heat syndrome.Tradit. Chin. Med.201833054
    [Google Scholar]
  30. KmaL. BaruahT.J. The interplay of ROS and the PI3K/Akt pathway in autophagy regulation.Biotechnol. Appl. Biochem.202269124826410.1002/bab.2104 33442914
    [Google Scholar]
  31. YinH. ZuoZ. YangZ. GuoH. FangJ. CuiH. OuyangP. ChenX. ChenJ. GengY. ChenZ. HuangC. ZhuY. Nickel induces autophagy via PI3K/AKT/mTOR and AMPK pathways in mouse kidney.Ecotoxicol. Environ. Saf.2021223112583
    [Google Scholar]
  32. InkerL.A. LeveyA.S. CoreshJ. Estimated glomerular filtration rate from a panel of filtration markers—hope for increased accuracy beyond measured glomerular filtration rate?Adv. Chronic Kidney Dis.2018251677510.1053/j.ackd.2017.10.004 29499889
    [Google Scholar]
  33. PatrakkaJ. TryggvasonK. New insights into the role of podocytes in proteinuria.Nat. Rev. Nephrol.20095846346810.1038/nrneph.2009.108 19581907
    [Google Scholar]
  34. MatsusakaT. SandgrenE. ShintaniA. KonV. PastanI. FogoA.B. IchikawaI. Podocyte injury damages other podocytes.J. Am. Soc. Nephrol.20112271275128510.1681/ASN.2010090963 21719786
    [Google Scholar]
  35. SanajouD. Ghorbani HaghjoA. ArganiH. RoshangarL. AhmadS.N.S. JighehZ.A. AslaniS. PanahF. RashediJ. Mesgari AbbasiM. FPS-ZM1 and valsartan combination protects better against glomerular filtration barrier damage in streptozotocin-induced diabetic rats.J. Physiol. Biochem.201874346747810.1007/s13105‑018‑0640‑2 29948786
    [Google Scholar]
  36. YangZ. KlionskyD.J. Eaten alive: A history of macroautophagy.Nat. Cell Biol.201012981482210.1038/ncb0910‑814 20811353
    [Google Scholar]
  37. AsanumaK. TanidaI. ShiratoI. UenoT. TakaharaH. NishitaniT. KominamiE. TominoY. MAP‐LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis.FASEB J.20031791165116710.1096/fj.02‑0580fje 12709412
    [Google Scholar]
  38. SongZ. GuoY. ZhouM. ZhangX. The PI3K/p-Akt signaling pathway participates in calcitriol ameliorating podocyte injury in DN rats.Metabolism201463101324133310.1016/j.metabol.2014.06.013 25044177
    [Google Scholar]
  39. LiuN. XuL. ShiY. ZhuangS. Podocyte autophagy: A potential therapeutic target to prevent the progression of diabetic nephropathy.J. Diabetes Res.20172017356023810.1155/2017/3560238
    [Google Scholar]
  40. YuZ.K. YangB. ZhangY. LiL.S. ZhaoJ.N. HaoW. Modified Huangqi Chifeng decoction inhibits excessive autophagy to protect against Doxorubicin induced nephrotic syndrome in rats via the PI3K/mTOR signaling pathway.Exp. Ther. Med.20181632490249810.3892/etm.2018.6492 30210600
    [Google Scholar]
  41. HemmingsB.A. RestucciaD.F. PI3K-PKB/Akt pathway.Cold Spring Harb. Perspect. Biol.201249a01118910.1101/cshperspect.a011189 22952397
    [Google Scholar]
  42. YuS. RenQ. ChenJ. HuangJ. LiangR. Rapamycin reduces podocyte damage by inhibiting the PI3K/AKT/mTOR signaling pathway and promoting autophagy.Eur. J. Inflamm.2022201721727X221081732
    [Google Scholar]
  43. HuberT.B. HartlebenB. KimJ. SchmidtsM. SchermerB. KeilA. EggerL. LechaR.L. BornerC. PavenstädtH. ShawA.S. WalzG. BenzingT. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling.Mol. Cell. Biol.200323144917492810.1128/MCB.23.14.4917‑4928.2003 12832477
    [Google Scholar]
  44. LuH. YaoH. ZouR. ChenX. XuH. Galangin suppresses renal inflammation via the inhibition of NF-kappaB, PI3K/AKT and NLRP3 in uric acid treated NRK-52E tubular epithelial cells.BioMed Res. Int.201920193018357
    [Google Scholar]
  45. NiW.J. ZhouH. DingH.H. TangL.Q. Berberine ameliorates renal impairment and inhibits podocyte dysfunction by targeting the phosphatidylinositol 3‐kinase–protein kinase B pathway in diabetic rats.J. Diabetes Investig.202011229730610.1111/jdi.13119 31336024
    [Google Scholar]
  46. HuberT.B. KöttgenM. SchillingB. WalzG. BenzingT. Interaction with podocin facilitates nephrin signaling.J. Biol. Chem.200127645415434154610.1074/jbc.C100452200 11562357
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073260994231031070916
Loading
/content/journals/cchts/10.2174/0113862073260994231031070916
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test