Skip to content
2000
Volume 27, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Oxidative stress and endoplasmic reticulum stress are important components of the cellular stress process, which plays a critical role in tumor initiation and progression.

Methods

First, the correlation between oxidative stress and endoplasmic reticulum stress was detected in 68 human hepatocellular carcinoma (HCC) tissue microarray samples by immunohistochemistry. Differentially expressed oxidative stress- and endoplasmic reticulum stress-related genes (OESGs) then were screened in HCC. Next, an OESGs prognostic signature was constructed for HCC in the training cohort (TCGA-LIHC from The Cancer Genome Atlas), by least absolute shrinkage and selection operator Cox and stepwise Cox regression analyses, and was verified in the external cohort (GSE14520 from the Gene Expression Omnibus). The MCP counter was employed to evaluate immune cell infiltration. The C-index was used to evaluate the predictive power of prognostic signature. Finally, a prognostic nomogram model was constructed to predict the survival probability of patients with HCC based on the results of Cox regression analysis.

Results

We demonstrated a positive correlation between oxidative stress and endoplasmic reticulum stress in human HCC samples. We then identified five OESGs as a prognostic signature consisting of , , , and for HCC. Related risk scores correlated with tumor stage, grade, and response to transcatheter arterial chemoembolization therapy, and the higher risk score group had less T cells, CD8+ T cells, cytotoxic lymphocytes and natural killer cell infiltration. The C-index of our OESGs prognostic signature was superior to four previously published signatures. Furthermore, we developed a nomogram based on the OESGs prognostic signature and clinical parameters for patients with HCC that is an effective quantitative analysis tool to predict patient survival.

Conclusion

The OESGs signature showed excellent performance in predicting survival and therapeutic responses for patients with HCC.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073257308231026073951
2024-12-01
2025-01-24
Loading full text...

Full text loading...

/deliver/fulltext/cchts/27/19/CCHTS-27-19-06.html?itemId=/content/journals/cchts/10.2174/0113862073257308231026073951&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  3. AllyA. BalasundaramM. CarlsenR. ChuahE. ClarkeA. DhallaN. HoltR.A. JonesS.J.M. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. CheungD. WongT. BrooksD. RobertsonA.G. BowlbyR. MungallK. SadeghiS. XiL. CovingtonK. ShinbrotE. WheelerD.A. GibbsR.A. DonehowerL.A. WangL. BowenJ. Gastier-FosterJ.M. GerkenM. HelselC. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. GabrielS.B. MeyersonM. CibulskisC. MurrayB.A. ShihJ. BeroukhimR. CherniackA.D. SchumacherS.E. SaksenaG. PedamalluC.S. ChinL. GetzG. NobleM. ZhangH. HeimanD. ChoJ. GehlenborgN. SaksenaG. VoetD. LinP. FrazerS. DefreitasT. MeierS. LawrenceM. KimJ. CreightonC.J. MuznyD. DoddapaneniH.V. HuJ. WangM. MortonD. KorchinaV. HanY. DinhH. LewisL. BellairM. LiuX. SantibanezJ. GlennR. LeeS. HaleW. ParkerJ.S. WilkersonM.D. HayesD.N. ReynoldsS.M. ShmulevichI. ZhangW. LiuY. IypeL. MakhloufH. TorbensonM.S. KakarS. YehM.M. JainD. KleinerD.E. JainD. DhanasekaranR. El-SeragH.B. YimS.Y. WeinsteinJ.N. MishraL. ZhangJ. AkbaniR. LingS. JuZ. SuX. HegdeA.M. MillsG.B. LuY. ChenJ. LeeJ-S. SohnB.H. ShimJ.J. TongP. AburataniH. YamamotoS. TatsunoK. LiW. XiaZ. StranskyN. SeiserE. InnocentiF. GaoJ. KundraR. ZhangH. HeinsZ. OchoaA. SanderC. LadanyiM. ShenR. AroraA. Sanchez-VegaF. SchultzN. KasaianK. RadenbaughA. BissigK-D. MooreD.D. TotokiY. NakamuraH. ShibataT. YauC. GraimK. StuartJ. HausslerD. SlagleB.L. OjesinaA.I. KatsonisP. KoireA. LichtargeO. HsuT-K. FergusonM.L. DemchokJ.A. FelauI. ShethM. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ. HutterC.M. SofiaH.J. VerhaakR.G.W. ZhengS. LangF. ChudamaniS. LiuJ. LollaL. WuY. NareshR. PihlT. SunC. WanY. BenzC. PerouA.H. ThorneL.B. BoiceL. HuangM. RathmellW.K. NoushmehrH. SaggioroF.P. TirapelliD.P.C. JuniorC.G.C. MenteE.D. SilvaO.C.Jr TrevisanF.A. KangK.J. AhnK.S. GiamaN.H. MoserC.D. GiordanoT.J. VincoM. WellingT.H. CrainD. CurleyE. GardnerJ. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. KelleyR. ParkJ-W. ChandanV.S. RobertsL.R. BatheO.F. HagedornC.H. AumanJ.T. O’BrienD.R. KocherJ-P.A. JonesC.D. MieczkowskiP.A. PerouC.M. SkellyT. TanD. VeluvoluU. BaluS. BodenheimerT. HoyleA.P. JefferysS.R. MengS. MoseL.E. ShiY. SimonsJ.V. SolowayM.G. RoachJ. HoadleyK.A. BaylinS.B. ShenH. HinoueT. BootwallaM.S. Van Den BergD.J. WeisenbergerD.J. LaiP.H. HolbrookA. BerriosM. LairdP.W. Comprehensive and integrative genomic characterization of hepatocellular carcinoma.Cell2017169713271341.e2310.1016/j.cell.2017.05.046 28622513
    [Google Scholar]
  4. ZhuA.X. AbbasA.R. de GalarretaM.R. GuanY. LuS. KoeppenH. ZhangW. HsuC.H. HeA.R. RyooB.Y. YauT. KasebA.O. BurgoyneA.M. DayyaniF. SpahnJ. VerretW. FinnR.S. TohH.C. LujambioA. WangY. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma.Nat. Med.20222881599161110.1038/s41591‑022‑01868‑2 35739268
    [Google Scholar]
  5. WangZ. LiZ. YeY. XieL. LiW. Oxidative stress and liver cancer: Etiology and therapeutic targets.Oxid. Med. Cell. Longev.2016201611010.1155/2016/7891574 27957239
    [Google Scholar]
  6. CheungE.C. VousdenK.H. The role of ROS in tumour development and progression.Nat. Rev. Cancer202222528029710.1038/s41568‑021‑00435‑0 35102280
    [Google Scholar]
  7. ChenX. Cubillos-RuizJ.R. Endoplasmic reticulum stress signals in the tumour and its microenvironment.Nat. Rev. Cancer2021212718810.1038/s41568‑020‑00312‑2 33214692
    [Google Scholar]
  8. PavlovićN. HeindryckxF. Targeting ER stress in the hepatic tumor microenvironment.FEBS J.2022289227163717610.1111/febs.16145 34331743
    [Google Scholar]
  9. LinY. JiangM. ChenW. ZhaoT. WeiY. Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response.Biomed. Pharmacother.201911810924910.1016/j.biopha.2019.109249 31351428
    [Google Scholar]
  10. XiongS. ChngW.J. ZhouJ. Crosstalk between endoplasmic reticulum stress and oxidative stress: A dynamic duo in multiple myeloma.Cell. Mol. Life Sci.20217883883390610.1007/s00018‑021‑03756‑3 33599798
    [Google Scholar]
  11. GuoY. YangJ. GaoH. TianX. ZhangX. KanQ. Development and verification of a combined immune- and metabolism-related prognostic signature for hepatocellular carcinoma.Front. Immunol.20221392763510.3389/fimmu.2022.927635 35874741
    [Google Scholar]
  12. MaH. KangZ. FooT.K. ShenZ. XiaB. Disrupted BRCA1‐PALB2 interaction induces tumor immunosuppression and T‐lymphocyte infiltration in HCC through cGAS‐STING pathway.Hepatology2023771334710.1002/hep.32335 35006619
    [Google Scholar]
  13. JohnT. LiuG. TsaoM-S. Overview of molecular testing in non-small-cell lung cancer: Mutational analysis, gene copy number, protein expression and other biomarkers of EGFR for the prediction of response to tyrosine kinase inhibitors.Oncogene200928S1Suppl. 1S14S2310.1038/onc.2009.197 19680292
    [Google Scholar]
  14. RoesslerS. JiaH.L. BudhuA. ForguesM. YeQ.H. LeeJ.S. ThorgeirssonS.S. SunZ. TangZ.Y. QinL.X. WangX.W. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients.Cancer Res.20107024102021021210.1158/0008‑5472.CAN‑10‑2607 21159642
    [Google Scholar]
  15. SubramanianA. TamayoP. MoothaV.K. MukherjeeS. EbertB.L. GilletteM.A. PaulovichA. PomeroyS.L. GolubT.R. LanderE.S. MesirovJ.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.Proc. Natl. Acad. Sci. USA200510243155451555010.1073/pnas.0506580102 16199517
    [Google Scholar]
  16. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv007 25605792
    [Google Scholar]
  17. WilkersonM.D. HayesD.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking.Bioinformatics201026121572157310.1093/bioinformatics/btq170 20427518
    [Google Scholar]
  18. RizviA.A. KaraesmenE. MorganM. PreusL. WangJ. SovicM. HahnT. Sucheston-CampbellL.E. gwasurvivr: An R package for genome-wide survival analysis.Bioinformatics201935111968197010.1093/bioinformatics/bty920 30395168
    [Google Scholar]
  19. FriedmanJ. HastieT. TibshiraniR. Regularization paths for generalized linear models via coordinate descent.J. Stat. Softw.201033112210.18637/jss.v033.i01 20808728
    [Google Scholar]
  20. BechtE. GiraldoN.A. LacroixL. ButtardB. ElarouciN. PetitprezF. SelvesJ. Laurent-PuigP. Sautès-FridmanC. FridmanW.H. de ReynièsA. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression.Genome Biol.201617121810.1186/s13059‑016‑1070‑5 27765066
    [Google Scholar]
  21. CabritaR. LaussM. SannaA. DoniaM. Skaarup LarsenM. MitraS. JohanssonI. PhungB. HarbstK. Vallon-ChristerssonJ. van SchoiackA. LövgrenK. WarrenS. JirströmK. OlssonH. PietrasK. IngvarC. IsakssonK. SchadendorfD. SchmidtH. BastholtL. CarneiroA. WargoJ.A. SvaneI.M. JönssonG. Tertiary lymphoid structures improve immunotherapy and survival in melanoma.Nature2020577779156156510.1038/s41586‑019‑1914‑8 31942071
    [Google Scholar]
  22. WakiyamaH. MasudaT. MotomuraY. HuQ. ToboT. EguchiH. SakamotoK. HirakawaM. HondaH. MimoriK. Cytolytic activity (CYT) score is a prognostic biomarker reflecting host immune status in hepatocellular carcinoma (HCC).Anticancer Res.201838126631663810.21873/anticanres.13030 30504371
    [Google Scholar]
  23. LeeJ.S. The mutational landscape of hepatocellular carcinoma.Clin. Mol. Hepatol.201521322022910.3350/cmh.2015.21.3.220 26523267
    [Google Scholar]
  24. FuX.W. SongC.Q. Identification and validation of pyroptosis-related gene signature to predict prognosis and reveal immune infiltration in hepatocellular carcinoma.Front. Cell Dev. Biol.2021974803910.3389/fcell.2021.748039 34820376
    [Google Scholar]
  25. ZhengY. LiuY. ZhaoS. ZhengZ. ShenC. AnL. YuanY. Large-scale analysis reveals a novel risk score to predict overall survival in hepatocellular carcinoma.Cancer Manag. Res.2018106079609610.2147/CMAR.S181396 30538557
    [Google Scholar]
  26. JinS. CaoJ. KongL.B. Identification and validation in a novel quantification system of the glutamine metabolism patterns for the prediction of prognosis and therapy response in hepatocellular carcinoma.J. Gastrointest. Oncol.20221352505252110.21037/jgo‑22‑895 36388696
    [Google Scholar]
  27. XiangX.H. YangL. ZhangX. MaX.H. MiaoR.C. GuJ.X. FuY.N. YaoQ. ZhangJ.Y. LiuC. LinT. QuK. Seven-senescence-associated gene signature predicts overall survival for Asian patients with hepatocellular carcinoma.World J. Gastroenterol.201925141715172810.3748/wjg.v25.i14.1715 31011256
    [Google Scholar]
  28. CaoM.Q. YouA.B. CuiW. ZhangS. GuoZ.G. ChenL. ZhuX.D. ZhangW. ZhuX.L. GuoH. DengD.J. SunH.C. ZhangT. Cross talk between oxidative stress and hypoxia via thioredoxin and HIF‐2α drives metastasis of hepatocellular carcinoma.FASEB J.20203445892590510.1096/fj.202000082R 32157720
    [Google Scholar]
  29. ZhuY. LiuW. WangZ. WangY. TanC. PanZ. WangA. LiuJ. SunG. ARHGEF2/EDN1 pathway participates in ER stress-related drug resistance of hepatocellular carcinoma by promoting angiogenesis and malignant proliferation.Cell Death Dis.202213765210.1038/s41419‑022‑05099‑8 35896520
    [Google Scholar]
  30. HoseiniZ. SepahvandF. RashidiB. SahebkarA. MasoudifarA. MirzaeiH. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis.J. Cell. Physiol.201823332116213210.1002/jcp.25930 28345767
    [Google Scholar]
  31. WangT. ChenB. MengT. LiuZ. WuW. Identification and immunoprofiling of key prognostic genes in the tumor microenvironment of hepatocellular carcinoma.Bioengineered20211211555157510.1080/21655979.2021.1918538 33955820
    [Google Scholar]
  32. SrougiM.C. BurridgeK. The nuclear guanine nucleotide exchange factors Ect2 and Net1 regulate RhoB-mediated cell death after DNA damage.PLoS One201162e1710810.1371/journal.pone.0017108 21373644
    [Google Scholar]
  33. XuD. WangY. WuJ. ZhangZ. ChenJ. XieM. TangR. ChenC. ChenL. LinS. LuoX. ZhengJ. ECT2 overexpression promotes the polarization of tumor-associated macrophages in hepatocellular carcinoma via the ECT2/PLK1/PTEN pathway.Cell Death Dis.202112216210.1038/s41419‑021‑03450‑z 33558466
    [Google Scholar]
  34. AisyahR. SadewaA.H. PatriaS.Y. WahabA. The PPARGC1A Is the gene responsible for thrifty metabolism related metabolic diseases: A scoping review.Genes20221310189410.3390/genes13101894 36292779
    [Google Scholar]
  35. ZuoQ. HeJ. ZhangS. WangH. JinG. JinH. ChengZ. TaoX. YuC. LiB. YangC. WangS. LvY. ZhaoF. YaoM. CongW. WangC. QinW. PPARγ coactivator-1α suppresses metastasis of hepatocellular carcinoma by inhibiting Warburg effect by PPARγ-dependent WNT/β-Catenin/pyruvate dehydrogenase kinase isozyme 1 axis.Hepatology202173264466010.1002/hep.31280 32298475
    [Google Scholar]
  36. QieS. SangN. Stanniocalcin 2 (STC2): A universal tumour biomarker and a potential therapeutical target.J. Exp. Clin. Cancer Res.202241116110.1186/s13046‑022‑02370‑w 35501821
    [Google Scholar]
  37. WuZ. ChengH. LiuJ. ZhangS. ZhangM. LiuF. LiY. HuangQ. JiangY. ChenS. LvL. LiD. ZengJ.Z. The oncogenic and diagnostic potential of stanniocalcin 2 in hepatocellular carcinoma.J. Hepatocell. Carcinoma2022914115510.2147/JHC.S351882 35300206
    [Google Scholar]
  38. RossD. SiegelD. The diverse functionality of NQO1 and its roles in redox control.Redox Biol.20214110195010.1016/j.redox.2021.101950 33774477
    [Google Scholar]
  39. ShimokawaM. YoshizumiT. ItohS. IsedaN. SakataK. YugawaK. ToshimaT. HaradaN. IkegamiT. MoriM. Modulation of Nqo1 activity intercepts anoikis resistance and reduces metastatic potential of hepatocellular carcinoma.Cancer Sci.202011141228124010.1111/cas.14320 31968140
    [Google Scholar]
  40. ChevetE. HetzC. SamaliA. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis.Cancer Discov.20155658659710.1158/2159‑8290.CD‑14‑1490 25977222
    [Google Scholar]
  41. MandulaJ.K. ChangS. MohamedE. JimenezR. Sierra-MondragonR.A. ChangD.C. ObermayerA.N. Moran-SeguraC.M. DasS. Vazquez-MartinezJ.A. PrietoK. ChenA. SmalleyK.S.M. CzernieckiB. ForsythP. KoyaR.C. RuffellB. Cubillos-RuizJ.R. MunnD.H. ShawT.I. Conejo-GarciaJ.R. RodriguezP.C. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses.Cancer Cell2022401011451160.e910.1016/j.ccell.2022.08.016 36150390
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073257308231026073951
Loading
/content/journals/cchts/10.2174/0113862073257308231026073951
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test