Skip to content
2000
Volume 27, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Ginseng-ophiopogon injection (GOI) is a clinically commonly used drug for Qi deficiency syndrome characterized by decreased physical function in China. This study aimed to clarify common pharmacological mechanisms of GOI in enhancing physical function.

Methods

We performed an integrative strategy of weight-loaded swimming tests in cold water (5.5°C), hepatic glycogen and superoxide dismutase (SOD) detections, GC-TOF/MS-based metabolomics, multivariate statistical techniques, network pharmacology of known targets and constituents, and KEGG pathway analysis of GOI.

Results

Compared with the control group, GOI showed significant increases in the weight-loaded swimming time, hepatic levels of glycogen and SOD. Additionally, 34 significantly differential serum metabolites referred to glycolysis, gluconeogenesis and arginine biosynthesis were affected by GOI. The target collection revealed 98 metabolic targets and 50 experiment-reported drug targets of ingredients in GOI involved in enhancing physical function. Further, the PPI network analysis revealed that 8 ingredients of GOI, such as ginsenoside Re, ginsenoside Rf, ginsenoside Rg1, and notoginsenoside R1, were well-associated with 48 hub targets, which had good ability in enhancing physical function. Meanwhile, nine hub proteins, such as SOD, mechanistic target of Rapamycin (mTOR), and nitric oxide synthases, were confirmed to be affected by GOI. Finally, 98 enriched KEGG pathways (<0.01 and FDR<0.001) of GOI were obtained from 48 hub targets of the PPI network. Among them, pathways in cancer, Chagas disease, lipid and atherosclerosis, and PI3K-Akt signaling pathway ranked top four.

Conclusion

This study provided an integrative and efficient approach to understand the molecular mechanism of GOI in enhancing physical function.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073244102231020050502
2024-12-01
2025-01-24
Loading full text...

Full text loading...

References

  1. ZhangY. ZhangL. ZhaoX. LiuY. DuS. LiJ. LiuT. LiuF. SuZ. JiangY. DingX. Symptom characteristics and prevalence of qi deficiency syndrome in people of varied health status and ages: A multicenter cross-sectional study.J. Trad. Chin. Med. Sci.20152317318210.1016/j.jtcms.2016.01.017
    [Google Scholar]
  2. LuL. ZhengG. WangY. An overview of systematic reviews of shenmai injection for healthcare.Evid. Based Complement. Alternat. Med.201420141910.1155/2014/840650 24669229
    [Google Scholar]
  3. LiangJ. XuD. WeiY. Clinical observation of Shenmai injection treatment for cancer related fatigue.Zhongguo Shiyan Fangjixue Zazhi20121817279281
    [Google Scholar]
  4. ZhangG. ZhouX. Effect of Shenmai injection on blood routine and immune function in elderly patients with lung cancer after chemotherapy.Zhongguo Laonianxue Zazhi20183859445946
    [Google Scholar]
  5. PanY. RenX. ZhangX. GuanD. ZhuM. LinL. Effects of Shenmai injection on postoperative fatigue in hysterectomy patients.Chinese J. Integr. Tradit. Western Med.201939053135
    [Google Scholar]
  6. LeeJ.S. SongJ.H. SohnN.W. ShinJ.W. Inhibitory effects of ginsenoside Rb1 on neuroinflammation following systemic lipopolysaccharide treatment in mice.Phytother. Res.20132791270127610.1002/ptr.4852 23042638
    [Google Scholar]
  7. KimD.H. KimD.W. JungB.H. LeeJ.H. LeeH. HwangG.S. KangK.S. LeeJ.W. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells.J. Ginseng Res.201943232633410.1016/j.jgr.2018.12.002 30976171
    [Google Scholar]
  8. KimD.H. ParkC.H. ParkD. ChoiY.J. ParkM.H. ChungK.W. KimS.R. LeeJ.S. ChungH.Y. Ginsenoside Rc modulates Akt/FoxO1 pathways and suppresses oxidative stress.Arch. Pharm. Res.201437681382010.1007/s12272‑013‑0223‑2 23918648
    [Google Scholar]
  9. FangH. YangS. LuoY. ZhangC. RaoY. LiuR. FengY. YuJ. Notoginsenoside R1 inhibits vascular smooth muscle cell proliferation, migration and neointimal hyperplasia through PI3K/Akt signaling.Sci. Rep.201881759510.1038/s41598‑018‑25874‑y 29765072
    [Google Scholar]
  10. HuangG. ZouB. LvJ. LiT. HuaiG. XiangS. LuS. LuoH. ZhangY. JinY. WangY. Notoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway.Int. J. Mol. Med.201739355956810.3892/ijmm.2017.2864 28112381
    [Google Scholar]
  11. ArnethB. ArnethR. ShamsM. Metabolomics of type 1 and type 2 diabetes.Int. J. Mol. Sci.20192010246710.3390/ijms20102467 31109071
    [Google Scholar]
  12. TaoY. ChenX. CaiH. LiW. CaiB. ChaiC. DiL. ShiL. HuL. Untargeted serum metabolomics reveals Fu-Zhu-Jiang-Tang tablet and its optimal combination improve an impaired glucose and lipid metabolism in type II diabetic rats.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2017104022223210.1016/j.jchromb.2016.11.012 27866845
    [Google Scholar]
  13. GagginiM. CarliF. RossoC. YounesR. D’AurizioR. BugianesiE. GastaldelliA. Altered metabolic profile and adipocyte insulin resistance mark severe liver fibrosis in patients with chronic liver disease.Int. J. Mol. Sci.20192024633310.3390/ijms20246333 31888144
    [Google Scholar]
  14. WangY. BiC. PangW. LiuY. YuanY. ZhaoH. ZhangT. ZhaoY. LiY. Plasma metabolic profiling analysis of gout party on acute gout arthritis rats based on UHPLC–Q–TOF/MS combined with multivariate statistical analysis.Int. J. Mol. Sci.20192022575310.3390/ijms20225753 31731809
    [Google Scholar]
  15. SunY. WangY. GuoZ. DuK. MengD. Systems pharmacological approach to investigate the mechanism of Ohwia caudata for application to alzheimer’s disease.Molecules2019248149910.3390/molecules24081499 30999553
    [Google Scholar]
  16. XinqiangS. YuZ. NingningY. ErqinD. LeiW. HongtaoD. Molecular mechanism of celastrol in the treatment of systemic lupus erythematosus based on network pharmacology and molecular docking technology.Life Sci.202024011706310.1016/j.lfs.2019.117063 31734262
    [Google Scholar]
  17. JiangY. ZhongM. LongF. YangR. ZhangY. LiuT. Network pharmacology-based prediction of active ingredients and mechanisms of lamiophlomis rotata (benth) kudo against rheumatoid arthritis.Front. Pharmacol.201910143510.3389/fphar.2019.01435 31849678
    [Google Scholar]
  18. PangH.Q. YueS.J. TangY.P. ChenY.Y. TanY.J. CaoY.J. ShiX.Q. ZhouG.S. KangA. HuangS.L. ShiY.J. SunJ. TangZ.S. DuanJ.A. Duan JA integrated metabolomics and network pharmacology approach to explain possible action mechanisms of Xin-Sheng-Hua granule for treating anemia.Front. Pharmacol.2018916510.3389/fphar.2018.00165 29551975
    [Google Scholar]
  19. WeiS. QianL. NiuM. LiuH. YangY. WangY. ZhangL. ZhouX. LiH. WangR. LiK. ZhaoY. The modulatory properties of Li-Ru-Kang treatment on hyperplasia of mammary glands using an integrated approach.Front. Pharmacol.2018965110.3389/fphar.2018.00651 29971006
    [Google Scholar]
  20. National Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China.Beijing, ChinaChemical Industry Press2010
    [Google Scholar]
  21. QiB. OuyangJ. HuangH. ZhangL. ZhangZ. Effects of ginsenosides-Rb1. on exercise-induced oxidative stress in forced swimming mice.Pharmacogn. Mag.2014104045846310.4103/0973‑1296.141818 25422546
    [Google Scholar]
  22. ChenM. YangF. KangJ. GanH. LaiX. GaoY. Metabolomic investigation into molecular mechanisms of a clinical herb prescription against metabolic syndrome by a systematic approach.RSC Advances2017787553895539910.1039/C7RA09779D
    [Google Scholar]
  23. WangB. SunH. WuX. JiangL. GuanL.L. LiuJ. Arteriovenous blood metabolomics: An efficient method to determine the key metabolic pathway for milk synthesis in the intra-mammary gland.Sci. Rep.201881559810.1038/s41598‑018‑23953‑8 29618747
    [Google Scholar]
  24. GlymenakiM. BarnesA. HaganS.O. WarhurstG. McBainA.J. WilsonI.D. KellD.B. ElseK.J. CruickshankS.M. Stability in metabolic phenotypes and inferred metagenome profiles before the onset of colitis-induced inflammation.Sci. Rep.201771883610.1038/s41598‑017‑08732‑1 28821731
    [Google Scholar]
  25. LiZ. LinC. XuJ. WuH. FengJ. HuangH. The relations between metabolic variations and genetic evolution of different species.Anal. Biochem.201547710511410.1016/j.ab.2015.02.024 25728943
    [Google Scholar]
  26. LvY. HouX. ZhangQ. LiR. XuL. ChenY. TianY. SunR. ZhangZ. XuF. Untargeted metabolomics study of the in vitro anti-hepatoma effect of saikosaponin d in combination with NRP-1 knockdown.Molecules2019247142310.3390/molecules24071423 30978940
    [Google Scholar]
  27. KEGG. KEGG Database.2022Available From: https://www.kegg.jp/kegg/kegg1.html
  28. Pubchem. Pubchem database.2022Available From: https://pubchemncbinlmnihgov
  29. RebhanM. Chalifa-CaspiV. PriluskyJ. LancetD. GeneCards: Integrating information about genes, proteins and diseases.Trends Genet.199713416310.1016/S0168‑9525(97)01103‑7 9097728
    [Google Scholar]
  30. MeirelesL.M.C. DömlingA.S. CamachoC.J. ANCHOR: A web server and database for analysis of protein-protein interaction binding pockets for drug discovery.Nucleic Acids Res.201038Web ServerW407W41110.1093/nar/gkq502 20525787
    [Google Scholar]
  31. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  32. XiaF. ZhongY. LiM. ChangQ. LiaoY. LiuX. PanR. Antioxidant and anti-fatigue constituents of okra.Nutrients20157108846885810.3390/nu7105435 26516905
    [Google Scholar]
  33. JunL. GW24-e3722 Ebselen protected myocardium from overtraining-induced oxidative damage in rats.Heart2013993)(Suppl. 3A97.3A9810.1136/heartjnl‑2013‑304613.265
    [Google Scholar]
  34. CamicC.L. HoushT.J. ZunigaJ.M. HendrixR.C. MielkeM. JohnsonG.O. SchmidtR.J. Effects of arginine-based supplements on the physical working capacity at the fatigue threshold.J. Strength Cond. Res.20102451306131210.1519/JSC.0b013e3181d68816 20386475
    [Google Scholar]
  35. SunY. ChenY. XuM. LiuC. ShangH. WangC. Shenmai Injection Supresses Glycolysis and Enhances Cisplatin Cytotoxicity in Cisplatin-Resistant A549/DDP Cells via the AKT-mTOR-c-Myc Signaling Pathway.BioMed Res. Int.20202020711010.1155/2020/9243681 32685545
    [Google Scholar]
  36. ZhangW. TaoX.J. ChengJ. [Effect of shenmai injection on patients suffering from malnutrition-inflammation complex syndrome during the maintenance hemodialysis].Chung Kuo Chung Hsi I Chieh Ho Tsa Chih2009298703706 19848201
    [Google Scholar]
  37. YuanH. SunY. ChenQ. Effect of Shenmai injection on acute myocardial infarction and its effect on serum Copeptin,NF-κB and markers of myocardial injury.Yunnan J. Trad. Chin. Med. Mater. Med.202145153
    [Google Scholar]
  38. ZhangY. ZhaoY. RanY. GuoJ. CuiH. LiuS. Notoginsenoside R1 attenuates sevoflurane-induced neurotoxicity.Transl. Neurosci.202011121522610.1515/tnsci‑2020‑0118 33335762
    [Google Scholar]
  39. ApicellaM. GiannoniE. FioreS. FerrariK.J. Fernández-PérezD. IsellaC. GranchiC. MinutoloF. SottileA. ComoglioP.M. MedicoE. PietrantonioF. VolanteM. PasiniD. ChiarugiP. GiordanoS. CorsoS. Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies.Cell Metab.2018286848865.e610.1016/j.cmet.2018.08.006 30174307
    [Google Scholar]
  40. LiL. YangD. LiJ. NiuL. ChenY. ZhaoX. OduroP.K. WeiC. XuZ. WangQ. LiY. Investigation of cardiovascular protective effect of Shenmai injection by network pharmacology and pharmacological evaluation.BMC Complement. Med. Ther.202020111210.1186/s12906‑020‑02905‑8 32293408
    [Google Scholar]
  41. ChenF.F. LinL.N. MiaoJ.X. [Protective effect of Shenmai injection on lung injury induced by cardiac pulmonary bypass].Chung Kuo Chung Hsi I Chieh Ho Tsa Chih2009295414417 19673331
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073244102231020050502
Loading
/content/journals/cchts/10.2174/0113862073244102231020050502
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test