Skip to content
2000
Volume 27, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Immunotherapy has been a promising treatment in advanced lung cancer. However, only a few patients could benefit from it. Herein, we aimed to explore mutation-related predictive biomarkers in lung squamous cell carcinoma (LUSC), which could help develop clinical immunotherapy strategies and screen beneficial populations.

Methods

Co-occurrence and mutually exclusive analysis was conducted on the TCGA-LUSC cohort. Correlations between the gene mutation status and tumor mutation burden (TMB) levels, and neo-antigen levels were analyzed by Wilcoxon test. Kaplan-Meier method was employed to analyze the progression-free survival (PFS) of lung cancer patients with immunotherapy. Gene set enrichment analysis (GSEA) was used to investigate the functional changes affected by TP53mut/TTNmut. The immune cell infiltration landscape in co-mutation subgroups was analyzed using CIBERSORT.

Results

1) TP53, TTN, CSMD3, MUC16, RYR2, LRP1B, USH2A, SYNE1, ZFHX4, FAM135B, KMT2D, and NAV3 were frequently mutated in LUSC patients. 2) TMB levels in highly mutated groups were higher than that in wild type groups. 3) There were higher neo-antigen levels in mutation group compared to the wild-type group, and LUSC patients in mutation group had longer PFS. 4) TP53mut/TTNmut co-mutation group exhibited higher TMB levels and better response to immunotherapy. 5) A host of immune-related signaling pathways was inhibited in TP53mut/TTNmut subgroup. 6) There were more T follicular helper cells and NK cells were in TP53mut/TTNmut subgroup than in the WT subgroup.

Conclusion

The LUSC patients with TP53 and TTN co-mutation had higher TMB levels and better response to immunotherapy. The TP53 and TTN co-mutation is a promising novel biomarker to assist LUSC immunotherapy evaluation.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073246841230922052004
2023-10-23
2025-01-12
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. NicholsonA.G. TsaoM.S. BeasleyM.B. BorczukA.C. BrambillaE. CooperW.A. DacicS. JainD. KerrK.M. LantuejoulS. NoguchiM. PapottiM. RekhtmanN. ScagliottiG. van SchilP. ShollL. YatabeY. YoshidaA. TravisW.D. The 2021 WHO classification of lung tumors: Impact of advances since 2015.J. Thorac. Oncol.202217336238710.1016/j.jtho.2021.11.003 34808341
    [Google Scholar]
  3. ChambersC.A. KuhnsM.S. EgenJ.G. AllisonJ.P. CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy.Annu. Rev. Immunol.200119156559410.1146/annurev.immunol.19.1.565 11244047
    [Google Scholar]
  4. BaumeisterS.H. FreemanG.J. DranoffG. SharpeA.H. Coinhibitory pathways in immunotherapy for cancer.Annu. Rev. Immunol.201634153957310.1146/annurev‑immunol‑032414‑112049 26927206
    [Google Scholar]
  5. ZarourH.M. Reversing T-cell dysfunction and exhaustion in cancer.Clin. Cancer Res.20162281856186410.1158/1078‑0432.CCR‑15‑1849 27084739
    [Google Scholar]
  6. GaronE.B. RizviN.A. HuiR. LeighlN. BalmanoukianA.S. EderJ.P. PatnaikA. AggarwalC. GubensM. HornL. CarcerenyE. AhnM.J. FelipE. LeeJ.S. HellmannM.D. HamidO. GoldmanJ.W. SoriaJ.C. Dolled-FilhartM. RutledgeR.Z. ZhangJ. LuncefordJ.K. RangwalaR. LubinieckiG.M. RoachC. EmancipatorK. GandhiL. Pembrolizumab for the treatment of non-small-cell lung cancer.N. Engl. J. Med.2015372212018202810.1056/NEJMoa1501824 25891174
    [Google Scholar]
  7. BorghaeiH. Paz-AresL. HornL. SpigelD.R. SteinsM. ReadyN.E. ChowL.Q. VokesE.E. FelipE. HolgadoE. BarlesiF. KohlhäuflM. ArrietaO. BurgioM.A. FayetteJ. LenaH. PoddubskayaE. GerberD.E. GettingerS.N. RudinC.M. RizviN. CrinòL. BlumenscheinG.R.Jr AntoniaS.J. DorangeC. HarbisonC.T. Graf FinckensteinF. BrahmerJ.R. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer.N. Engl. J. Med.2015373171627163910.1056/NEJMoa1507643 26412456
    [Google Scholar]
  8. VokesE.E. ReadyN. FelipE. HornL. BurgioM.A. AntoniaS.J. Arén FronteraO. GettingerS. HolgadoE. SpigelD. WaterhouseD. DomineM. GarassinoM. ChowL.Q.M. BlumenscheinG.Jr BarlesiF. CoudertB. GainorJ. ArrietaO. BrahmerJ. ButtsC. SteinsM. GeeseW.J. LiA. HealeyD. CrinòL. Nivolumab versus docetaxel in previously treated advanced non-small-cell lung cancer (CheckMate 017 and CheckMate 057): 3-year update and outcomes in patients with liver metastases.Ann. Oncol.201829495996510.1093/annonc/mdy041 29408986
    [Google Scholar]
  9. RittmeyerA. BarlesiF. WaterkampD. ParkK. CiardielloF. von PawelJ. GadgeelS.M. HidaT. KowalskiD.M. DolsM.C. CortinovisD.L. LeachJ. PolikoffJ. BarriosC. KabbinavarF. FronteraO.A. De MarinisF. TurnaH. LeeJ.S. BallingerM. KowanetzM. HeP. ChenD.S. SandlerA. GandaraD.R. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial.Lancet20173891006625526510.1016/S0140‑6736(16)32517‑X 27979383
    [Google Scholar]
  10. GarassinoM.C. ChoB.C. KimJ.H. MazièresJ. VansteenkisteJ. LenaH. Corral JaimeJ. GrayJ.E. PowderlyJ. ChouaidC. BidoliP. Wheatley-PriceP. ParkK. SooR.A. HuangY. WadsworthC. DennisP.A. RizviN.A. Paz-Ares RodriguezL. NovelloS. HiretS. SchmidP. LaackE. CalifanoR. MaemondoM. KimS-W. ChaftJ. Vicente BazD. BerghmansT. KimD-W. SurmontV. ReckM. HanJ-Y. Holgado MartinE. Belda IniestaC. OeY. ChellaA. ChopraA. RobinetG. Soto ParraH. ThomasM. CheemaP. KatakamiN. SuW-C. KimY-C. WolfJ. LeeJ-S. SakaH. MilellaM. Ramos GarciaI. SibilleA. YokoiT. KangE.J. AtagiS. Spaeth-SchwalbeE. NishioM. ImamuraF. GabrailN. VeillonR. DerijckeS. MaedaT. ZyllaD. KubiakK. SantoroA. UyM.N. Lucien GeaterS. ItalianoA. KowalskiD. BarlesiF. ChenY-M. SpigelD. ChewaskulyongB. Garcia GomezR. Alvarez AlvarezR. YangC-H. HsiaT-C. DenisF. SakaiH. VincentM. GotoK. Bosch-BarreraJ. WeissG. CanonJ-L. ScholzC. AgliettaM. KemmotsuH. AzumaK. BradburyP. FeldR. ChachouaA. JassemJ. JuergensR. Palmero SanchezR. MalcolmA. VrindavanamN. KubotaK. WallerC. WaterhouseD. CoudertB. MarkZ. SatouchiM. ChangG-C. HerzmannC. ChaudhryA. GiridharanS. HeskethP. IkedaN. BocciaR. IannottiN. HaigentzM. ReynoldsJ. QuerolJ. NakagawaK. SugawaraS. TanE.H. HirashimaT. GettingerS. KatoT. TakedaK. Juan VidalO. Mohn-StaudnerA. PanwalkarA. DanielD. KobayashiK. LadreraG.E.I. SchulteC. SebastianM. CernovskaM. CoupkovaH. HavelL. PaukN. SinghJ. MurakamiS. CsosziT. LosonczyG. PriceA. AndersonI. IqbalM. TorriV. JuhaszE. KhananiS. KoubkovaL. LevyB. PageR. BocskeiC. CrinòL. EinspahrD. HagenstadC. JuatN. OvertonL. GarrisonM. SzalaiZ. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study.Lancet Oncol.201819452153610.1016/S1470‑2045(18)30144‑X 29545095
    [Google Scholar]
  11. HellmannM.D. RizviN.A. GoldmanJ.W. GettingerS.N. BorghaeiH. BrahmerJ.R. ReadyN.E. GerberD.E. ChowL.Q. JuergensR.A. ShepherdF.A. LaurieS.A. GeeseW.J. AgrawalS. YoungT.C. LiX. AntoniaS.J. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): Results of an open-label, phase 1, multicohort study.Lancet Oncol.2017181314110.1016/S1470‑2045(16)30624‑6 27932067
    [Google Scholar]
  12. High TMB Predicts Immunotherapy Benefit.Cancer Discov.20188666810.1158/2159‑8290.CD‑NB2018‑048 29661758
    [Google Scholar]
  13. DudleyJ.C. LinM.T. LeD.T. EshlemanJ.R. Microsatellite instability as a biomarker for PD-1 blockade.Clin. Cancer Res.201622481382010.1158/1078‑0432.CCR‑15‑1678 26880610
    [Google Scholar]
  14. Olivares-HernándezA. del Barco MorilloE. Parra PérezC. Miramontes-GonzálezJ.P. Figuero-PérezL. Martín-GómezT. Escala-CornejoR. Bellido HernándezL. González SarmientoR. Cruz-HernándezJ.J. Ludeña de la CruzM.D. Influence of dna mismatch repair (MMR) system in survival and response to immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC): Retrospective analysis.Biomedicines202210236010.3390/biomedicines10020360 35203569
    [Google Scholar]
  15. YiM. QinS. ZhaoW. YuS. ChuQ. WuK. The role of neoantigen in immune checkpoint blockade therapy.Exp. Hematol. Oncol.2018712810.1186/s40164‑018‑0120‑y 30473928
    [Google Scholar]
  16. HellmannM.D. NathansonT. RizviH. CreelanB.C. Sanchez-VegaF. AhujaA. NiA. NovikJ.B. MangarinL.M.B. Abu-AkeelM. LiuC. SauterJ.L. RekhtmanN. ChangE. CallahanM.K. ChaftJ.E. VossM.H. TenetM. LiX.M. CovelloK. RenningerA. VitazkaP. GeeseW.J. BorghaeiH. RudinC.M. AntoniaS.J. SwantonC. HammerbacherJ. MerghoubT. McGranahanN. SnyderA. WolchokJ.D. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer.Cancer Cell2018335843852.e410.1016/j.ccell.2018.03.018 29657128
    [Google Scholar]
  17. RizviH. Sanchez-VegaF. LaK. ChatilaW. JonssonP. HalpennyD. PlodkowskiA. LongN. SauterJ.L. RekhtmanN. HollmannT. SchalperK.A. GainorJ.F. ShenR. NiA. ArbourK.C. MerghoubT. WolchokJ. SnyderA. ChaftJ.E. KrisM.G. RudinC.M. SocciN.D. BergerM.F. TaylorB.S. ZehirA. SolitD.B. ArcilaM.E. LadanyiM. RielyG.J. SchultzN. HellmannM.D. Molecular determinants of response to anti–programmed cell death (PD)-1 and Anti–programmed death-ligand 1 (PD-L1) blockade in patients with non–small-cell lung cancer profiled with targeted next-generation sequencing.J. Clin. Oncol.201836763364110.1200/JCO.2017.75.3384 29337640
    [Google Scholar]
  18. RizviN.A. HellmannM.D. SnyderA. KvistborgP. MakarovV. HavelJ.J. LeeW. YuanJ. WongP. HoT.S. MillerM.L. RekhtmanN. MoreiraA.L. IbrahimF. BruggemanC. GasmiB. ZappasodiR. MaedaY. SanderC. GaronE.B. MerghoubT. WolchokJ.D. SchumacherT.N. ChanT.A. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer.Science2015348623012412810.1126/science.aaa1348 25765070
    [Google Scholar]
  19. NewmanA.M. LiuC.L. GreenM.R. GentlesA.J. FengW. XuY. HoangC.D. DiehnM. AlizadehA.A. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.3337 25822800
    [Google Scholar]
  20. XuF. LinH. HeP. HeL. ChenJ. LinL. ChenY. A TP53 -associated gene signature for prediction of prognosis and therapeutic responses in lung squamous cell carcinoma.OncoImmunology202091173194310.1080/2162402X.2020.1731943 32158625
    [Google Scholar]
  21. XieX. TangY. ShengJ. ShuP. ZhuX. CaiX. ZhaoC. WangL. HuangX. Titin mutation is associated with tumor mutation burden and promotes antitumor immunity in lung squamous cell carcinoma.Front. Cell Dev. Biol.2021976175810.3389/fcell.2021.761758 34746153
    [Google Scholar]
  22. XueD. LinH. LinL. WeiQ. YangS. ChenX. TTN/TP53 mutation might act as the predictor for chemotherapy response in lung adenocarcinoma and lung squamous carcinoma patients.Transl. Cancer Res.20211031284129410.21037/tcr‑20‑2568 35116455
    [Google Scholar]
  23. LuJ. ZhongR. LouY. HuM. YangZ. WangY. ChenY. ZouB. ZhangW. WangH. HanB. TP53 mutation status and biopsy lesion type determine the immunotherapeutic stratification in non-small-cell lung cancer.Front. Immunol.20211273212510.3389/fimmu.2021.732125 34603310
    [Google Scholar]
  24. SkoulidisF. HeymachJ.V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy.Nat. Rev. Cancer201919949550910.1038/s41568‑019‑0179‑8 31406302
    [Google Scholar]
  25. ZhangC. WangK. LinJ. WangH. Non-small-cell lung cancer patients harboring TP53/KRAS co-mutation could benefit from a PD-L1 inhibitor.Future Oncol.202218273031304110.2217/fon‑2022‑0295 36065989
    [Google Scholar]
  26. YuJ. FanZ. ZhouZ. ZhangP. BaiJ. LiX. TangM. FanN. WuX. NieX. ChenX. MaD. ChenX. CuiL. XiaX. YangL. YiX. LiL. TP53 and LRP1B co-wild predicts improved survival for patients with LUSC receiving Anti-PD-L1 immunotherapy.Cancers20221414338210.3390/cancers14143382 35884443
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073246841230922052004
Loading
/content/journals/cchts/10.2174/0113862073246841230922052004
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test