Skip to content
2000
Volume 27, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Multiple brain disorders are treated by Scutellaria Radix (SR), including cerebral ischemia-reperfusion (CI/R). However, more studies are needed to clarify the molecular mechanism of SR for CI/R.

Methods

The active substances and potential targets of SR and CI/R-related genes were obtained through public databases. Overlapping targets of SR and CI/R were analyzed using protein-protein interaction (PPI) networks. GO and KEGG enrichment analyses were performed to predict the pathways of SR against CI/R, and the key components and targets were screened for molecular docking. The results of network pharmacology analysis were verified using experiments.

Results

15 components and 64 overlapping targets related to SR and CI/R were obtained. The top targets were AKT1, IL-6, CAS3, TNF, and TP53. These targets have been studied by GO and KEGG to be connected to a number of signaling pathways, including MAPK, PI3K-Akt pathway, and apoptosis. Molecular docking and cell experiments helped to further substantiate the network pharmacology results.

Conclusion

The active compound of SR was able to significantly decrease the apoptosis of HT-22 cells induced by OGD/R. This finding suggests that SR is a potentially effective treatment for CI/R by modulating the MAPK and PI3K-Akt pathways.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073258863230921180641
2023-10-19
2025-01-13
Loading full text...

Full text loading...

References

  1. HigashidaR.T. FurlanA.J. RobertsH. TomsickT. ConnorsB. BarrJ. DillonW. WarachS. BroderickJ. TilleyB. SacksD. Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.Stroke2003348e109e13710.1161/01.STR.0000082721.62796.09 12869717
    [Google Scholar]
  2. LoE.H. DalkaraT. MoskowitzM.A. Mechanisms, challenges and opportunities in stroke.Nat. Rev. Neurosci.20034539941410.1038/nrn1106 12728267
    [Google Scholar]
  3. PeknaM. PeknyM Fau - Nilsson, M.; Nilsson, M. Modulation of neural plasticity as a basis for stroke rehabilitation.Stroke2012431524-462828192828
    [Google Scholar]
  4. KhalilA.A. AzizF.A. HallJ.C. Reperfusion Injury.Plast. Reconstr. Surg.200611731024103310.1097/01.prs.0000204766.17127.54 16525303
    [Google Scholar]
  5. RosenbergG. A. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain.Stroke1998290039-249921892195
    [Google Scholar]
  6. AhnJ.H. SongM. KimH. LeeT.K. ParkC.W. ParkY.E. LeeJ.C. ChoJ.H. KimY.M. HwangI.K. WonM.A.O. ParkJ.H. Differential regional infarction, neuronal loss and gliosis in the gerbil cerebral hemisphere following 30 min of unilateral common carotid artery occlusion.Metab. Brain Dis.20193422323310.1007/s11011‑018‑0345‑9
    [Google Scholar]
  7. GhavamiS. ShojaeiS. YeganehB. AndeS.R. JangamreddyJ.R. MehrpourM. ChristofferssonJ. ChaabaneW. MoghadamA.R. KashaniH.H. HashemiM. OwjiA.A. ŁosM.J. Autophagy and apoptosis dysfunction in neurodegenerative disorders.Prog. Neurobiol.201412244910.1016/j.pneurobio.2013.10.004
    [Google Scholar]
  8. ZhaoT.A.O.X. TangH.A.O. XieL. ZhengY. MaZ. SunQ. LiX. Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology.J Pharm Pharmacol2019712042-715813531369
    [Google Scholar]
  9. HuangT. LiuY. ZhangC. Pharmacokinetics and Bioavailability Enhancement of Baicalin: A Review.Eur. J. Drug Metab. Pharmacokinet.201944215916810.1007/s13318‑018‑0509‑3 30209794
    [Google Scholar]
  10. ChengO. LiZ. HanY. JiangQ. YanY. ChengK. Baicalin improved the spatial learning ability of global ischemia/reperfusion rats by reducing hippocampal apoptosis.Brain Res.2012147011111810.1016/j.brainres.2012.06.026 22796597
    [Google Scholar]
  11. WangP. CaoY. YuJ. LiuR. BaiB. QiH. ZhangQ. GuoW. ZhuH. QuL. Baicalin alleviates ischemia-induced memory impairment by inhibiting the phosphorylation of CaMKII in hippocampus.Brain Res.201616429510310.1016/j.brainres.2016.03.019 27016057
    [Google Scholar]
  12. LiangW. HuangX. ChenW. The Effects of Baicalin and Baicalein on Cerebral Ischemia: A Review.Aging Dis.20178685086710.14336/AD.2017.0829 29344420
    [Google Scholar]
  13. ZhangR. ZhuX. BaiH. NingK. Network pharmacology databases for traditional chinese medicine: Review and assessment.Front. Pharmacol.201910123
    [Google Scholar]
  14. WesterhoffH.V. Network-based pharmacology through systems biology.Drug Discov. Today. Technol.201515151610.1016/j.ddtec.2015.05.001 26464085
    [Google Scholar]
  15. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  16. FerreiraL. dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  17. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  18. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  19. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n 12036371
    [Google Scholar]
  20. JiaC.Y. LiJ.Y. HaoG.F. YangG.F. A drug-likeness toolbox facilitates ADMET study in drug discovery.Drug Discov. Today202025124825810.1016/j.drudis.2019.10.014 31705979
    [Google Scholar]
  21. UniProt: A worldwide hub of protein knowledge.Nucleic Acids Res2019471362-4962D506D515
    [Google Scholar]
  22. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT. I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. GeneCards suite: From gene data mining to disease genome sequence analyses.Curr. Protoc. Bioinform.20165411.30.11.30.33
    [Google Scholar]
  23. AmbergerJ. S. HamoshA. Mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes.Curr. Protoc. Bioinform.20175811.2.11.2.12
    [Google Scholar]
  24. von MeringC. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms.Nucleic Acids Res2005331362-4962D433D437
    [Google Scholar]
  25. ShannonP. MarkielA Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res2003131088-90512498504
    [Google Scholar]
  26. KanehisaM. SatoY. FurumichiM. MorishimaK. TanabeM. New approach for understanding genome variations in KEGG.Nucleic Acids Res.201947D1D590D59510.1093/nar/gky962 30321428
    [Google Scholar]
  27. LiZ. XiaoG. WangH. HeS. ZhuY. A preparation of Ginkgo biloba L. leaves extract inhibits the apoptosis of hippocampal neurons in post-stroke mice via regulating the expression of Bax/Bcl-2 and Caspase-3.J. Ethnopharmacol.202128011448110.1016/j.jep.2021.114481 34343651
    [Google Scholar]
  28. PeiX. LiY. ZhuL. ZhouZ. Astrocyte-derived exosomes transfer miR-190b to inhibit oxygen and glucose deprivation-induced autophagy and neuronal apoptosis.Cell Cycle202019890691710.1080/15384101.2020.1731649 32150490
    [Google Scholar]
  29. LiC. LinG. ZuoZ. Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones.Biopharm. Drug Dispos.201132842744510.1002/bdd.771 21928297
    [Google Scholar]
  30. LiuQ. ZuoR. WangK. NongF. FuY. HuangS. PanZ. ZhangY. LuoX. DengX. ZhangX. ZhouL. ChenY. Oroxindin inhibits macrophage NLRP3 inflammasome activation in DSS-induced ulcerative colitis in mice via suppressing TXNIP-dependent NF-κB pathway.Acta Pharmacol. Sin.202041677178110.1038/s41401‑019‑0335‑4 31937929
    [Google Scholar]
  31. LeeS. RauchJ. KolchW. Targeting MAPK signaling in Cancer: Mechanisms of drug resistance and sensitivity.Int. J. Mol. Sci.20202131102
    [Google Scholar]
  32. FluriF. SchuhmannM.K. KleinschnitzC. Animal models of ischemic stroke and their application in clinical research.Drug Des Devel Ther201591177-888134453454
    [Google Scholar]
  33. ChamorroÁ. DirnaglU. UrraX. PlanasA.M. Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation.Lancet Neurol.201615886988110.1016/S1474‑4422(16)00114‑9 27180033
    [Google Scholar]
  34. XuM. ChenX. GuY. PengT. YangD. ChangR.C.C. SoK.F. LiuK. ShenJ. Baicalin can scavenge peroxynitrite and ameliorate endogenous peroxynitrite-mediated neurotoxicity in cerebral ischemia-reperfusion injury.J. Ethnopharmacol.2013150111612410.1016/j.jep.2013.08.020 23973788
    [Google Scholar]
  35. ZhaoJ. JiangP Molecular networks for the study of TCM pharmacology.Brief Bioinform2010111477-4054417.(430)
    [Google Scholar]
  36. GeQ. HuX. MaZ. LiuJ. ZhangW. ChenZ. WeiE. Baicalin attenuates oxygen–glucose deprivation-induced injury via inhibiting NMDA receptor-mediated 5-lipoxygenase activation in rat cortical neurons.Pharmacol. Res.200755214815710.1016/j.phrs.2006.11.007 17187986
    [Google Scholar]
  37. WuJ. WangB. LiM. ShiY.H. WangC. KangY.G. Network pharmacology identification of mechanisms of cerebral ischemia injury amelioration by Baicalin and Geniposide.Eur. J. Pharmacol.201985917248410.1016/j.ejphar.2019.172484 31229537
    [Google Scholar]
  38. ShiojimaI. WalshK. Role of Akt signaling in vascular homeostasis and angiogenesis.Circ. Res.2002901210.1161/01.RES.0000022200.71892.9F
    [Google Scholar]
  39. KandelE.S. HayN. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB.Exp. Cell Res.1999253121022910.1006/excr.1999.4690 10579924
    [Google Scholar]
  40. JungK. KimM. SoJ. LeeS.H. KoS. ShinD. FarnesoidX. Farnesoid X receptor activation impairs liver progenitor cell–mediated liver regeneration via the PTEN‐PI3K‐AKT‐mTOR axis in zebrafish.Hepatology.202174139741010.1002/hep.31679 33314176
    [Google Scholar]
  41. ChangZ. XiaoQ. FengQ. YangZ. PKB/Akt signaling in cardiac development and disease.20102414851491
    [Google Scholar]
  42. HouK. XuD. LiF. ChenS. LiY. The progress of neuronal autophagy in cerebral ischemia stroke: Mechanisms, roles and research methods.J. Neurol. Sci.2019400728210.1016/j.jns.2019.03.015 30904689
    [Google Scholar]
  43. ValdésF. PásaroE. DíazI. CentenoA. LópezE. García-DovalS. González-RocesS. AlbaA. LaffonB. Segmental heterogeneity in Bcl-2, Bcl-xL and Bax expression in rat tubular epithelium after ischemia-reperfusion.Nephrology.200813429430110.1111/j.1440‑1797.2007.00909.x 18221257
    [Google Scholar]
  44. QuadriS.M. SegallL. PerrotM. HanB. EdwardsV. JonesN. WaddellT.K. LiuM. KeshavjeeS. Caspase inhibition improves ischemia-reperfusion injury after lung transplantation.Am. J. Transplant.20055229229910.1111/j.1600‑6143.2004.00701.x 15643988
    [Google Scholar]
  45. WeilandU. HaendelerJ. IhlingC. AlbusU. ScholzW. RuettenH. ZeiherA.M. DimmelerS. Inhibition of endogenous nitric oxide synthase potentiates ischemia–reperfusion-induced myocardial apoptosis via a caspase-3 dependent pathway.Cardiovasc. Res.200045367167810.1016/S0008‑6363(99)00347‑8 10728388
    [Google Scholar]
  46. LiD. ShinagawaK. PangL. LeungT.K. CardinS. WangZ. NattelS. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure.Circulation2001104212608261410.1161/hc4601.099402 11714658
    [Google Scholar]
  47. PanB. SunJ. LiuZ. WangL. HuoH. ZhaoY. TuP. XiaoW. ZhengJ. LiJ. Longxuetongluo Capsule protects against cerebral ischemia/reperfusion injury through endoplasmic reticulum stress and MAPK-mediated mechanisms.J. Adv. Res.20213321522510.1016/j.jare.2021.01.016 34603791
    [Google Scholar]
  48. XieW. ZhuT. DongX. NanF. MengX. ZhouP. SunG. SunX. HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways.Biomolecules201991051210.3390/biom9100512
    [Google Scholar]
  49. OuditG. SunH. KerfantB-G. CrackowerM.A. PenningerJ.M. BackxP.H. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease.J. Mol. Cell. Cardiol.200437244947110.1016/j.yjmcc.2004.05.015 15276015
    [Google Scholar]
  50. ChoudhuryR. BonacciT. WangX. TruongA. ArceciA. ZhangY. MillsC.A. KernanJ.L. LiuP. EmanueleM.J. The E3 ubiquitin ligase SCF(Cyclin F) transmits AKT signaling to the cell-cycle machinery.Cell Rep.201720133212322210.1016/j.celrep.2017.08.099 28954236
    [Google Scholar]
  51. HeF. ZhangN. LvY. SunW. ChenH. Low dose lipopolysaccharide inhibits neuronal apoptosis induced by cerebral ischemia/reperfusion injury via the PI3K/Akt/FoxO1 signaling pathway in rats.Mol. Med. Rep.20191931443145210.3892/mmr.2019.9827 30628689
    [Google Scholar]
  52. LvM.R. LiB. WangM.G. MengF.G. YuJ.J. GuoF. LiY. RETRACTED: Activation of the PI3K-Akt pathway promotes neuroprotection of the δ-opioid receptor agonist against cerebral ischemia-reperfusion injury in rat models.Biomed. Pharmacother.20179323023710.1016/j.biopha.2017.05.121 28645007
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073258863230921180641
Loading
/content/journals/cchts/10.2174/0113862073258863230921180641
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test