Skip to content
2000
Volume 27, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

In our previous studies, it was found that metformin can elevate the expression of FGF21 in the peripheral blood of type 2 diabetic rats and improve insulin sensitivity in diabetic rats. However, whether this effect is mediated by increased FGF21 expression in pancreatic islet β-cells is still unknown. Therefore, this study focuses on the effect of metformin on insulin secretion in pancreatic β-cells.

Aims

Metformin can effectivly improve insulin resistance. Metformin influencing pancreatic β-cell function is inclusive. In this study, we sought to analyze possible variations in insulin secretion and possible signaling mechanisms after metformin intervention.

Methods

The study employed an model of a high-fat diet in streptozocin-induced diabetic rats and an model of rat pancreatic β-cells (INS-1 cells) that were subjected to damage caused by hyperglycemia and hyperlipidemia. After treating INS-1 cells in normal, high-glucose, and high-glucose+metformin, we measured insulin secretion by glucose-stimulated insulin secretion (GSIS). Insulin was measured using an enzyme-linked immunosorbent assay. FGF21 expression was detected by RT-PCR and Western blot, as well as that p-Akt and t-Akt expression were detected by Western blot in INS-1 cells and diabetic rat islets. Finally, to verify the regulation of the FGF21 /Akt axis in metformin administration, additional experiments were carried out in metformin-stimulated INS-1 cells.

Results

High-glucose could significantly stimulate insulin secretion while metformin preserved insulin secretion. Expression of FGF21 and p-Akt was decreased in high-glucose, however, metformin could reverse this effect in INS-1 cells and diabetic rat islets.

Conclusion

Our results demonstrate a protective role of metformin in preserving insulin secretion through FGF21/Akt signaling in T2DM.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073246747230920170201
2023-10-19
2025-01-12
Loading full text...

Full text loading...

References

  1. LigthartS. van HerptT.T.W. LeeningM.J.G. KavousiM. HofmanA. StrickerB.H.C. van HoekM. SijbrandsE.J.G. FrancoO.H. DehghanA. Lifetime risk of developing impaired glucose metabolism and eventual progression from prediabetes to type 2 diabetes: A prospective cohort study.Lancet Diab. Endocrinol.201641445110.1016/S2213‑8587(15)00362‑9 26575606
    [Google Scholar]
  2. WajchenbergB.L. β-cell failure in diabetes and preservation by clinical treatment.Endocr. Rev.200728218721810.1210/10.1210/er.2006‑0038 17353295
    [Google Scholar]
  3. WeirG.C. Bonner-WeirS. Five stages of evolving β-cell dysfunction during progression to diabetes.Diabetes2004533S16S2110.2337/diabetes.53.suppl_3.S16 15561905
    [Google Scholar]
  4. ArodaV.R. KnowlerW.C. CrandallJ.P. PerreaultL. EdelsteinS.L. JeffriesS.L. MolitchM.E. Pi-SunyerX. DarwinC. Heckman-StoddardB.M. TemprosaM. KahnS.E. NathanD.M. Metformin for diabetes prevention: insights gained from the diabetes prevention program/diabetes prevention program outcomes study.Diabetologia20176091601161110.1007/s00125‑017‑4361‑9 28770322
    [Google Scholar]
  5. MasiniM. AnelloM. BuglianiM. MarselliL. FilipponiF. BoggiU. PurrelloF. OcchipintiM. MartinoL. MarchettiP. De TataV. Prevention by metformin of alterations induced by chronic exposure to high glucose in human islet β cells is associated with preserved ATP/ADP ratio.Diabetes Res. Clin. Pract.2014104116317010.1016/j.diabres.2013.12.031 24462282
    [Google Scholar]
  6. MeierJ.J. BonadonnaR.C. Role of reduced β-cell mass versus impaired β-cell function in the pathogenesis of type 2 diabetes.Diabetes Care2013362)(2S113S11910.2337/dcS13‑200823882035
    [Google Scholar]
  7. ForetzM. GuigasB. BertrandL. PollakM. ViolletB. Metformin: From mechanisms of action to therapies.Cell Metab.201420695396610.1016/j.cmet.2014.09.018 25456737
    [Google Scholar]
  8. AdakT. SamadiA. ÜnalA.Z. SabuncuoğluS. A reappraisal on metformin.Regul. Toxicol. Pharmacol.20189232433210.1016/j.yrtph.2017.12.023 29291990
    [Google Scholar]
  9. MoonJ.S. KarunakaranU. ElumalaiS. LeeI.K. LeeH.W. KimY.W. WonK.C. Metformin prevents glucotoxicity by alleviating oxidative and ER stress–induced CD36 expression in pancreatic β cells.J. Diabetes Complications2017311213010.1016/j.jdiacomp.2016.09.001 27662780
    [Google Scholar]
  10. SharmaS. Rehman AnsariM.H. SharmaK. SinghR.K. AliS. AlamM.M. ZamanM.S. AlamP. AkhterM. Pyrazoline scaffold: Hit identification to lead synthesis and biological evaluation as antidiabetic agents.Future Med. Chem.202315192410.4155/fmc‑2022‑0141 36655571
    [Google Scholar]
  11. ArodaV.R. RatnerR.E. Metformin and type 2 diabetes prevention.Diabetes Spectr.201831433634210.2337/ds18‑0020 30510389
    [Google Scholar]
  12. XuJ. LloydD.J. HaleC. StanislausS. ChenM. SivitsG. VonderfechtS. HechtR. LiY.S. LindbergR.A. ChenJ.L. Young JungD. ZhangZ. KoH.J. KimJ.K. VéniantM.M. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice.Diabetes200958125025910.2337/db08‑0392 18840786
    [Google Scholar]
  13. KharitonenkovA. DunbarJ.D. BinaH.A. BrightS. MoyersJ.S. ZhangC. DingL. MicanovicR. MehrbodS.F. KniermanM.D. HaleJ.E. CoskunT. ShanafeltA.B. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho.J. Cell. Physiol.200821511710.1002/jcp.21357 18064602
    [Google Scholar]
  14. AdamsA.C. ChengC.C. CoskunT. KharitonenkovA. FGF21 requires βklotho to act in vivo.PLoS One2012711e4997710.1371/journal.pone.0049977 23209629
    [Google Scholar]
  15. WenteW. EfanovA.M. BrennerM. KharitonenkovA. KösterA. SanduskyG.E. SewingS. TreiniesI. ZitzerH. GromadaJ. Fibroblast growth factor-21 improves pancreatic β-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways.Diabetes20065592470247810.2337/db05‑1435 16936195
    [Google Scholar]
  16. WangY. DangN. SunP. XiaJ. ZhangC. PangS. The effects of metformin on fibroblast growth factor 19, 21 and fibroblast growth factor receptor 1 in high-fat diet and streptozotocin induced diabetic rats.Endocr. J.201764554355210.1507/endocrj.EJ16‑0391 28413172
    [Google Scholar]
  17. HashemitabarM. BahramzadehS. SaremyS. NejaddehbashiF. Glucose plus metformin compared with glucose alone on β-cell function in mouse pancreatic islets.Biomed. Rep.20153572172510.3892/br.2015.476 26405552
    [Google Scholar]
  18. LangelueddeckeC. JakabM. KetterlN. LehnerL. HufnaglC. SchmidtS. GeibelJ.P. FuerstJ. RitterM. Effect of the AMP-kinase modulators AICAR, metformin and compound C on insulin secretion of INS-1E rat insulinoma cells under standard cell culture conditions.Cell. Physiol. Biochem.2012291-2758610.1159/000337589 22415077
    [Google Scholar]
  19. LeclercI. WoltersdorfW.W. da Silva XavierG. RoweR.L. CrossS.E. KorbuttG.S. RajotteR.V. SmithR. RutterG.A. Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion.Am. J. Physiol. Endocrinol. Metab.20042866E1023E103110.1152/ajpendo.00532.2003 14871885
    [Google Scholar]
  20. SehajpalS. PrasadD.N. SinghR.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation.Arch. Pharm.20193527180033910.1002/ardp.201800339 31231875
    [Google Scholar]
  21. LupiR. Del GuerraS. FierabracciV. MarselliL. NovelliM. PatanèG. BoggiU. MoscaF. PiroS. Del PratoS. MarchettiP. Lipotoxicity in human pancreatic islets and the protective effect of metformin.Diabetes200251Suppl. 1S134S13710.2337/diabetes.51.2007.S134 11815472
    [Google Scholar]
  22. PatanèG. PiroS. RabuazzoA.M. AnelloM. VigneriR. PurrelloF. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: A direct metformin effect on pancreatic β-cells.Diabetes200049573574010.2337/diabetes.49.5.735 10905481
    [Google Scholar]
  23. MarchettiP. Del GuerraS. MarselliL. LupiR. MasiniM. PolleraM. BuglianiM. BoggiU. VistoliF. MoscaF. Del PratoS. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin.J. Clin. Endocrinol. Metab.200489115535554110.1210/jc.2004‑0150 15531508
    [Google Scholar]
  24. LablancheS. Cottet-RousselleC. LamarcheF. BenhamouP-Y. HalimiS. LeverveX. FontaineE. Protection of pancreatic INS-1 β-cells from glucose- and fructose-induced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin.Cell Death Dis.201123e13410.1038/cddis.2011.15 21430707
    [Google Scholar]
  25. DaiY.L. HuangS.L. LengY. AICAR and metformin exert ampk-dependent effects on INS-1E Pancreatic β-cell apoptosis via differential downstream mechanisms.Int. J. Biol. Sci.201511111272128010.7150/ijbs.12108 26435693
    [Google Scholar]
  26. LiuS.N. LiuQ. SunS.J. HouS.C. WangY. ShenZ.F. [Metformin ameliorates β-cell dysfunction by regulating inflammation production, ion and hormone homeostasis of pancreas in diabetic KKAy mice].Yao Xue Xue Bao2014491115541562 25757281
    [Google Scholar]
  27. ZhangE. Mohammed Al-AmilyI. MohammedS. LuanC. AsplundO. AhmedM. YeY. Ben-HailD. SoniA. VishnuN. BompadaP. De MarinisY. GroopL. Shoshan-BarmatzV. RenströmE. WollheimC.B. SalehiA. Preserving insulin secretion in diabetes by inhibiting VDAC1 overexpression and surface translocation in β-cells.Cell Metab.20192916477.e610.1016/j.cmet.2018.09.008 30293774
    [Google Scholar]
  28. Le BacquerO. QueniatG. GmyrV. Kerr-ConteJ. LefebvreB. PattouF. mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells.J. Endocrinol.20132161212910.1530/JOE‑12‑0351 23092880
    [Google Scholar]
  29. LeeD. KimY.M. JungK. ChinY.W. KangK. Alpha-mangosin improves insulin secretion and protects INS-1 from streptozotocin-induced damage.Int. J. Mol. Sci.2018195148410.3390/ijms19051484 29772703
    [Google Scholar]
  30. ButlerA.E. JansonJ. Bonner-WeirS. RitzelR. RizzaR.A. ButlerP.C. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes.Diabetes200352110211010.2337/diabetes.52.1.102 12502499
    [Google Scholar]
  31. KahnS.E. The importance of the β-cell in the pathogenesis of type 2 diabetes mellitus11Supported in part by national institutes of health grants dk-02654, dk-17047, dk-50703, and the medical research service of the department of veterans affairs.Am. J. Med.20001086Suppl. 6a2810.1016/S0002‑9343(00)00336‑3 10764844
    [Google Scholar]
  32. XuJ. StanislausS. ChinookoswongN. Acute glucose‐lowering and insulin‐sensitizing action of FGF21 in insulin‐resistant mouse models—association with liver and adipose tissue effects. American.J. Physiol. Endo. Meta.200929711051114
    [Google Scholar]
  33. Fon TacerK. BookoutA.L. DingX. KurosuH. JohnG.B. WangL. GoetzR. MohammadiM. Kuro-oM. MangelsdorfD.J. KliewerS.A. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse.Mol. Endocrinol.201024102050206410.1210/me.2010‑0142 20667984
    [Google Scholar]
  34. HaleC. ChenM.M. StanislausS. ChinookoswongN. HagerT. WangM. VéniantM.M. XuJ. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance.Endocrinology20121531698010.1210/en.2010‑1262 22067317
    [Google Scholar]
  35. ShenoyV.K. BeaverK.M. FisherM. SinghalG. DushayJ.R. Maratos-FlierE. FlierS.N. Elevated serum fibroblast growth factor 21 in humans with acute pancreatitis.PLoS One20161111e016435110.1371/journal.pone.0164351 27832059
    [Google Scholar]
  36. OmarB.A. AndersenB. HaldJ. RaunK. NishimuraE. AhrénB. Fibroblast growth factor 21 (FGF21) and glucagon-like peptide 1 contribute to diabetes resistance in glucagon receptor-deficient mice.Diabetes201463110111010.2337/db13‑0710 24062250
    [Google Scholar]
  37. CoateK.C. HernandezG. ThorneC.A. SunS. LeT.D.V. ValeK. KliewerS.A. MangelsdorfD.J. FGF21 is an exocrine pancreas secretagogue.Cell Metab.201725247248010.1016/j.cmet.2016.12.004 28089565
    [Google Scholar]
  38. MarkanK.R. NaberM.C. AmekaM.K. AndereggM.D. MangelsdorfD.J. KliewerS.A. MohammadiM. PotthoffM.J. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding.Diabetes201463124057406310.2337/db14‑0595 25008183
    [Google Scholar]
  39. SinghR.K. BhatiaR. Eds.; Protein kinases-promising targets for anticancer drug research.Intech Open202110.5772/intechopen.82939
    [Google Scholar]
  40. SinghR.K. Key heterocyclic cores for smart anticancer drug–design Part II.Bentham Science Publishers202210.2174/97898150400741220101
    [Google Scholar]
  41. DhimanA. SharmaR. SinghR.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021).Acta Pharm. Sin. B20221273006302710.1016/j.apsb.2022.03.021 35865090
    [Google Scholar]
  42. HakonenE. UstinovJ. EizirikD.L. SariolaH. MiettinenP.J. OtonkoskiT. In vivo activation of the PI3K–Akt pathway in mouse β cells by the EGFR mutation L858R protects against diabetes.Diabetologia201457597097910.1007/s00125‑014‑3175‑2 24493201
    [Google Scholar]
  43. KanekoK. UekiK. TakahashiN. HashimotoS. OkamotoM. AwazawaM. OkazakiY. OhsugiM. InabeK. UmeharaT. YoshidaM. KakeiM. KitamuraT. LuoJ. KulkarniR.N. KahnC.R. KasaiH. CantleyL.C. KadowakiT. Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms.Cell Metab.201012661963210.1016/j.cmet.2010.11.005 21109194
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073246747230920170201
Loading
/content/journals/cchts/10.2174/0113862073246747230920170201
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): FGF21; GSIS; insulin secretion; metformin; p-Akt; Type 2 diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test