Skip to content
2000
Volume 27, Issue 19
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Herba Epimedii, a commonly used traditional herb, has been proven effective in ameliorating osteoporosis. However, the active ingredients and potential mechanism need further exploration.

Objective

To screen active ingredients of Herba Epimedii with the effect of ameliorating osteoporosis and to explore their potential mechanisms.

Methods

TCMSP and Swiss Target Prediction were applied to collect the ingredients of Herba Epimedii and their targets. UniProt, GeneCards, TTD, DisGeNET, and OMIM were adopted to search osteoporosis-related genes. STRING and DAVID were used to perform enrichment analysis. Effects of screened ingredients were evaluated on MC3T3-E1 cells and RAW264.7 cells, respectively.

Results

Eleven ingredients were screened by Network Pharmacology. They exerted a promoting effect on MC3T3-E1 cells (10-9-10-5 M). The ingredients didn’t significantly affect ALP activity and osteoblastogenesis-related genes. Baohuoside 1, Sagittatoside B, Chlorogenic acid, Cryptochlorogenic acid, and Neochlorogenic acid significantly increased calcium depositions. The ingredients didn’t exhibit a dose-dependent inhibition or promotion on RAW264.7 cells. Baohuoside 1, Sagittatoside B, Neochlorogenic acid, Cryptochlorogenic acid, Icariin, Epimedin A, Chlorogenic acid, Sagittatoside A, and Epimedin C suppressed the level of TRACP. Baohuoside 1, Sagittatoside B, Cryptochlorogenic acid, Neochlorogenic acid, Chlorogenic acid, Sagittatoside A, and Icariin decreased the number of multinucleated osteoclastic cells. Baohuoside 1, Sagittatoside B, and Cryptochlorogenic acid could significantly inhibit MMP-9 expression.

Conclusion

Neochlorogenic acid, Sagittatoside B, Chlorogenic acid, and Cryptochlorogenic acid promoted MC3T3-E1 differentiation, among which Neochlorogenic acid showed significant promotion in viability, mineralization, and OPN expression. Baohuoside 1, Sagittatoside B, Cryptochlorogenic acid, Neochlorogenic acid, Chlorogenic acid, and Icariin inhibited RAW264.7 differentiation, among which Baohuoside 1 showed significant inhibition on TRACP, multinucleated osteoclastic cells number and MPP-9 expression. The mechanism might relate to the FoxO signaling pathway, MAPK signaling pathway, and TNF signaling pathway.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073243559231023065934
2024-12-01
2025-01-24
Loading full text...

Full text loading...

References

  1. NohJ.Y. YangY. JungH. Molecular mechanisms and emerging therapeutics for osteoporosis.Int. J. Mol. Sci.20202120762310.3390/ijms21207623 33076329
    [Google Scholar]
  2. JohnellO. KanisJ.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures.Osteoporos. Int.200617121726173310.1007/s00198‑006‑0172‑4 16983459
    [Google Scholar]
  3. JeremiahM.P. UnwinB.K. GreenawaldM.H. CasianoV.E. Diagnosis and management of osteoporosis.Am. Fam. Physician2015924261268 26280231
    [Google Scholar]
  4. CosmanF. de BeurS.J. LeBoffM.S. LewieckiE.M. TannerB. RandallS. LindsayR. Clinician’s guide to prevention and treatment of osteoporosis.Osteoporos. Int.201425102359238110.1007/s00198‑014‑2794‑2 25182228
    [Google Scholar]
  5. WuL. LingZ. FengX. MaoC. XuZ. Herb medicines against osteoporosis: Active compounds & relevant biological mechanisms.Curr. Top. Med. Chem.201717151670169110.2174/1568026617666161116141033 27848901
    [Google Scholar]
  6. WangL. LiY. GuoY. MaR. FuM. NiuJ. GaoS. ZhangD. Herba epimedii: An ancient chinese herbal medicine in the prevention and treatment of osteoporosis.Curr. Pharm. Des.201522332834910.2174/1381612822666151112145907 26561074
    [Google Scholar]
  7. IndranI.R. LiangR.L.Z. MinT.E. YongE.L. Preclinical studies and clinical evaluation of compounds from the genus Epimedium for osteoporosis and bone health.Pharmacol. Ther.201616218820510.1016/j.pharmthera.2016.01.015 26820757
    [Google Scholar]
  8. WuH. LienE.J. LienL.L. Chemical and pharmacological investigations of Epimedium species: A survey.Prog. Drug Res.20036015710.1007/978‑3‑0348‑8012‑1_1 12790338
    [Google Scholar]
  9. LiS. FanT.P. JiaW. LuA. ZhangW. Network pharmacology in traditional chinese medicine.Evid. Based Complement. Alternat. Med.20142014138460 24707305
    [Google Scholar]
  10. LiS. ZhangB. Traditional Chinese medicine network pharmacology: theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  11. GaoY. PatilS. JiaJ. The development of molecular biology of osteoporosis.Int. J. Mol. Sci.20212215818210.3390/ijms22158182 34360948
    [Google Scholar]
  12. KimB. LeeK.Y. ParkB. Icariin abrogates osteoclast formation through the regulation of the RANKL-mediated TRAF6/NF-κB/ERK signaling pathway in Raw264.7 cells.Phytomedicine20185118119010.1016/j.phymed.2018.06.020 30466615
    [Google Scholar]
  13. KongL. SmithW. HaoD. Overview of RAW264.7 for osteoclastogensis study: Phenotype and stimuli.J. Cell. Mol. Med.20192353077308710.1111/jcmm.14277 30892789
    [Google Scholar]
  14. ZhaiY.K. GuoX. PanY.L. NiuY.B. LiC.R. WuX.L. MelQ.B. A systematic review of the efficacy and pharmacological profile of Herba Epimedii in osteoporosis therapy.Pharmazie2013689713722 24147339
    [Google Scholar]
  15. LuoT. LuY. YanS. XiaoX. RongX. GuoJ. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective.Chin. J. Integr. Med.2020261728010.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  16. ShenP. GuoB.L. GongY. HongD.Y.Q. HongY. YongE.L. Taxonomic, genetic, chemical and estrogenic characteristics of Epimedium species.Phytochemistry200768101448145810.1016/j.phytochem.2007.03.001 17434191
    [Google Scholar]
  17. LiH. XiaoZ. QuarlesL.D. LiW. Osteoporosis: Mechanism, molecular target and current status on drug development.Curr. Med. Chem.20212881489150710.2174/1875533XMTA1hNTIy2 32223730
    [Google Scholar]
  18. ChatakunP. Núñez-ToldràR. Díaz LópezE.J. Gil-RecioC. Martínez-SarràE. Hernández-AlfaroF. Ferrés-PadróE. Giner-TarridaL. AtariM. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature.Cell. Mol. Life Sci.201471111314210.1007/s00018‑013‑1326‑0 23568025
    [Google Scholar]
  19. ReddiS. ShanmugamV.P. TanedjeuK.S. KapilaS. KapilaR. Effect of buffalo casein-derived novel bioactive peptides on osteoblast differentiation.Eur. J. Nutr.201857259360510.1007/s00394‑016‑1346‑2 27868152
    [Google Scholar]
  20. JunruiP. BingyunL. YanhuiG. XuJ. DarkoG.M. DianjunS. Relationship between fluoride exposure and osteoclast markers during RANKL-induced osteoclast differentiation.Environ. Toxicol. Pharmacol.20164624124510.1016/j.etap.2016.08.001 27500448
    [Google Scholar]
  21. TortelliF. PujicN. LiuY. LarocheN. VicoL. CanceddaR. Osteoblast and osteoclast differentiation in an in vitro three-dimensional model of bone.Tissue Eng. Part A20091592373238310.1089/ten.tea.2008.0501 19292676
    [Google Scholar]
  22. ZhengX. ZhangY. GuoS. ZhangW. WangJ. LinY. Dynamic expression of matrix metalloproteinases 2, 9 and 13 in ovariectomy-induced osteoporosis rats.Exp. Ther. Med.20181631807181310.3892/etm.2018.6356 30186405
    [Google Scholar]
  23. MaX. SuP. YinC. LinX. WangX. GaoY. PatilS. WarA.R. QadirA. TianY. QianA. The roles of FoxO transcription factors in regulation of bone cells function.Int. J. Mol. Sci.202021369210.3390/ijms21030692 31973091
    [Google Scholar]
  24. WuJ. CaiP. LuZ. ZhangZ. HeX. ZhuB. ZhengL. ZhaoJ. Identification of potential specific biomarkers and key signaling pathways between osteogenic and adipogenic differentiation of hBMSCs for osteoporosis therapy.J. Orthop. Surg. Res.202015143710.1186/s13018‑020‑01965‑3 32967719
    [Google Scholar]
  25. XiaoL. ZhongM. HuangY. ZhuJ. TangW. LiD. ShiJ. LuA. YangH. GengD. LiH. WangZ. Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways.Aging20201221217062172910.18632/aging.103976 33176281
    [Google Scholar]
  26. HeG. MaR. Overview of molecular mechanisms involved in herbal compounds for inhibiting osteoclastogenesis from macrophage linage RAW264.7.Curr. Stem Cell Res. Ther.202015757057810.2174/1574888X14666190703144917 31269885
    [Google Scholar]
  27. KitauraH. MarahlehA. OhoriF. NoguchiT. ShenW.R. QiJ. NaraY. PramusitaA. KinjoR. MizoguchiI. Osteocyte-Related cytokines regulate osteoclast formation and bone resorption.Int. J. Mol. Sci.20202114516910.3390/ijms21145169 32708317
    [Google Scholar]
  28. GuH. HuangZ. ChenG. ZhouK. ZhangY. ChenJ. XuJ. YinX. Network and pathway-based analyses of genes associated with osteoporosis.Medicine2020998e1912010.1097/MD.0000000000019120 32080087
    [Google Scholar]
  29. LiuM.M. DongR. HuaZ. LvN.N. MaY. HuangG.C. ChengJ. XuH.Y. Therapeutic potential of Liuwei Dihuang pill against KDM7A and Wnt/β-catenin signaling pathway in diabetic nephropathy-related osteoporosis.Biosci. Rep.2020409BSR2020177810.1042/BSR20201778 32914833
    [Google Scholar]
  30. KarthikV. GunturA.R. Energy metabolism of osteocytes.Curr. Osteoporos. Rep.202119444445110.1007/s11914‑021‑00688‑6 34117625
    [Google Scholar]
  31. SongL. BiY. ZhangP. YuanX. LiuY. ZhangY. HuangJ. ZhouK. Optimization of the time window of interest in ovariectomized imprinting control region mice for antiosteoporosis research.BioMed Res. Int.2017201711010.1155/2017/8417814 29119115
    [Google Scholar]
  32. YousefzadehN. KashfiK. JeddiS. GhasemiA. Ovariectomized rat model of osteoporosis: A practical guide.EXCLI J.20201989107 32038119
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073243559231023065934
Loading
/content/journals/cchts/10.2174/0113862073243559231023065934
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): epimedin; herba; network pharmacology; osteoblasts; osteoclasts; osteogenesis; Osteoporosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test