Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Lung cancer remains a major global health threat due to its complex microenvironment, particularly the role of neutrophils, which are crucial for tumor development and immune evasion mechanisms. This study aimed to delve into the impact of lung cancer cell-conditioned media on neutrophil functions and their potential implications for lung cancer progression.

Methods

Employing experimental models, this study has analyzed the effects of lung cancer cell-conditioned media on neutrophil IL-8 and IFN-γ secretion, apoptosis, PD-L1 expression, and T-cell proliferation by using techniques, such as ELISA, flow cytometry, immunofluorescence, and CFSE proliferation assay. The roles of IL-8/PD-L1 in regulating neutrophil functions were further explored using inhibitors for IL-8 and PD-L1.

Results

Lung cancer cell lines were found to secrete higher levels of IL-8 compared to normal lung epithelial cells. The conditioned media from lung cancer cells significantly reduced apoptosis in neutrophils, increased PD-L1 expression, and suppressed T-cell proliferation and IFN-γ secretion. These effects were partially reversed in the presence of IL-8 inhibitors in Tumor Tissue Culture Supernatants (TTCS), while being further enhanced by IL-8. Both apoptosis and PD-L1 expression in neutrophils demonstrated dose-dependency to TTCS. Additionally, CFSE proliferation assay results further confirmed the inhibitory effect of lung cancer cell-conditioned media on T-cell proliferation.

Conclusion

This study has revealed lung cancer cell-conditioned media to modulate neutrophil functions through regulating factors, such as IL-8, thereby affecting immune regulation and tumor progression in the lung cancer microenvironment.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096337237240909101904
2024-10-01
2025-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ccdt/25/3/CCDT-25-3-07.html?itemId=/content/journals/ccdt/10.2174/0115680096337237240909101904&mimeType=html&fmt=ahah

References

  1. Abu RousF. SinghiE.K. SridharA. FaisalM.S. DesaiA. Lung cancer treatment advances in 2022.Cancer Invest.2023411122410.1080/07357907.2022.211947936036470
    [Google Scholar]
  2. LiY. YanB. HeS. Advances and challenges in the treatment of lung cancer.Biomed. Pharmacother.202316911589110.1016/j.biopha.2023.11589137979378
    [Google Scholar]
  3. LeeE. KazerooniE.A. Lung Cancer Screening.Semin. Respir. Crit. Care Med.202243683985010.1055/s‑0042‑175788536442474
    [Google Scholar]
  4. NooreldeenR. BachH. Current and Future Development in Lung Cancer Diagnosis.Int. J. Mol. Sci.20212216866110.3390/ijms2216866134445366
    [Google Scholar]
  5. ThaiA.A. SolomonB.J. SequistL.V. GainorJ.F. HeistR.S. Lung cancer.Lancet20213981029953555410.1016/S0140‑6736(21)00312‑334273294
    [Google Scholar]
  6. YaoJ. NovoselM. BellampalliS. KapoJ. JosephJ. PrsicE. Lung Cancer Supportive Care and Symptom Management.Hematol. Oncol. Clin. North Am.202337360962210.1016/j.hoc.2023.02.01137024385
    [Google Scholar]
  7. JiwnaniS. PenumaduP. AshokA. PrameshC.S. Lung Cancer Management in Low and Middle-Income Countries.Thorac. Surg. Clin.202232338339510.1016/j.thorsurg.2022.04.00535961746
    [Google Scholar]
  8. PetruželkaL. ŠpačekJ. KřížováĹ. Future of lung cancer treatment.Klin. Onkol.202134718110.48095/ccko2021S7134154333
    [Google Scholar]
  9. JainD. Roy-ChowdhuriS. Advances in cytology of lung cancer.Semin. Diagn. Pathol.202138510911510.1053/j.semdp.2021.05.00134119361
    [Google Scholar]
  10. YangH. LiuY. ChenL. ZhaoJ. GuoM. ZhaoX. WenZ. HeZ. ChenC. XuL. MiRNA-Based Therapies for Lung Cancer: Opportunities and Challenges?Biomolecules202313687710.3390/biom1306087737371458
    [Google Scholar]
  11. LeeJ. SaxenaA. GiacconeG. Advancements in small cell lung cancer.Semin. Cancer Biol.20239312312810.1016/j.semcancer.2023.05.00837236329
    [Google Scholar]
  12. OudkerkM. LiuS. HeuvelmansM.A. WalterJ.E. FieldJ.K. Lung cancer LDCT screening and mortality reduction — Evidence, pitfalls and future perspectives.Nat. Rev. Clin. Oncol.202118313515110.1038/s41571‑020‑00432‑633046839
    [Google Scholar]
  13. JhaS.K. De RubisG. DevkotaS.R. ZhangY. AdhikariR. JhaL.A. BhattacharyaK. MehndirattaS. GuptaG. SinghS.K. PanthN. DuaK. HansbroP.M. PaudelK.R. Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions.Ageing Res. Rev.20249710231510.1016/j.arr.2024.10231538679394
    [Google Scholar]
  14. FrydrychowiczM. KuszelŁ. DworackiG. Budna-TukanJ. MicroRNA in lung cancer—A novel potential way for early diagnosis and therapy.J. Appl. Genet.202364345947710.1007/s13353‑023‑00750‑236821071
    [Google Scholar]
  15. HuJ. ZhangL. XiaH. YanY. ZhuX. SunF. SunL. LiS. LiD. WangJ. HanY. ZhangJ. BianD. YuH. ChenY. FanP. MaQ. JiangG. WangC. ZhangP. Tumor microenvironment remodeling after neoadjuvant immunotherapy in non-small cell lung cancer revealed by single-cell RNA sequencing.Genome Med.20231511410.1186/s13073‑023‑01164‑936869384
    [Google Scholar]
  16. LiuW. PowellC.A. WangQ. Tumor microenvironment in lung cancer-derived brain metastasis.Chin. Med. J. (Engl.)2022135151781179110.1097/CM9.000000000000212735838548
    [Google Scholar]
  17. CordsL. EnglerS. HabereckerM. RüschoffJ.H. MochH. de SouzaN. BodenmillerB. Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer.Cancer Cell2024423396412.e510.1016/j.ccell.2023.12.02138242124
    [Google Scholar]
  18. CaoB. LiuM. WangL. ZhuK. CaiM. ChenX. FengY. YangS. FuS. ZhiC. YeX. ZhangJ. ZhangZ. YangX. ZhaoM. WuQ. XuL. YangL. LianH. ZhaoQ. ZhangZ. Remodelling of tumour microenvironment by microwave ablation potentiates immunotherapy of AXL-specific CAR T cells against non-small cell lung cancer.Nat. Commun.2022131620310.1038/s41467‑022‑33968‑536261437
    [Google Scholar]
  19. ZhaoY. GuoS. DengJ. ShenJ. DuF. WuX. ChenY. LiM. ChenM. LiX. LiW. GuL. SunY. WenQ. LiJ. XiaoZ. VEGF/VEGFR-Targeted Therapy and Immunotherapy in Non-small Cell Lung Cancer: Targeting the Tumor Microenvironment.Int. J. Biol. Sci.20221893845385810.7150/ijbs.7095835813484
    [Google Scholar]
  20. ZhangJ. SongC. TianY. YangX. Single-Cell RNA Sequencing in Lung Cancer: Revealing Phenotype Shaping of Stromal Cells in the Microenvironment.Front. Immunol.20221280208010.3389/fimmu.2021.80208035126365
    [Google Scholar]
  21. WangY. ChenR. WaY. DingS. YangY. LiaoJ. TongL. XiaoG. Tumor Immune Microenvironment and Immunotherapy in Brain Metastasis From Non-Small Cell Lung Cancer.Front. Immunol.20221382945110.3389/fimmu.2022.82945135251014
    [Google Scholar]
  22. XueQ. WangY. ZhengQ. ChenL. LinY. JinY. ShenX. LiY. Prognostic value of tumor immune microenvironment factors in patients with stage I lung adenocarcinoma.Am. J. Cancer Res.202313395096337034213
    [Google Scholar]
  23. LinY. ZhouH. LiS. BTN3A2 Expression Is Connected With Favorable Prognosis and High Infiltrating Immune in Lung Adenocarcinoma.Front. Genet.20221384847610.3389/fgene.2022.84847635873496
    [Google Scholar]
  24. StankovicB. BjørhovdeH.A.K. SkarshaugR. AamodtH. FrafjordA. MüllerE. HammarströmC. BerakiK. BækkevoldE.S. WoldbækP.R. HellandÅ. BrustugunO.T. ØynebråtenI. CorthayA. Immune Cell Composition in Human Non-small Cell Lung Cancer.Front. Immunol.20199310110.3389/fimmu.2018.0310130774636
    [Google Scholar]
  25. LiT. QiaoT. Unraveling tumor microenvironment of small-cell lung cancer: Implications for immunotherapy.Semin. Cancer Biol.202286Pt 211712510.1016/j.semcancer.2022.09.00536183998
    [Google Scholar]
  26. AnceyP.B. ContatC. BoivinG. SabatinoS. PascualJ. ZanggerN. PerentesJ.Y. PetersS. AbelE.D. KirschD.G. RathmellJ.C. VozeninM.C. MeylanE. GLUT1 Expression in Tumor-Associated Neutrophils Promotes Lung Cancer Growth and Resistance to Radiotherapy.Cancer Res.20218192345235710.1158/0008‑5472.CAN‑20‑287033753374
    [Google Scholar]
  27. HeX.Y. GaoY. NgD. MichalopoulouE. GeorgeS. AdroverJ.M. SunL. AlbrenguesJ. Daßler-PlenkerJ. HanX. WanL. WuX.S. ShuiL.S. HuangY.H. LiuB. SuC. SpectorD.L. VakocC.R. Van AelstL. EgebladM. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment.Cancer Cell2024423474486.e1210.1016/j.ccell.2024.01.01338402610
    [Google Scholar]
  28. ZhangQ. AbdoR. IosefC. KanekoT. CecchiniM. HanV.K. LiS.S.C. The spatial transcriptomic landscape of non-small cell lung cancer brain metastasis.Nat. Commun.2022131598310.1038/s41467‑022‑33365‑y36216799
    [Google Scholar]
  29. LiuY. LiC. LuY. LiuC. YangW. Tumor microenvironment-mediated immune tolerance in development and treatment of gastric cancer.Front. Immunol.202213101681710.3389/fimmu.2022.101681736341377
    [Google Scholar]
  30. Ramon-GilE. GehD. LeslieJ. Harnessing neutrophil plasticity for HCC immunotherapy.Essays Biochem.202367694195510.1042/EBC2022024537534829
    [Google Scholar]
  31. PengH. WuX. LiuS. HeM. TangC. WenY. XieC. ZhongR. LiC. XiongS. LiuJ. ZhengH. HeJ. LuX. LiangW. Cellular dynamics in tumour microenvironment along with lung cancer progression underscore spatial and evolutionary heterogeneity of neutrophil.Clin. Transl. Med.2023137e134010.1002/ctm2.134037491740
    [Google Scholar]
  32. ChanY. TanH. LuY. ZhangC. ChengC. WuJ. WangN. FengY. Pancreatic melatonin enhances anti-tumor immunity in pancreatic adenocarcinoma through regulating tumor-associated neutrophils infiltration and NETosis.Acta Pharm. Sin. B20231341554156710.1016/j.apsb.2023.01.02037139434
    [Google Scholar]
  33. HeL. KangQ. ChanK.I. ZhangY. ZhongZ. TanW. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer.Front. Immunol.202313109399010.3389/fimmu.2022.109399036776395
    [Google Scholar]
  34. TanZ. XueH. SunY. ZhangC. SongY. QiY. The Role of Tumor Inflammatory Microenvironment in Lung Cancer.Front. Pharmacol.20211268862510.3389/fphar.2021.68862534079469
    [Google Scholar]
  35. KaltenmeierC. YazdaniH.O. MorderK. GellerD.A. SimmonsR.L. TohmeS. Neutrophil Extracellular Traps Promote T Cell Exhaustion in the Tumor Microenvironment.Front. Immunol.20211278522210.3389/fimmu.2021.78522234899751
    [Google Scholar]
  36. UshioR. MurakamiS. SaitoH. Predictive Markers for Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer.J. Clin. Med.2022117185510.3390/jcm1107185535407463
    [Google Scholar]
  37. GuX. ZhuY. SuJ. WangS. SuX. DingX. JiangL. FeiX. ZhangW. Lactate-induced activation of tumor-associated fibroblasts and IL-8-mediated macrophage recruitment promote lung cancer progression.Redox Biol.20247410320910.1016/j.redox.2024.10320938861833
    [Google Scholar]
  38. TaoQ. LiX. ZhuT. GeX. GongS. GuoJ. MaR. Lactate Transporter SLC16A3 (MCT4) as an Onco-Immunological Biomarker Associating Tumor Microenvironment and Immune Responses in Lung Cancer.Int. J. Gen. Med.2022154465447410.2147/IJGM.S35359235509603
    [Google Scholar]
  39. HornL.A. RiskinJ. HempelH.A. FousekK. LindH. HamiltonD.H. McCampbellK.K. MaedaD.Y. ZebalaJ.A. SuZ. SchlomJ. PalenaC. Simultaneous inhibition of CXCR1/2, TGF-β, and PD-L1 remodels the tumor and its microenvironment to drive antitumor immunity.J. Immunother. Cancer202081e00032610.1136/jitc‑2019‑00032632188703
    [Google Scholar]
  40. YulianiF.S. ChenJ.Y. ChengW.H. WenH.C. ChenB.C. LinC.H. Thrombin induces IL-8/CXCL8 expression by DCLK1-dependent RhoA and YAP activation in human lung epithelial cells.J. Biomed. Sci.20222919510.1186/s12929‑022‑00877‑036369000
    [Google Scholar]
  41. PerryJ.A. ShallbergL. ClarkJ.T. GullicksrudJ.A. DeLongJ.H. DouglasB.B. HartA.P. LanzarZ. O’DeaK. KonradtC. ParkJ. KuchrooJ.R. GrubaughD. ZaretskyA.G. BrodskyI.E. MalefytR.W. ChristianD.A. SharpeA.H. HunterC.A. PD-L1–PD-1 interactions limit effector regulatory T cell populations at homeostasis and during infection.Nat. Immunol.202223574375610.1038/s41590‑022‑01170‑w35437326
    [Google Scholar]
  42. TichetM. WullschlegerS. ChryplewiczA. FournierN. MarconeR. KauzlaricA. HomicskoK. DeakL.C. UmañaP. KleinC. HanahanD. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8+ T cells and reprogramming macrophages.Immunity2023561162179.e610.1016/j.immuni.2022.12.00636630914
    [Google Scholar]
  43. HuangQ. WuX. WangZ. ChenX. WangL. LuY. XiongD. LiuQ. TianY. LinH. GuoJ. WenS. DongW. YangX. YuanY. YueZ. LeiS. WuQ. RanL. XieL. WangY. GaoL. TianQ. ZhouX. SunB. XuL. TangZ. YeL. The primordial differentiation of tumor-specific memory CD8+ T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes.Cell20221852240494066.e2510.1016/j.cell.2022.09.02036208623
    [Google Scholar]
  44. BudimirN. ThomasG.D. DolinaJ.S. Salek-ArdakaniS. Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade.Cancer Immunol. Res.202210214615310.1158/2326‑6066.CIR‑21‑051534937730
    [Google Scholar]
  45. SongS. ZhangY. DuanX. LiuC. DuY. WangX. LuoY. CuiY. HIF-1α/IL-8 axis in hypoxic macrophages promotes esophageal cancer progression by enhancing PD-L1 expression.Cancer Gene Ther.202330235836710.1038/s41417‑022‑00551‑536357565
    [Google Scholar]
  46. TanakaI. DaydeD. TaiM.C. MoriH. SolisL.M. TripathiS.C. FahrmannJ.F. UnverN. ParhyG. JainR. ParraE.R. MurakamiY. Aguilar-BonavidesC. MinoB. CeliktasM. DhillonD. CasabarJ.P. NakatochiM. StingoF. BaladandayuthapaniV. WangH. KatayamaH. DennisonJ.B. LorenziP.L. DoK.A. FujimotoJ. BehrensC. OstrinE.J. Rodriguez-CanalesJ. HaseT. FukuiT. KajinoT. KatoS. YatabeY. HosodaW. KawaguchiK. YokoiK. Chen-YoshikawaT.F. HasegawaY. GazdarA.F. WistubaI.I. HanashS. TaguchiA. SRGN-Triggered Aggressive and Immunosuppressive Phenotype in a Subset of TTF-1–Negative Lung Adenocarcinomas.J. Natl. Cancer Inst.2022114229030110.1093/jnci/djab18334524427
    [Google Scholar]
  47. WuY. LiuQ. XieY. ZhuJ. ZhangS. GeY. GuoJ. LuoN. HuangW. XuR. LiuS. ChengZ. MUC16 stimulates neutrophils to an inflammatory and immunosuppressive phenotype in ovarian cancer.J. Ovarian Res.202316118110.1186/s13048‑023‑01207‑037644468
    [Google Scholar]
  48. GiannettaE. La SalviaA. RizzaL. MuscogiuriG. CampioneS. PozzaC. ColaoA.A.L.I. FaggianoA. Are Markers of Systemic Inflammatory Response Useful in the Management of Patients With Neuroendocrine Neoplasms?Front. Endocrinol. (Lausanne)20211267249910.3389/fendo.2021.67249934367064
    [Google Scholar]
  49. FavaroF. Luciano-MateoF. Moreno-CaceresJ. Hernández-MadrigalM. BothD. MontironiC. PüschelF. NadalE. ElderingE. Muñoz-PinedoC. TRAIL receptors promote constitutive and inducible IL-8 secretion in non-small cell lung carcinoma.Cell Death Dis.20221312104610.1038/s41419‑022‑05495‑036522309
    [Google Scholar]
  50. LiX. ChenJ. ChenY.J. QiaoY.D. ZhaoL.Y. JiangN. WuX.Y. XingY.F. Dexamethasone and lactoferrin induced PMN-MDSCs relieved inflammatory adverse events of anti-cancer therapy without tumor promotion.Commun. Biol.20214125210.1038/s42003‑021‑01769‑z33637832
    [Google Scholar]
  51. LiuY. LiZ. MengQ. NingA. ZhouS. LiS. TaoX. WuY. ChenQ. TianT. ZhangL. CuiJ. MaoL. ChuM. Identification of the consistently differential expressed hub mRNAs and proteins in lung adenocarcinoma and construction of the prognostic signature: A multidimensional analysis.Int. J. Surg.202411021052106710.1097/JS9.000000000000094338016140
    [Google Scholar]
  52. XiongH. YeJ. XieK. HuW. XuN. YangH. Exosomal IL-8 derived from Lung Cancer and Colon Cancer cells induced adipocyte atrophy via NF-κB signaling pathway.Lipids Health Dis.202221114710.1186/s12944‑022‑01755‑236581870
    [Google Scholar]
  53. ShengY. PengW. HuangY. ChengL. MengY. KwantwiL.B. YangJ. XuJ. XiaoH. KzhyshkowskaJ. WuQ. Tumor-activated neutrophils promote metastasis in breast cancer via the G-CSF-RLN2-MMP-9 axis.J. Leukoc. Biol.2023113438339910.1093/jleuko/qiad00436801950
    [Google Scholar]
  54. MinorB.M.N. LeMoineD. SegerC. GibbonsE. KoudouovohJ. TayaM. KurtzD. XuY. HammesS.R. Estradiol Augments Tumor-Induced Neutrophil Production to Promote Tumor Cell Actions in Lymphangioleiomyomatosis Models.Endocrinology20231646bqad06110.1210/endocr/bqad06137042477
    [Google Scholar]
  55. TsilimigrasD.I. BrodtP. ClavienP.A. MuschelR.J. D’AngelicaM.I. EndoI. ParksR.W. DoyleM. de SantibañesE. PawlikT.M. Liver metastases.Nat. Rev. Dis. Primers2021712710.1038/s41572‑021‑00261‑633859205
    [Google Scholar]
  56. WangC. ZhengX. ZhangJ. JiangX. WangJ. LiY. LiX. ShenG. PengJ. ZhengP. GuY. ChenJ. LinM. DengC. GaoH. LuZ. ZhaoY. LuoM. CD300ld on neutrophils is required for tumour-driven immune suppression.Nature2023621798083083910.1038/s41586‑023‑06511‑937674079
    [Google Scholar]
  57. ZhongJ. ZongS. WangJ. FengM. WangJ. ZhangH. XiongL. Role of neutrophils on cancer cells and other immune cells in the tumor microenvironment.Biochim. Biophys. Acta Mol. Cell Res.1870119493202337201766
    [Google Scholar]
  58. HiramatsuS. TanakaH. NishimuraJ. YamakoshiY. SakimuraC. TamuraT. ToyokawaT. MugurumaK. YashiroM. HirakawaK. OhiraM. Gastric cancer cells alter the immunosuppressive function of neutrophils.Oncol. Rep.202043125125931746403
    [Google Scholar]
  59. RoetmanJ.J. ErwinM.M. RudloffM.W. FavretN.R. Detrés RománC.R. ApostolovaM.K.I. MurrayK.A. LeeT.F. LeeY.A. PhilipM. Tumor-Reactive CD8+ T Cells Enter a TCF1+PD-1− Dysfunctional State.Cancer Immunol. Res.202311121630164110.1158/2326‑6066.CIR‑22‑093937844197
    [Google Scholar]
  60. LiH. ChenJ. LiZ. ChenM. OuZ. MoM. WangR. TongS. LiuP. CaiZ. ZhangC. LiuZ. DengD. LiuJ. ChengC. HuJ. ZuX. S100A5 Attenuates Efficiency of Anti-PD-L1/PD-1 Immunotherapy by Inhibiting CD8 + T Cell-Mediated Anti-Cancer Immunity in Bladder Carcinoma.Adv. Sci. (Weinh.)20231025230011010.1002/advs.20230011037414584
    [Google Scholar]
  61. CaiZ. ChenJ. YuZ. LiH. LiuZ. DengD. LiuJ. ChenC. ZhangC. OuZ. ChenM. HuJ. ZuX. BCAT2 Shapes a Noninflamed Tumor Microenvironment and Induces Resistance to Anti-PD-1/PD-L1 Immunotherapy by Negatively Regulating Proinflammatory Chemokines and Anticancer Immunity.Adv. Sci. (Weinh.)2023108220715510.1002/advs.20220715536642843
    [Google Scholar]
  62. LiangY. ShenJ. LanQ. ZhangK. XuY. DuahM. XuK. PanB. Blockade of PD-1/PD-L1 increases effector T cells and aggravates murine chronic graft-versus-host disease.Int. Immunopharmacol.202211010905110.1016/j.intimp.2022.10905135850051
    [Google Scholar]
  63. ZhulaiG. OleinikE. Targeting regulatory T cells in anti‐PD‐1/PD‐L1 cancer immunotherapy.Scand. J. Immunol.2022953e1312910.1111/sji.1312934936125
    [Google Scholar]
  64. GuldenG. SertB. TeymurT. AyY. TiryakiN.N. MishraA.K. OvaliE. TarhanN. TastanC. CAR-T Cells with Phytohemagglutinin (PHA) Provide Anti-Cancer Capacity with Better Proliferation, Rejuvenated Effector Memory, and Reduced Exhausted T Cell Frequencies.Vaccines (Basel)202311231310.3390/vaccines1102031336851194
    [Google Scholar]
  65. RahimmaneshI. TavangarM. ZahediS.N. AziziY. Khanahmad ShahrezaH. Optimization of Culture Media for Ex vivo T-Cell Expansion for Adoptive T-Cell Therapy.Adv. Biomed. Res.20221119410.4103/abr.abr_349_2136518860
    [Google Scholar]
  66. KashefS. MoghtaderiM. HatamiH.R. KalaniM. AlyasinS. NabavizadehH. FarjadianS. Evaluation of T Cell Proliferation Using CFSE Dilution Assay: A Comparison between Stimulation with PHA and Anti-CD3/Anti-CD28 Coated Beads.Iran. J. Allergy Asthma Immunol.202221445846610.18502/ijaai.v21i4.1029336243934
    [Google Scholar]
  67. HabiballahS.B. WhangboJ.S. CardonaI.D. PlattC.D. Spontaneous resolution of severe idiopathic T cell lymphopenia.Clin. Immunol.202223810901410.1016/j.clim.2022.10901435447312
    [Google Scholar]
  68. CuiY. LiJ. ZhangP. YinD. WangZ. DaiJ. WangW. ZhangE. GuoR. B4GALT1 promotes immune escape by regulating the expression of PD-L1 at multiple levels in lung adenocarcinoma.J. Exp. Clin. Cancer Res.202342114610.1186/s13046‑023‑02711‑337303063
    [Google Scholar]
  69. MadedduC. DonisiC. LisciaN. LaiE. ScartozziM. MacciòA. EGFR-Mutated Non-Small Cell Lung Cancer and Resistance to Immunotherapy: Role of the Tumor Microenvironment.Int. J. Mol. Sci.20222312648910.3390/ijms2312648935742933
    [Google Scholar]
  70. Vico-BarrancoI. Arbulo-EchevarriaM.M. Serrano-GarcíaI. Pérez-LinazaA. Miranda-SayagoJ.M. MiazekA. Narbona-SánchezI. AguadoE. A Novel, LAT/Lck Double Deficient T Cell Subline J.CaM1.7 for Combined Analysis of Early TCR Signaling.Cells202110234310.3390/cells1002034333562083
    [Google Scholar]
  71. AhmadiA. AyyadevaraV.S.S.A. BaudryJ. RohK.H. Calcium signaling on Jurkat T cells induced by microbeads coated with novel peptide ligands specific to human CD3ε.J. Mater. Chem. B Mater. Biol. Med.2021961661167510.1039/D0TB02235G33481966
    [Google Scholar]
  72. Carrasco-PadillaC. Aguilar-SopeñaO. Gómez-MorónA. Alegre-GómezS. Sánchez-MadridF. Martín-CófrecesN.B. Roda-NavarroP. T cell activation and effector function in the human Jurkat T cell model.Methods Cell Biol.2023178254110.1016/bs.mcb.2022.09.01237516527
    [Google Scholar]
  73. JungD. ShinS. KangS.M. JungI. RyuS. NohS. ChoiS.J. JeongJ. LeeB.Y. KimK.S. KimC.S. YoonJ.H. LeeC.H. BucherF. KimY.N. ImS.H. SongB.J. YeaK. BaekM.C. Reprogramming of T cell-derived small extracellular vesicles using IL2 surface engineering induces potent anti-cancer effects through miRNA delivery.J. Extracell. Vesicles202211121228710.1002/jev2.1228736447429
    [Google Scholar]
  74. GeigerK.M. ManoharanM. CoombsR. AranaK. ParkC.S. LeeA.Y. ShastriN. RobeyE.A. CoscoyL. Murine cytomegalovirus downregulates ERAAP and induces an unconventional T cell response to self.Cell Rep.202342411231710.1016/j.celrep.2023.11231736995940
    [Google Scholar]
  75. ZagorulyaM. YimL. MorganD.M. EdwardsA. Torres-MejiaE. MominN. McCreeryC.V. ZamoraI.L. HortonB.L. FoxJ.G. WittrupK.D. LoveJ.C. SprangerS. Tissue-specific abundance of interferon-gamma drives regulatory T cells to restrain DC1-mediated priming of cytotoxic T cells against lung cancer.Immunity2023562386405.e1010.1016/j.immuni.2023.01.01036736322
    [Google Scholar]
  76. CuiZ. RuanZ. ZengJ. SunJ. YeW. XuW. GuoX. ZhangL. SongL. Lung-specific exosomes for co-delivery of CD47 blockade and cisplatin for the treatment of non-small cell lung cancer.Thorac. Cancer202213192723273110.1111/1759‑7714.1460636054073
    [Google Scholar]
  77. ChengB. DingK. ChenP. JiJ. LuoT. GuoX. QiuW. MaC. MengX. WangJ. YuJ. LiuY. Anti-PD-L1/TGF-βR fusion protein (SHR-1701) overcomes disrupted lymphocyte recovery-induced resistance to PD-1/PD-L1 inhibitors in lung cancer.Cancer Commun. (Lond.)2022421173610.1002/cac2.1224434981670
    [Google Scholar]
  78. PengP. LouY. WangS. WangJ. ZhangZ. DuP. ZhengJ. LiuP. XuL.X. Activated NK cells reprogram MDSCs via NKG2D-NKG2DL and IFN-γ to modulate antitumor T-cell response after cryo-thermal therapy.J. Immunother. Cancer20221012e00576910.1136/jitc‑2022‑00576936521929
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096337237240909101904
Loading
/content/journals/ccdt/10.2174/0115680096337237240909101904
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): IL-8; immune escape; Lung cancer; neutrophils; PD-L1; tumor microenvironment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test