Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Lung cancer is a highly prevalent tumor with a lack of biological markers that reflect its progression. Mast cell surface membrane protein 1 (MCEMP1, also known as C19ORF59) has not been reported in lung adenocarcinoma (LUAD).

Objective

We aimed to investigate the role of MCEMP1 in LUAD.

Methods

MCEMP1 expression in LUAD was analyzed using The Cancer Genome Atlas (TCGA) data, and conducted univariate and multivariate Cox regression analyses to evaluate the prognostic significance of MCEMP1 expression in TCGA. Tumor Immune Estimation Resource (TIMER) was used for examining the correlation between MCEMP1 expression and immune cell infiltration in LUAD. Furthermore, proliferation, migration, invasion, and colony-forming ability were investigated using LUAD cell lines.

Results

MCEMP1 expression in LUAD patient tissues and was correlated with lymph node metastasis, differentiation level, and tumor status. The Area under Curve (AUC) value of MCEMP1 for the Receiver Operating Characteristic (ROC) curve analysis was 0.984. The immune infiltration analysis revealed a correlation between MCEMP1 expression and the extent of macrophages and neutrophil infiltration in LUAD. Additionally, MCEMP1 has low expression in clinical samples, MCEMP1 overexpressed in LUAD cells substantially reduced cell growth, migration, and invasion of malignant cells.

Conclusion

Low expression MCEMP1 promotes LUAD progression, which provides new insights and a potential biological target for future LUAD therapies.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096292054240409070618
2024-04-26
2025-01-18
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. DenisenkoT.V. BudkevichI.N. ZhivotovskyB. Cell death-based treatment of lung adenocarcinoma.Cell Death Dis.20189211710.1038/s41419‑017‑0063‑y29371589
    [Google Scholar]
  3. EttingerD.S. WoodD.E. AisnerD.L. AkerleyW. BaumanJ. ChirieacL.R. D’AmicoT.A. DeCampM.M. DillingT.J. DobelbowerM. DoebeleR.C. GovindanR. GubensM.A. HennonM. HornL. KomakiR. LacknerR.P. LanutiM. LealT.A. LeischL.J. LilenbaumR. LinJ. LooB.W.Jr MartinsR. OttersonG.A. ReckampK. RielyG.J. SchildS.E. ShapiroT.A. StevensonJ. SwansonS.J. TauerK. YangS.C. GregoryK. HughesM. Non–small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.201715450453510.6004/jnccn.2017.005028404761
    [Google Scholar]
  4. SonodaD. MatsuuraY. KondoY. IchinoseJ. NakaoM. NinomiyaH. NishioM. OkumuraS. SatohY. MunM. A reasonable definition of oligo-recurrence in non–small-cell lung cancer.Clin. Lung Cancer2022231829010.1016/j.cllc.2021.10.01334836824
    [Google Scholar]
  5. GiaquintoA.N. MillerK.D. TossasK.Y. WinnR.A. JemalA. SiegelR.L. Cancer statistics for African American/Black People 2022.CA Cancer J. Clin.202272320222910.3322/caac.2171835143040
    [Google Scholar]
  6. MillerK.D. NogueiraL. DevasiaT. MariottoA.B. YabroffK.R. JemalA. KramerJ. SiegelR.L. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.2173135736631
    [Google Scholar]
  7. MetcalfeD.D. BaramD. MekoriY.A. Mast cells.Physiol. Rev.19977741033107910.1152/physrev.1997.77.4.10339354811
    [Google Scholar]
  8. OrinskaZ. HagemannP.M. HalovaI. DraberP. Tetraspanins in the regulation of mast cell function.Med. Microbiol. Immunol. (Berl.)2020209453154310.1007/s00430‑020‑00679‑x32507938
    [Google Scholar]
  9. AllerM.A. AriasA. AriasJ.I. AriasJ. Carcinogenesis: The cancer cell–mast cell connection.Inflamm. Res.201968210311610.1007/s00011‑018‑1201‑430460391
    [Google Scholar]
  10. RosenwasserL.J. BoyceJ.A. Mast cells: Beyond IgE.J. Allergy Clin. Immunol.20031111243210.1067/mai.2003.6012532090
    [Google Scholar]
  11. OranA. MarshallJ.S. KondoS. PagliaD. McKenzieR.C. Cyclosporin inhibits intercellular adhesion molecule-1 expression and reduces mast cell numbers in the asebia mouse model of chronic skin inflammation.Br. J. Dermatol.1997136451952610.1046/j.1365‑2133.1997.6081584.x9155951
    [Google Scholar]
  12. GretenF.R. GrivennikovS.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences.Immunity2019511274110.1016/j.immuni.2019.06.02531315034
    [Google Scholar]
  13. MooreM.M. ChuaW. CharlesK.A. ClarkeS.J. Inflammation and cancer: Causes and consequences.Clin. Pharmacol. Ther.201087450450810.1038/clpt.2009.25420147899
    [Google Scholar]
  14. HammadH. LambrechtB.N. Barrier epithelial cells and the control of Type 2 immunity.Immunity2015431294010.1016/j.immuni.2015.07.00726200011
    [Google Scholar]
  15. LiuB. YangM.Q. YuT.Y. YinY.Y. LiuY. WangX.D. HeZ.G. YinL. ChenC.Q. LiJ.Y. Mast cell tryptase promotes inflammatory bowel disease–induced intestinal fibrosis.Inflamm. Bowel Dis.202127224225510.1093/ibd/izaa12532507895
    [Google Scholar]
  16. ChenJ.X. XuX. ZhangS. Silence of long noncoding RNA NEAT1 exerts suppressive effects on immunity during sepsis by promoting microRNA-125-dependent MCEMP1 downregulation.IUBMB Life201971795696810.1002/iub.203330883005
    [Google Scholar]
  17. HuG. SunN. JiangJ. ChenX. Establishment of a 5-gene risk model related to regulatory T cells for predicting gastric cancer prognosis.Cancer Cell Int.202020143310.1186/s12935‑020‑01502‑632908454
    [Google Scholar]
  18. WangD. GuY. HuoC. ZhaoY. TengM. LiY. MCEMP1 is a potential therapeutic biomarker associated with immune infiltration in advanced gastric cancer microenvironment.Gene202284014676010.1016/j.gene.2022.14676035905854
    [Google Scholar]
  19. YaraniR. PalascaO. DonchevaN.T. AnthonC. PileckiB. SvaneC.A.S. MirzaA.H. LitmanT. HolmskovU. Bang-BerthelsenC.H. VilienM. JensenL.J. GorodkinJ. PociotF. Cross-species high-resolution transcriptome profiling suggests biomarkers and therapeutic targets for ulcerative colitis.Front. Mol. Biosci.20239108117610.3389/fmolb.2022.108117636685283
    [Google Scholar]
  20. NowakJ.K. AdamsA.T. KallaR. LindstrømJ.C. VatnS. BergemalmD. KeitaÅ.V. GomollónF. JahnsenJ. VatnM.H. RicanekP. OstrowskiJ. WalkowiakJ. HalfvarsonJ. SatsangiJ. Characterisation of the Circulating Transcriptomic Landscape in Inflammatory Bowel Disease Provides Evidence for Dysregulation of Multiple Transcription Factors Including NFE2, SPI1, CEBPB, and IRF2.J. Crohn’s Colitis20221681255126810.1093/ecco‑jcc/jjac03335212366
    [Google Scholar]
  21. SchabathM.B. CoteM.L. Cancer Progress and Priorities: Lung Cancer.Cancer Epidemiol. Biomarkers Prev.201928101563157910.1158/1055‑9965.EPI‑19‑022131575553
    [Google Scholar]
  22. LiY. ZhaoL. LiX.F. Hypoxia and the Tumor Microenvironment.Technol. Cancer Res. Treat.20212010.1177/1533033821103630434350796
    [Google Scholar]
  23. PicoliC.C. GonçalvesB.Ô.P. SantosG.S.P. RochaB.G.S. CostaA.C. ResendeR.R. BirbrairA. Pericytes cross-talks within the tumor microenvironment.Biochim. Biophys. Acta Rev. Cancer20211876218860810.1016/j.bbcan.2021.18860834384850
    [Google Scholar]
  24. BaderJ.E. VossK. RathmellJ.C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy.Mol. Cell20207861019103310.1016/j.molcel.2020.05.03432559423
    [Google Scholar]
  25. NakamuraK. SmythM.J. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment.Cell. Mol. Immunol.202017111210.1038/s41423‑019‑0306‑131611651
    [Google Scholar]
  26. BaigM.S. RoyA. RajpootS. LiuD. SavaiR. BanerjeeS. KawadaM. FaisalS.M. SalujaR. SaqibU. OhishiT. WaryK.K. Tumor-derived exosomes in the regulation of macrophage polarization.Inflamm. Res.202069543545110.1007/s00011‑020‑01318‑032162012
    [Google Scholar]
  27. PanY. YuY. WangX. ZhangT. Tumor-Associated Macrophages in Tumor Immunity.Front. Immunol.20201158308410.3389/fimmu.2020.58308433365025
    [Google Scholar]
  28. NicolòE. GiuglianoF. AscioneL. TarantinoP. CortiC. TolaneyS.M. CristofanilliM. CuriglianoG. Combining antibody-drug conjugates with immunotherapy in solid tumors: Current landscape and future perspectives.Cancer Treat. Rev.202210610239510.1016/j.ctrv.2022.10239535468539
    [Google Scholar]
  29. BlagihJ. BuckM.D. VousdenK.H. p53, cancer and the immune response.J. Cell Sci.20201335jcs23745310.1242/jcs.23745332144194
    [Google Scholar]
  30. DahdahA. GautierG. AttoutT. FioreF. LebourdaisE. MsallamR. DaëronM. MonteiroR.C. BenhamouM. CharlesN. DavoustJ. BlankU. MalissenB. LaunayP. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis.J. Clin. Invest.2014124104577458910.1172/JCI7521225180604
    [Google Scholar]
  31. ChoiY.J. YooJ.S. JungK. RiceL. KimD. ZlojutroV. FrimelM. MaddenE. ChoiU.Y. FooS.S. ChoiY. JiangZ. JohnsonH. KwakM.J. KangS. HongB. SeoG.J. KimS. LeeS.A. Amini-Bavil-OlyaeeS. MaaziH. AkbariO. AsosinghK. JungJ.U. Lung-specific MCEMP1 functions as an adaptor for KIT to promote SCF-mediated mast cell proliferation.Nat. Commun.2023141204510.1038/s41467‑023‑37873‑337041174
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096292054240409070618
Loading
/content/journals/ccdt/10.2174/0115680096292054240409070618
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biological marker; immune infiltration; LUAD; MCEMP1; TCGA; TME
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test