Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Aims

The purpose of this study was to investigate the role of DGUOK in the progression of colorectal cancer (CRC) and its impact on the sensitivity of CRC cells to 5-FU treatment.

Methods

We conducted bioinformatics analysis and qRT-PCR to evaluate DGUOK expression in CRC tissues/cells. Cell viability of CRC cells treated with 5-FU was assessed using CCK-8 and colony formation assays. Autophagy levels were determined through immunofluorescence assays and Western blot analysis. Additionally, the influence of p-p38 on autophagy was investigated Western blotting. A rescue assay was performed to confirm whether DGUOK/p38 affects 5-FU sensitivity in CRC cells through autophagy.

Results

Our findings indicate that DGUOK is upregulated in CRC tissues compared to normal tissues, correlating with increased cell proliferation and migration. Functionally, inhibition of DGUOK enhances autophagy, thereby decreasing the sensitivity of CRC cells to 5-FU. This effect is partly mediated by DGUOK's impact on the mitogen-activated protein kinase (MAPK) pathway, specifically promoting the phosphorylation of p38 MAPK, a crucial regulator in autophagy pathways.

Conclusion

These results suggest that DGUOK could serve as a novel marker for predicting the efficacy of 5-FU in CRC treatment.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096337375240801080008
2024-08-20
2025-01-18
Loading full text...

Full text loading...

References

  1. HousiniM. DariyaB. AhmedN. StevensA. FiadjoeH. NagarajuG.P. BashaR. Colorectal cancer: Genetic alterations, novel biomarkers, current therapeutic strategies and clinical trials.Gene202489214785710.1016/j.gene.2023.14785737783294
    [Google Scholar]
  2. TsalikidisC. MitsalaA. MentonisV.I. RomanidisK. Pappas-GogosG. TsarouchaA.K. PitiakoudisM. Predictive Factors for Anastomotic Leakage Following Colorectal Cancer Surgery: Where Are We and Where Are We Going?Curr. Oncol.20233033111313710.3390/curroncol3003023636975449
    [Google Scholar]
  3. BrandiG. RicciA.D. RizzoA. ZanfiC. TavolariS. PalloniA. De LorenzoS. RavaioliM. CesconM. Is post‐transplant chemotherapy feasible in liver transplantation for colorectal cancer liver metastases?Cancer Commun.202040946146410.1002/cac2.1207232762027
    [Google Scholar]
  4. ZattoniD. ChristoforidisD. How best to palliate and treat emergency conditions in geriatric patients with colorectal cancer.Eur. J. Surg. Oncol.202046336937810.1016/j.ejso.2019.12.02031973923
    [Google Scholar]
  5. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  6. SobralD. MartinsM. KaplanS. GolkaramM. SalmansM. KhanN. VijayaraghavanR. CasimiroS. FernandesA. BorralhoP. FerreiraC. PintoR. AbreuC. CostaA.L. ZhangS. PawlowskiT. GodseyJ. MansinhoA. MacedoD. Lobo-MartinsS. FilipeP. EstevesR. CoutinhoJ. CostaP.M. RamiresA. AldeiaF. QuintelaA. SoA. LiuL. GrossoA.R. CostaL. Genetic and microenvironmental intra-tumor heterogeneity impacts colorectal cancer evolution and metastatic development.Commun. Biol.20225193710.1038/s42003‑022‑03884‑x36085309
    [Google Scholar]
  7. VitaleE. RizzoA. SantaK. JirilloE. Associations between “Cancer Risk”, “Inflammation” and “Metabolic Syndrome”: A Scoping Review.Biology202413535210.3390/biology1305035238785834
    [Google Scholar]
  8. JiangT. XingL. ZhaoL. YeZ. YuD. LinS. Comprehensive analysis of m6A related gene mutation characteristics and prognosis in colorectal cancer.BMC Med. Genomics202316110510.1186/s12920‑023‑01509‑837194014
    [Google Scholar]
  9. LongJ. HeQ. YinY. LeiX. LiZ. ZhuW. The effect of miRNA and autophagy on colorectal cancer.Cell Prolif.20205310e1290010.1111/cpr.1290032914514
    [Google Scholar]
  10. RuanJ. ZhangP. ZhangQ. ZhaoS. DangZ. LuM. LiH. ZhangY. WangT. Colorectal cancer inhibitory properties of polysaccharides and their molecular mechanisms: A review.Int. J. Biol. Macromol.202323812416510.1016/j.ijbiomac.2023.12416536963537
    [Google Scholar]
  11. Vanden AvondM.A. MengH. BeatkaM.J. HelblingD.C. PromM.J. SuttonJ.L. SlickR.A. DimmockD.P. PertusatiF. SerpiM. PileggiE. CrutcherP. ThomasS. LawlorM.W. The nucleotide prodrug CERC ‐913 improves MTDNA content in primary hepatocytes from DGUOK‐DEFICIENT rats.J. Inherit. Metab. Dis.202144249250110.1002/jimd.1235433368311
    [Google Scholar]
  12. MunroB. HorvathR. MüllerJ.S. Nucleoside supplementation modulates mitochondrial DNA copy number in the dguok −/− zebrafish.Hum. Mol. Genet.201928579680310.1093/hmg/ddy38930428046
    [Google Scholar]
  13. GaoY. DongR. YanJ. ChenH. SangL. YaoX. FanD. WangX. ZuoX. ZhangX. YangS. WuZ. SunJ. Mitochondrial deoxyguanosine kinase is required for female fertility in mice.Acta Biochim. Biophys. Sin. (Shanghai)202456342743910.3724/abbs.202400338327186
    [Google Scholar]
  14. LinS. HuangC. SunJ. BolltO. WangX. MartineE. KangJ. TaylorM.D. FangB. SinghP.K. KoomenJ. HaoJ. YangS. The mitochondrial deoxyguanosine kinase is required for cancer cell stemness in lung adenocarcinoma.EMBO Mol. Med.20191112e1084910.15252/emmm.20191084931633874
    [Google Scholar]
  15. ZhuC. JohanssonM. PermertJ. KarlssonA. Enhanced cytotoxicity of nucleoside analogs by overexpression of mitochondrial deoxyguanosine kinase in cancer cell lines.J. Biol. Chem.199827324147071471110.1074/jbc.273.24.147079614068
    [Google Scholar]
  16. YangZ. WuG. ZhangX. GaoJ. MengC. LiuY. WeiQ. SunL. WeiP. BaiZ. YaoH. ZhangZ. Current progress and future perspectives of neoadjuvant anti-PD-1/PD-L1 therapy for colorectal cancer.Front. Immunol.202213100144410.3389/fimmu.2022.100144436159842
    [Google Scholar]
  17. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x36695827
    [Google Scholar]
  18. FabregasJ.C. RamnaraignB. GeorgeT.J. Clinical Updates for Colon Cancer Care in 2022.Clin. Colorectal Cancer202221319820310.1016/j.clcc.2022.05.00635729033
    [Google Scholar]
  19. XuR. ZhouB. FungP.C. LiX. Recent advances in the treatment of colon cancer.Histol. Histopathol.200621886787210.14670/hh‑21.86716691539
    [Google Scholar]
  20. PetersG.J. van der WiltC.L. van TriestB. Codacci-PisanelliG. JohnstonP.G. van GroeningenC.J. PinedoH.M. Thymidylate synthase and drug resistance.Eur. J. Cancer1995317-81299130510.1016/0959‑8049(95)00172‑F7577040
    [Google Scholar]
  21. IjichiK. AdachiM. OgawaT. HasegawaY. MurakamiS. Cell-cycle distribution and Thymidilate Synthatase (TS) expression correlate with 5-FU resistance in head and neck carcinoma cells.Anticancer Res.20143462907291124922653
    [Google Scholar]
  22. XieP. MoJ.L. LiuJ.H. LiX. TanL.M. ZhangW. ZhouH.H. LiuZ.Q. Pharmacogenomics of 5-fluorouracil in colorectal cancer: review and update.Cell. Oncol.2020436989100110.1007/s13402‑020‑00529‑132474853
    [Google Scholar]
  23. MafiA. RezaeeM. HedayatiN. HoganS.D. ReiterR.J. AarabiM.H. AsemiZ. Melatonin and 5-fluorouracil combination chemotherapy: opportunities and efficacy in cancer therapy.Cell Commun. Signal.20232113310.1186/s12964‑023‑01047‑x36759799
    [Google Scholar]
  24. ShakibaeiM. BuhrmannC. KraeheP. ShayanP. LuedersC. GoelA. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures.PLoS One201491e8539710.1371/journal.pone.008539724404205
    [Google Scholar]
  25. TouilY. IgoudjilW. CorvaisierM. DesseinA.F. VandommeJ. MontéD. StechlyL. SkrypekN. LangloisC. GrardG. MilletG. LeteurtreE. DumontP. TruantS. PruvotF.R. HebbarM. FanF. EllisL.M. FormstecherP. Van SeuningenI. GespachC. PolakowskaR. HuetG. Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis.Clin. Cancer Res.201420483784610.1158/1078‑0432.CCR‑13‑185424323901
    [Google Scholar]
  26. RizzoA. NanniniM. NovelliM. Dalia RicciA. ScioscioV.D. PantaleoM.A. Dose reduction and discontinuation of standard-dose regorafenib associated with adverse drug events in cancer patients: a systematic review and meta-analysis.Ther. Adv. Med. Oncol.20201210.1177/175883592093693232684988
    [Google Scholar]
  27. LuoY. ZhengS. WuQ. WuJ. ZhouR. WangC. WuZ. RongX. HuangN. SunL. BinJ. LiaoY. ShiM. LiaoW. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation.Autophagy202117124083410110.1080/15548627.2021.190120433764843
    [Google Scholar]
  28. RenJ. HuZ. NiuG. XiaJ. WangX. HongR. GuJ. WangD. KeC. Annexin A1 induces oxaliplatin resistance of gastric cancer through autophagy by targeting PI3K/AKT/mTOR.FASEB J.2023373e2279010.1096/fj.202200400RR36786694
    [Google Scholar]
  29. GeJ. ChenZ. HuangJ. ChenJ. YuanW. DengZ. ChenZ. Upregulation of autophagy-related gene-5 (ATG-5) is associated with chemoresistance in human gastric cancer.PLoS One2014910e11029310.1371/journal.pone.011029325329677
    [Google Scholar]
  30. VodenkovaS. BuchlerT. CervenaK. VeskrnovaV. VodickaP. VymetalkovaV. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future.Pharmacol. Ther.202020610744710.1016/j.pharmthera.2019.10744731756363
    [Google Scholar]
  31. Danesh PouyaF. RasmiY. NematiM. Signaling Pathways Involved in 5-FU Drug Resistance in Cancer.Cancer Invest.202240651654310.1080/07357907.2022.205505035320055
    [Google Scholar]
  32. El-HattabA.W. ScagliaF. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options.Neurotherapeutics201310218619810.1007/s13311‑013‑0177‑623385875
    [Google Scholar]
  33. MandelH. SzargelR. LabayV. ElpelegO. SaadaA. ShalataA. AnbinderY. BerkowitzD. HartmanC. BarakM. ErikssonS. CohenN. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA.Nat. Genet.200129333734110.1038/ng74611687800
    [Google Scholar]
  34. BhattacharjyaD. SivalingamN. Mechanism of 5-fluorouracil induced resistance and role of piperine and curcumin as chemo-sensitizers in colon cancer.Naunyn Schmiedebergs Arch. Pharmacol.202410.1007/s00210‑024‑03189‑238878089
    [Google Scholar]
  35. ZhengY. WuJ. ChenH. LinD. ChenH. ZhengJ. XiaH. HuangL. ZengC. KLF4 targets RAB26 and decreases 5-FU resistance through inhibiting autophagy in colon cancer.Cancer Biol. Ther.2023241222635310.1080/15384047.2023.222635337431852
    [Google Scholar]
  36. IntuyodK. Saavedra-GarcíaP. ZonaS. LaiC.F. JiramongkolY. VaeteewoottacharnK. PairojkulC. YaoS. YongJ.S. TrakansuebkulS. WaraasawapatiS. LuviraV. WongkhamS. PinlaorS. LamE.W.F. RETRACTED ARTICLE: FOXM1 modulates 5-fluorouracil sensitivity in cholangiocarcinoma through thymidylate synthase (TYMS): implications of FOXM1–TYMS axis uncoupling in 5-FU resistance.Cell Death Dis.2018912118510.1038/s41419‑018‑1235‑030538221
    [Google Scholar]
  37. KumarA. SinghA.K. SinghH. TharejaS. KumarP. Regulation of thymidylate synthase: an approach to overcome 5-FU resistance in colorectal cancer.Med. Oncol.2022401310.1007/s12032‑022‑01864‑z36308643
    [Google Scholar]
  38. DongS. LiangS. ChengZ. ZhangX. LuoL. LiL. ZhangW. LiS. XuQ. ZhongM. ZhuJ. ZhangG. HuS. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer.J. Exp. Clin. Cancer Res.20224111510.1186/s13046‑021‑02229‑634998404
    [Google Scholar]
  39. PranziniE. PardellaE. MuccilloL. LeoA. NesiI. SantiA. ParriM. ZhangT. UribeA.H. LottiniT. SabatinoL. CaselliA. ArcangeliA. RaugeiG. ColantuoniV. CirriP. ChiarugiP. MaddocksO.D.K. PaoliP. TaddeiM.L. SHMT2-mediated mitochondrial serine metabolism drives 5-FU resistance by fueling nucleotide biosynthesis.Cell Rep.202240711123310.1016/j.celrep.2022.11123335977477
    [Google Scholar]
  40. FangL. LvJ. XuanZ. LiB. LiZ. HeZ. LiF. XuJ. WangS. XiaY. JiangT. ZhangL. WangL. ZhangD. XuH. YangL. XuZ. WangW. Circular CPM promotes chemoresistance of gastric cancer via activating PRKAA2‐mediated autophagy.Clin. Transl. Med.2022121e70810.1002/ctm2.70835075806
    [Google Scholar]
  41. YueY. ZhangQ. WangX. SunZ. STAT3 regulates 5‐Fu resistance in human colorectal cancer cells by promoting Mcl‐1–dependent cytoprotective autophagy.Cancer Sci.202311462293230510.1111/cas.1576136788743
    [Google Scholar]
  42. ZhangQ. LiuR.X. ChanK.W. HuJ. ZhangJ. WeiL. TanH. YangX. LiuH. Exosomal transfer of p-STAT3 promotes acquired 5-FU resistance in colorectal cancer cells.J. Exp. Clin. Cancer Res.201938132010.1186/s13046‑019‑1314‑931324203
    [Google Scholar]
  43. LiM. XiaM. ZhangZ. TanY. LiE. GuoZ. FangM. ZhuY. HuZ. METTL3 antagonizes 5 FU chemotherapy and confers drug resistance in colorectal carcinoma.Int. J. Oncol.202261310610.3892/ijo.2022.539635856434
    [Google Scholar]
  44. WaghelaB.N. VaidyaF.U. PathakC. Upregulation of NOX-2 and Nrf-2 Promotes 5-Fluorouracil Resistance of Human Colon Carcinoma (HCT-116) Cells.Biochemistry (Mosc.)202186326227410.1134/S000629792103004433838628
    [Google Scholar]
  45. LiX. HeS. MaB. Autophagy and autophagy-related proteins in cancer.Mol. Cancer20201911210.1186/s12943‑020‑1138‑431969156
    [Google Scholar]
  46. HuangH. HanQ. ZhengH. LiuM. ShiS. ZhangT. YangX. LiZ. XuQ. GuoH. LuF. WangJ. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer.Cell Death Dis.20211311310.1038/s41419‑021‑04474‑134930918
    [Google Scholar]
  47. WeiS. ZhaoQ. ZhengK. LiuP. ShaN. LiY. MaC. LiJ. ZhuoL. LiuG. LiangW. JiangY. ChenT. ZhongN. GFAT1-linked TAB1 glutamylation sustains p38 MAPK activation and promotes lung cancer cell survival under glucose starvation.Cell Discov.2022817710.1038/s41421‑022‑00423‑035945223
    [Google Scholar]
  48. ZhuQ. ZhangQ. GuM. ZhangK. XiaT. ZhangS. ChenW. YinH. YaoH. FanY. PanS. XieH. LiuH. ChengT. ZhangP. ZhangT. YouB. YouY. MIR106A-5p upregulation suppresses autophagy and accelerates malignant phenotype in nasopharyngeal carcinoma.Autophagy20211771667168310.1080/15548627.2020.178136832627648
    [Google Scholar]
  49. XingY. WeiX. LiuY. WangM.M. SuiZ. WangX. ZhuW. WuM. LuC. FeiY.H. JiangY. ZhangY. WangY. GuoF. CaoJ.L. QiJ. WangW. Autophagy inhibition mediated by MCOLN1/TRPML1 suppresses cancer metastasis via regulating a ROS-driven TP53/p53 pathway.Autophagy20221881932195410.1080/15548627.2021.200875234878954
    [Google Scholar]
  50. de la Cruz-MorcilloM.A. ValeroM.L.L. Callejas-ValeraJ.L. Arias-GonzálezL. Melgar-RojasP. Galán-MoyaE.M. García-GilE. García-CanoJ. Sánchez-PrietoR. RETRACTED ARTICLE: P38MAPK is a major determinant of the balance between apoptosis and autophagy triggered by 5-fluorouracil: implication in resistance.Oncogene20123191073108510.1038/onc.2011.32121841826
    [Google Scholar]
  51. KudaravalliS. den HollanderP. ManiS.A. Role of p38 MAP kinase in cancer stem cells and metastasis.Oncogene202241233177318510.1038/s41388‑022‑02329‑335501462
    [Google Scholar]
  52. WenS. HouY. FuL. XiL. YangD. ZhaoM. QinY. SunK. TengY. LiuM. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3–p38 MAPK signalling.Cancer Lett.201944232033210.1016/j.canlet.2018.10.01530391782
    [Google Scholar]
  53. ZhenhaiZ. QiC. ShuchaoZ. ZhongqiW. XueS. ZhijunG. ZhijieM. JianminL. BeibeiL. YuanyuanG. MiR-205-3p suppresses bladder cancer progression via GLO1 mediated P38/ERK activation.BMC Cancer202323195610.1186/s12885‑023‑11175‑937814205
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096337375240801080008
Loading
/content/journals/ccdt/10.2174/0115680096337375240801080008
Loading

Data & Media loading...

Supplements

Supplementary material isavailable on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test