Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background and Objective

Globally, Gastric Cancer (GC) ranks as the fifth leading cause of cancer-related deaths. GC is a multifaceted malignancy with diverse etiologies; however, understanding the shared molecular mechanisms can aid in discovering novel targeted therapies for GC. This study has employed a drug repositioning approach to explore new drug candidates for treating GC.

Methods

The human GC cell lines AGS, MKN-45, and KATO-III were treated with different concentrations of dopamine, cabergoline, thioridazine, and entacapone to determine effective doses and IC50 values. , cytotoxic activity on cancer cell lines was screened based on dose/time using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) was used to measure the mRNA expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and Proliferating Cell Nuclear Antigen (PCNA) in each group. The percentage of apoptotic cells was evaluated using Annexin V/PI staining.

Results

Dopamine, cabergoline, thioridazine, and entacapone elicited cytotoxic effects on AGS and KATO-III cells in a dose-dependent manner and elevated the percentage of Annexin V-positive cells, suggesting the occurrence of apoptosis. The expression of Bcl-2 and PCNA was significantly decreased, whereas the expression of Bax was considerably increased in the AGS and KATO-III cells compared to that in the blank group (p < 0.05); however, no similar effect was observed in MKN-45 cells.

Conclusion

Through experiments, this study provides evidence that the antipsychotic drugs cabergoline, dopamine, thioridazine, and entacapone can inhibit gastric cancer growth in AGS and KATO-III cells. These findings suggest that these drugs could be repurposed as novel therapeutic agents for the treatment of gastric cancer.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096303479240614061136
2024-07-09
2025-06-26
Loading full text...

Full text loading...

References

  1. MishraA. SinghS. ShuklaS. Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for parkinson’s disease.J. Exp. Neurosci.20181210.1177/117906951877982929899667
    [Google Scholar]
  2. KumarA. PlückthunA. In vivo assembly and large-scale purification of a GPCR - Gα fusion with Gβγ, and characterization of the active complex.PLoS One2019141e021013110.1371/journal.pone.021013130620756
    [Google Scholar]
  3. Rosas-CruzA. Salinas-JazmínN. VelázquezM.A.V. Dopamine receptors in cancer: Are they valid therapeutic targets?Technol. Cancer Res. Treat.2021_20_11533033821102791310.1177/1533033821102791334212819
    [Google Scholar]
  4. MartelJ.C. Gatti McArthurS. Dopamine receptor subtypes, physiology and pharmacology: New ligands and concepts in schizophrenia.Front. Pharmacol.202011100310.3389/fphar.2020.0100332765257
    [Google Scholar]
  5. ChenR. FerrisM.J. WangS. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder.Pharmacol. Ther.202021310758310.1016/j.pharmthera.2020.10758332473160
    [Google Scholar]
  6. MissaleC. NashS.R. RobinsonS.W. JaberM. CaronM.G. Dopamine receptors: From structure to function.Physiol. Rev.199878118922510.1152/physrev.1998.78.1.1899457173
    [Google Scholar]
  7. GrantC.E. FlisA.L. RyanB.M. Understanding the role of dopamine in cancer: Past, present and future.Carcinogenesis202243651752710.1093/carcin/bgac04535616105
    [Google Scholar]
  8. BucoloC. LeggioG.M. DragoF. SalomoneS. Dopamine outside the brain: The eye, cardiovascular system and endocrine pancreas.Pharmacol. Ther.201920310739210.1016/j.pharmthera.2019.07.00331299315
    [Google Scholar]
  9. KoJ.K.S. ChoC.H. Adaptive cytoprotection and the brain-gut axis.Digestion201183Suppl. 1192410.1159/00032340021389724
    [Google Scholar]
  10. FengX.Y. YanJ.T. LiG.W. LiuJ.H. FanR.F. LiS.C. ZhengL.F. ZhangY. ZhuJ.X. Source of dopamine in gastric juice and luminal dopamine‐induced duodenal bicarbonate secretion via apical dopamine D 2 receptors.Br. J. Pharmacol.2020177143258327210.1111/bph.1504732154577
    [Google Scholar]
  11. EisenhoferG. ÅnemanA. FribergP. HooperD. FåndriksL. LonrothH. HunyadyB. MezeyE. Substantial production of dopamine in the human gastrointestinal tract.J. Clin. Endocrinol. Metab.199782113864387110.1210/jcem.82.11.43399360553
    [Google Scholar]
  12. JeongH.J. ChaeH.D. ParkK.H. Roles of dopamine in proliferation of gastric-cancer cells.J Korean Gastric Cancer Assoc20066313213810.5230/jkgca.2006.6.3.132
    [Google Scholar]
  13. ZhangX.L. LiuS. SunQ. ZhuJ.X. Dopamine receptors in the gastrointestinal tract.Dopamine in the GutBerlin, HeidelbergSpringerLink202110.1007/978‑981‑33‑6586‑5_3
    [Google Scholar]
  14. WangX. WangZ.B. LuoC. MaoX.Y. LiX. YinJ.Y. ZhangW. ZhouH.H. LiuZ.Q. The prospective value of dopamine receptors on bio-behavior of tumor.J. Cancer20191071622163210.7150/jca.2778031205518
    [Google Scholar]
  15. AkbarianF. AbolhasaniM. DadkhahF. AsadiF. AhangariG. Novel insight into differential gene expression and clinical significance of dopamine receptors, COMT, and IL6 in BPH and prostate cancer.Curr. Mol. Med.201919860561910.2174/156652401966619070918014631288722
    [Google Scholar]
  16. AmjadiO. Hedayatizadeh-OmranA. ZaboliE. Ghaffari-HamedaniM.M. JanbabaeiG. AhangariG. Dopamine receptors gene overexpression in the microenvironment of invasive gastric cancer and its potential implications.Mol. Biol. Rep.20235086529654210.1007/s11033‑023‑08541‑y37330941
    [Google Scholar]
  17. MohrP. MasopustJ. KopečekM. Dopamine receptor partial agonists: Do they differ in their clinical efficacy?Front. Psychiatry20221278194610.3389/fpsyt.2021.78194635145438
    [Google Scholar]
  18. BandalaC. Cárdenas-RodríguezN. Mendoza-TorreblancaJ.G. Contreras-GarcíaI.J. Martínez-LópezV. Cruz-HernándezT.R. Carro-RodríguezJ. Vargas-HernándezM.A. Ignacio-MejíaI. Alfaro-RodriguezA. Lara-PadillaE. Therapeutic potential of dopamine and related drugs as anti-inflammatories and antioxidants in neuronal and non-neuronal pathologies.Pharmaceutics202315269310.3390/pharmaceutics1502069336840015
    [Google Scholar]
  19. ChoiJ. HornerK. Dopamine Agonists.Treasure Island, FLStatPearls2023
    [Google Scholar]
  20. MouraC. ValeN. The role of dopamine in repurposing drugs for oncology.Biomedicines2023117191710.3390/biomedicines1107191737509555
    [Google Scholar]
  21. GhonchehM. SalehiniyaH. Inequality in the incidence and mortality of all cancers in the world.Iran. J. Public Health201645121675167728053942
    [Google Scholar]
  22. AbdullahS. MukherjeeS. Shweta DebnathB. The prevention of multi-drug resistance in cancers through the application of nanotechnology-based targeted delivery systems for combination therapies involving traditional Chinese medicine.Pharmacol Res - Mod Chin Med20241010038610.1016/j.prmcm.2024.100386
    [Google Scholar]
  23. SiddiquiS. DeshmukhA.J. MudaliarP. NalawadeA.J. IyerD. AichJ. Drug repurposing: Re-inventing therapies for cancer without re-entering the development pipeline—a review.J. Egypt. Natl. Canc. Inst.20223413310.1186/s43046‑022‑00137‑035934727
    [Google Scholar]
  24. K W ToK. ChoW.C.S. Drug repurposing for cancer therapy in the era of precision medicine.Curr. Mol. Pharmacol.202215789590310.2174/187446721566622021410453035156588
    [Google Scholar]
  25. HijaziM.A. GessnerA. El-NajjarN. Repurposing of chronically used drugs in cancer therapy: A chance to grasp.Cancers (Basel)20231512319910.3390/cancers1512319937370809
    [Google Scholar]
  26. AyyarP. SubramanianU. Repurposing – second life for drugs.Pharmacia2022691515910.3897/pharmacia.69.e72548
    [Google Scholar]
  27. WethF.R. HoggarthG.B. WethA.F. PatersonE. WhiteM.P.J. TanS.T. PengL. GrayC. Unlocking hidden potential: Advancements, approaches, and obstacles in repurposing drugs for cancer therapy.Br. J. Cancer2024130570371510.1038/s41416‑023‑02502‑938012383
    [Google Scholar]
  28. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x36695827
    [Google Scholar]
  29. PawarV.A. TyagiA. VermaC. SharmaK.P. AnsariS. ManiI. SrivastvaS.K. ShuklaP.K. KumarA. KumarV. Unlocking therapeutic potential: Integration of drug repurposing and immunotherapy for various disease targeting.Am. J. Transl. Res.20231584984500637692967
    [Google Scholar]
  30. GuvenD.C. SahinT.K. ErulE. RizzoA. RicciA.D. AksoyS. YalcinS. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.103912136533070
    [Google Scholar]
  31. RihawiK. RicciA.D. RizzoA. BrocchiS. MarascoG. PastoreL.V. LlimpeF.L.R. GolfieriR. RenzulliM. Tumor-associated macrophages and inflammatory microenvironment in gastric cancer: Novel translational implications.Int. J. Mol. Sci.2021228380510.3390/ijms2208380533916915
    [Google Scholar]
  32. SkórzewskaM. GęcaK. PolkowskiW.P. A clinical viewpoint on the use of targeted therapy in advanced gastric cancer.Cancers (Basel)20231522549010.3390/cancers1522549038001751
    [Google Scholar]
  33. LeiZ.N. TengQ.X. TianQ. ChenW. XieY. WuK. ZengQ. ZengL. PanY. ChenZ.S. HeY. Signaling pathways and therapeutic interventions in gastric cancer.Signal Transduct. Target. Ther.20227135810.1038/s41392‑022‑01190‑w36209270
    [Google Scholar]
  34. RicciA.D. RizzoA. BrandiG. DNA damage response alterations in gastric cancer: Knocking down a new wall.Future Oncol.202117886586810.2217/fon‑2020‑098933508962
    [Google Scholar]
  35. MiaoZ.F. ChenH. WangZ.N. JiJ-F. LiangH. XuH-M. WangJ. Progress and remaining challenges in comprehensive gastric cancer treatment.Holistic Integr Oncol202211410.1007/s44178‑022‑00002‑z
    [Google Scholar]
  36. GuanW.L. HeY. XuR.H. Gastric cancer treatment: Recent progress and future perspectives.J. Hematol. Oncol.20231615710.1186/s13045‑023‑01451‑337245017
    [Google Scholar]
  37. MachlowskaJ. BajJ. SitarzM. MaciejewskiR. SitarzR. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies.Int. J. Mol. Sci.20202111401210.3390/ijms2111401232512697
    [Google Scholar]
  38. EspañolP. RoviraR. CaruanaP. Luna-GuibourgR. SolerC. TeixeiraN. RodríguezF. GallardoA. EdwardsM. PortaO. GámezM. SánchezO. LlurbaE. CorcheroJ.L. CéspedesM.V. Dopamine receptors D1 and D2 show prognostic significance and potential therapeutic applications for endometrial cancer patients.Gynecol. Oncol.2023176253510.1016/j.ygyno.2023.06.01937437489
    [Google Scholar]
  39. LanY.L. WangX. XingJ.S. YuZ.L. LouJ.C. MaX.C. ZhangB. Anti-cancer effects of dopamine in human glioma: Involvement of mitochondrial apoptotic and anti-inflammatory pathways.Oncotarget2017851884888850010.18632/oncotarget.1969129179451
    [Google Scholar]
  40. JungJ.H. HwangJ. KimJ.H. SimD.Y. ImE. ParkJ.E. ParkW.Y. ShimB.S. KimB. KimS.H. Phyotochemical candidates repurposing for cancer therapy and their molecular mechanisms.Semin. Cancer Biol.20216816417410.1016/j.semcancer.2019.12.00931883914
    [Google Scholar]
  41. DochertyJ.R. AlsufyaniH.A. Pharmacology of drugs used as stimulants.J. Clin. Pharmacol.202161S2Suppl. 2S53S6910.1002/jcph.191834396557
    [Google Scholar]
  42. LiuG. LiuZ. LinZ. ChenP. YanY. LinQ. HuY. JiangN. YuB. Effects of dopamine on stem cells and its potential roles in the treatment of inflammatory disorders: A narrative review.Stem Cell Res. Ther.202314123010.1186/s13287‑023‑03454‑w37649087
    [Google Scholar]
  43. NakiT. MatsheW. UbanakoP. AdeyemiS.A. BalogunM.O. Sinha RayS. ChoonaraY.E. AderibigbeB.A. Dopamine-loaded polymer-drug conjugates for potential synergistic anti-cancer treatment.Polymer-Plastics Technol Mater20226191003102010.1080/25740881.2022.2029895
    [Google Scholar]
  44. WitkowskaM. Golusińska-KardachE. GolusińskiW. FlorekE. Polydopamine-Based material and their potential in head and neck cancer therapy—current state of knowledge.Int. J. Mol. Sci.2023245489010.3390/ijms2405489036902321
    [Google Scholar]
  45. DeD. UpadhyayP. DasA. GhoshA. AdhikaryA. GoswamiM.M. Studies on cancer cell death through delivery of dopamine as anti-cancer drug by a newly functionalized cobalt ferrite nano-carrier.Colloids Surf. A Physicochem. Eng. Asp.202162712720210.1016/j.colsurfa.2021.127202
    [Google Scholar]
  46. CzarneckaM TilanJ KitlinskaJ. Sympathetic neurotransmitters and tumor angiogenesis-link between stress and cancer progression.J Oncol.20122010539706
    [Google Scholar]
  47. ChakrobortyD. SarkarC. MitraR.B. BanerjeeS. DasguptaP.S. BasuS. Depleted dopamine in gastric cancer tissues: Dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis.Clin. Cancer Res.200410134349435610.1158/1078‑0432.CCR‑04‑005915240521
    [Google Scholar]
  48. SarkarC. ChakrobortyD. GoswamiS. FanH. MoX. BasuS. VEGF-A controls the expression of its regulator of angiogenic functions, dopamine D2 receptor, on endothelial cells.J. Cell Sci.202213511jcs25961710.1242/jcs.25961735593650
    [Google Scholar]
  49. Fouad ShalabyM.A. Abd El LatifH.A. El YamaniM. GalalM.A. KamalS. SindiI. MasaoodR. Therapeutic activity of sarpogrelate and dopamine D2 receptor agonists on cardiovascular and renal systems in rats with alloxan-induced diabetes.BMC Pharmacol. Toxicol.20212216410.1186/s40360‑021‑00526‑634702339
    [Google Scholar]
  50. LinS. ZhangA. ZhangX. WuZ.B. Treatment of pituitary and other tumours with cabergoline: New mechanisms and potential broader applications.Neuroendocrinology2020110647748810.1159/00050400031597135
    [Google Scholar]
  51. AkbarianF. DadkhahF. CampbellA. AsadiF. AhangariG. Characterization of dopamine receptor associated drugs on the proliferation and apoptosis of prostate cancer cell lines.Anticancer. Agents Med. Chem.20212191160117110.2174/187152062099920083111024332867661
    [Google Scholar]
  52. BakhtouH. OlfatbakhshA. DeezagiA. AhangariG. The expression of dopamine receptors gene and their potential role in targeting breast cancer cells with selective agonist and antagonist drugs. could it be the novel insight to therapy?Curr. Drug Discov. Technol.201916218419710.2174/157016381566618013010142129380701
    [Google Scholar]
  53. PoorabbasiN. ZargarS.J. AghasadeghiM.R. SheikhpourM. Anti-proliferative effects of cabergoline nano conjugated form on lung cancer cells.J. Drug Deliv. Sci. Technol.20238110427610.1016/j.jddst.2023.104276
    [Google Scholar]
  54. LuM. WangY. ZhanX. The MAPK pathway-based drug therapeutic targets in pituitary adenomas.Front. Endocrinol. (Lausanne)20191033010.3389/fendo.2019.0033031231308
    [Google Scholar]
  55. MangiliF. EspositoE. TreppiediD. CatalanoR. MarraG. Di MuroG. BarbieriA.M. LocatelliM. LaniaA.G. MangoneA. SpadaA. ArosioM. PeverelliE. MantovaniG. DRD2 agonist cabergoline abolished the escape mechanism induced by mTOR inhibitor everolimus in tumoral pituitary cells.Front. Endocrinol. (Lausanne)20221386782210.3389/fendo.2022.86782235721701
    [Google Scholar]
  56. PellicerN. GallianoD. HerraizS. BaggerY.Z. ArceJ.C. PellicerA. Use of dopamine agonists to target angiogenesis in women with endometriosis.Hum. Reprod.202136485085810.1093/humrep/deaa33733355352
    [Google Scholar]
  57. LaganàAS GarzonS CasarinJ Know your enemy: Potential role of cabergoline to target neoangiogenesis in endometriosis.J Invest Surg202134890290310.1080/08941939.2020.1725191
    [Google Scholar]
  58. HortuI. KaradadasE. OzceltikG. TavmergenE. Tavmergen GokerE.N. YigitturkG. ErbasO. Oxytocin and cabergoline alleviate ovarian hyperstimulation syndrome (OHSS) by suppressing vascular endothelial growth factor (VEGF) in an experimental model.Arch. Gynecol. Obstet.202130341099110810.1007/s00404‑020‑05855‑133140116
    [Google Scholar]
  59. BatistaR.L. MusolinoN.R.C. CescatoV.A.S. da SilvaG.O. MedeirosR.S.S. HerkenhoffC.G.B. TrarbachE.B. Cunha-NetoM.B. Cabergoline in the management of residual nonfunctioning pituitary adenoma.Am. J. Clin. Oncol.201942222122710.1097/COC.000000000000050530540568
    [Google Scholar]
  60. CostaR. Santa-MariaC.A. ScholtensD.M. JainS. FlaumL. GradisharW.J. ClevengerC.V. KaklamaniV.G. A pilot study of cabergoline for the treatment of metastatic breast cancer.Breast Cancer Res. Treat.2017165358559210.1007/s10549‑017‑4370‑x28674764
    [Google Scholar]
  61. ChangC.C. HsiehM.H. WangJ.Y. ChiuN.Y. WangY.H. ChiouJ.Y. HuangH.H. JuP.C. Association between thioridazine use and cancer risk in adult patients with schizophrenia-a population-based study.Psychiatry Investig.201815111064107010.30773/pi.2018.10.10.130481993
    [Google Scholar]
  62. SongY. LiL. ChenJ. ChenH. CuiB. FengY. ZhangP. ZhangQ. XiaY. LuoM. Thioridazine hydrochloride: An antipsychotic agent that inhibits tumor growth and lung metastasis in triple-negative breast cancer via inducing G0/G1 arrest and apoptosis.Cell Cycle202019243521353310.1080/15384101.2020.185096933315498
    [Google Scholar]
  63. QianG. DaiL. YuT. Thioridazine sensitizes cisplatin against chemoresistant human lung and ovary cancer cells.DNA Cell Biol.201938771872410.1089/dna.2019.471531188023
    [Google Scholar]
  64. TegowskiM. FanC. BaldwinA.S. Thioridazine inhibits self-renewal in breast cancer cells via DRD2-dependent STAT3 inhibition, but induces a G1 arrest independent of DRD2.J. Biol. Chem.201829341159771599010.1074/jbc.RA118.00371930131338
    [Google Scholar]
  65. MuJ. XuH. YangY. HuangW. XiaoJ. LiM. TanZ. DingQ. ZhangL. LuJ. WuX. LiuY. Thioridazine, an antipsychotic drug, elicits potent antitumor effects in gastric cancer.Oncol. Rep.20143152107211410.3892/or.2014.306824604290
    [Google Scholar]
  66. SeoS.U. ChoH.K. MinK. WooS.M. KimS. ParkJ.W. KimS.H. ChoiY.H. KeumY.S. HyunJ.W. ParkH.H. LeeS.H. KimD.E. KwonT.K. Thioridazine enhances sensitivity to carboplatin in human head and neck cancer cells through downregulation of c-FLIP and Mcl-1 expression.Cell Death Dis.201782e259910.1038/cddis.2017.828182008
    [Google Scholar]
  67. CamuzardO. TrojaniM.C. Santucci-DarmaninS. PagnottaS. BreuilV. CarleG. Pierrefite-CarleV. Autophagy in osteosarcoma cancer stem cells is critical process which can be targeted by the antipsychotic drug thioridazine.Cancers (Basel)20201212367510.3390/cancers1212367533297525
    [Google Scholar]
  68. ParkM.S. DongS.M. KimB.R. SeoS.H. KangS. LeeE.J. LeeS.H. RhoS.B. Thioridazine inhibits angiogenesis and tumor growth by targeting the VEGFR-2/PI3K/mTOR pathway in ovarian cancer xenografts.Oncotarget20145134929493410.18632/oncotarget.206324952635
    [Google Scholar]
  69. RamedaniF JafariSM Saghaeian JaziM MohammadiZ AsadiJ Anti-cancer effect of entacaponeon esophageal cancer cells via apoptosis induction and cell cycle modulation.Cancer Rep (Hoboken)202363e175910.1002/cnr2.1759
    [Google Scholar]
  70. CaoJ. WeiJ. YangP. ZhangT. ChenZ. HeF. WeiF. ChenH. HuH. ZhongJ. YangZ. CaiW. LiW. WangQ. Genome-scale CRISPR-Cas9 knockout screening in gastrointestinal stromal tumor with Imatinib resistance.Mol. Cancer201817112110.1186/s12943‑018‑0865‑230103756
    [Google Scholar]
  71. Rosas-CruzA. Salinas-JazmínN. Valdés-RivesA. Velasco-VelázquezM.A. DRD1 and DRD4 are differentially expressed in breast tumors and breast cancer stem cells: Pharmacological implications.Transl. Cancer Res.202211113941395010.21037/tcr‑22‑78336523297
    [Google Scholar]
  72. WongMCS HuangJ ChanPSF Global incidence and mortality of gastric cancer, 1980-2018.JAMA Netw Open2022147e211845710.1001/jamanetworkopen.2021.18457
    [Google Scholar]
  73. AraújoD. RibeiroE. AmorimI. ValeN. Repurposed Drugs in Gastric Cancer.Molecules202228131910.3390/molecules2801031936615513
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096303479240614061136
Loading
/content/journals/ccdt/10.2174/0115680096303479240614061136
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): apoptosis; cabergoline; Dopamine; drug repurposing; entacapone; gastric cancer; thioridazine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test