Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Non-small cell lung cancer (NSCLC) patients often benefit from EGFR inhibitors like gefitinib. However, drug resistance remains a significant challenge in treatment. The unique properties of 1,2,3-triazole, a nitrogen-based compound, hold promise as potential solutions due to its versatile structural attributes and diverse biological effects, including anticancer properties.

Materials and Methods

Our synthesis process involved the huisgen cycloaddition chemical method, which generated diverse icotinib derivatives. We evaluated the anticancer capabilities of these derivatives against various cancer cell lines, with a specific focus on NSCLC cells that exhibit drug resistance. Additionally, we investigated the binding affinity of selected compounds, including 3l, towards wild-type EGFR using surface plasmon resonance (SPR) experiments.

Results

Notably, icotinib derivatives such as derivative 3l demonstrated significant efficacy against different cancer cell lines, including those resistant to conventional therapies. Compound 3l exhibited potent activity with IC values below 10 μM against drug-resistant cells. SPR experiments revealed that 3l exhibited enhanced affinity towards wild-type EGFR compared to icotinib. Our research findings suggest that 3l acts as a compelling antagonist for the protein tyrosine kinase of EGFR (EGFR-PTK).

Conclusion

Icotinib derivative 3l, featuring a 1,2,3-triazole ring, demonstrates potent anticancer effects against drug-resistant NSCLC cells. Its enhanced binding affinity to EGFR and modulation of the EGFR-RAS-RAF-MAPK pathway position 3l as a promising candidate for the future development of anticancer drugs.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096302595240605114828
2024-07-04
2025-04-21
Loading full text...

Full text loading...

References

  1. HuC. LecheC.A.II KiyatkinA. YuZ. StayrookS.E. FergusonK.M. LemmonM.A. Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias.Nature2022602789751852210.1038/s41586‑021‑04393‑335140400
    [Google Scholar]
  2. HaikalaH.M. LopezT. KöhlerJ. EserP.O. XuM. ZengQ. TecenoT.J. NgoK. ZhaoY. IvanovaE.V. BertramA.A. LeeperB.A. ChambersE.S. AdeniA.E. TausL.J. KuraguchiM. KirschmeierP.T. YuC. ShioseY. KamaiY. QiuY. PaweletzC.P. GokhaleP.C. JänneP.A. EGFR Inhibition Enhances the Cellular Uptake and Antitumor-Activity of the HER3 Antibody–Drug Conjugate HER3–DXd.Cancer Res.202282113014110.1158/0008‑5472.CAN‑21‑242634548332
    [Google Scholar]
  3. WuS.G. ChangY.L. YuC.J. YangP.C. ShihJ.Y. Lung adenocarcinoma patients of young age have lower EGFR mutation rate and poorer efficacy of EGFR tyrosine kinase inhibitors.ERJ Open Res.20173300092-201610.1183/23120541.00092‑201628717642
    [Google Scholar]
  4. WangY. YangN. ZhangY. LiL. HanR. ZhuM. FengM. ChenH. LizasoA. QinT. LiuX. HeY. Effective treatment of lung adenocarcinoma harboring EGFR-activating mutation, T790M, and cis-C797S triple mutations by brigatinib and cetuximab combination therapy.J. thoracic oncol.20201513691375
    [Google Scholar]
  5. SunD. LiuY. LiP. YangP. YuG. Clinicopathological Features and Prognosis of Lung Adenocarcinoma Patients With K-RAS Gene Mutation.Appl. Immunohistochem. Mol. Morphol.202331640641310.1097/PAI.000000000000113737338109
    [Google Scholar]
  6. WangZ. ZhuW. YangM. DuH. ZhouF. SongN. WanZ. ZhuJ. LiW. Air bronchogram on chest CT in radiological pure-solid appearance lung cancer: Correlation analysis with genetic pathological features and survival outcomes.Eur. J. Radiol.202316911119410.1016/j.ejrad.2023.11119437976762
    [Google Scholar]
  7. NakagawaK. GaronE.B. SetoT. NishioM. Ponce AixS. Paz-AresL. ChiuC.H. ParkK. NovelloS. NadalE. ImamuraF. YohK. ShihJ.Y. AuK.H. Moro-SibilotD. EnatsuS. ZimmermannA. Frimodt-MollerB. Visseren-GrulC. ReckM. ChuQ. CortotA. PujolJ-L. Moro-SibilotD. FabreE. LamourC. BischoffH. KollmeierJ. ReckM. KimmichM. Engel-RiedelW. HammerschmidtS. SchütteW. SyrigosK. HoJ.C.M. AuK-H. NovelloS. ArdizzoniA. PaselloG. GregorcV. Del ConteA. GalettaD. TakahashiT. NakagawaK. NishioM. YohK. SetoT. ImamuraF. KumagaiT. HottaK. GotoY. HosomiY. SakaiH. TakiguchiY. KimY.H. KurataT. YamaguchiH. DagaH. OkamotoI. SatouchiM. IkedaS. KasaharaK. AtagiS. AzumaK. KumagaiT. AoeK. KumagaiT. AoeK. HorioY. YamamotoN. TanakaH. WatanabeS. NogamiN. OzakiT. KoyamaR. HirashimaT. KanedaH. TomiiK. FujitaY. SeikeM. NishimuraN. KatoT. IchikiM. SakaH. HiranoK. NakaharaY. SugawaraS. ParkK. KimS-W. MinY.J. LeeH.W. KangJ-H. AnH.J. LeeK.H. KimJ-S. LeeG-W. LeeS.Y. AlexandruA. UdreaA.A. Juan-VidalÓ. Nadal-AlforjaE. Gil-BazoI. Ponce-AixS. Paz-AresL. Rubio-ViqueiraB. Alonso GarciaM. Felip FontE. Fuentes PraderaJ. Coves SartoJ. LinM-C. SuW-C. HsiaT-C. ChangG-C. WeiY-F. ChiuC-H. ShihJ-Y. SuJ. CicinI. GokselT. HarputluogluH. OzyilkanO. HenningI. PopatS. HatcherO. MilehamK. AcobaJ. GaronE. JungG. RajM. MartinW. DakhilS. RELAY Study Investigators Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial.Lancet Oncol.201920121655166910.1016/S1470‑2045(19)30634‑531591063
    [Google Scholar]
  8. OxnardG.R. LoP.C. NishinoM. DahlbergS.E. LindemanN.I. ButaneyM. JackmanD.M. JohnsonB.E. JänneP.A. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions.J. thoracic oncol.2013817918410.1097/JTO.0b013e3182779d18
    [Google Scholar]
  9. HeH. QiB. EGFR-based dual inhibitors: current status and perspectives.Future Med. Chem.202214960160310.4155/fmc‑2022‑000735315726
    [Google Scholar]
  10. YuJ.Y. YuS.F. WangS.H. BaiH. ZhaoJ. AnT.T. DuanJ.C. WangJ. Clinical outcomes of EGFR-TKI treatment and genetic heterogeneity in lung adenocarcinoma patients with EGFR mutations on exons 19 and 21.Chin. J. Cancer20163513010.1186/s40880‑016‑0086‑227001083
    [Google Scholar]
  11. ZengL. XiaoL. JiangW. YangH. HuD. XiaC. LiY. ZhouC. XiongY. LiuL. LiaoD. GuanR. LiK. WangJ. ZhangY. YangN. MansfieldA.S. Investigation of efficacy and acquired resistance for EGFR-TKI plus bevacizumab as first-line treatment in patients with EGFR sensitive mutant non-small cell lung cancer in a Real world population.Lung Cancer2020141828810.1016/j.lungcan.2020.01.00931982639
    [Google Scholar]
  12. TsengJ.S. YangT.Y. TsaiC.R. ChenK.C. HsuK.H. TsaiM.H. YuS.L. SuK.Y. ChenJ.J. ChangG.C. Dynamic plasma EGFR mutation status as a predictor of EGFR-TKI efficacy in patients with EGFR-mutant lung adenocarcinoma. J. thoracic oncol.201510603610
    [Google Scholar]
  13. HayashiH. NadalE. GrayJ.E. ArdizzoniA. CariaN. PuriT. GroheC. Overall treatment strategy for patients with metastatic NSCLC with activating EGFR mutations.Clin. Lung Cancer2022231e69e8210.1016/j.cllc.2021.10.00934865963
    [Google Scholar]
  14. LiuY. WangJ. WuJ. YangQ. ZengY. WuD. TianC. HuY. GuF. LiC. ZhangK. LiuL. The efficacy of first-generation EGFR-TKI combined with brain radiotherapy as the first-line treatment for lung adenocarcinoma patients with brain metastases and EGFR sensitive mutations: A retrospective study.Technol. Cancer Res. Treat.202120_10_(20),15330338219978110.1177/153303382199781933715525
    [Google Scholar]
  15. HuangJ. ZhuangC. ChenJ. ChenX. LiX. ZhangT. WangB. FengQ. ZhengX. GongM. GongQ. XiaoK. LuoK. LiW. Targeted drug/gene/photodynamic therapy via a stimuli-responsive dendritic-polymer-based nanococktail for treatment of EGFR-TKI-resistant non-small-cell lung cancer. Advanced mater.202234e2201516
    [Google Scholar]
  16. GuY. XuY. ZhuangH. JiangW. ZhangH. LiX. LiuY. MaL. ZhaoD. ChengY. YuY. LiuP. QinJ. ChenX. GaoJ. WangM. LiangL. CaoB. Value and significance of brain radiation therapy during first-line EGFR-TKI treatment in lung adenocarcinoma with EGFR sensitive mutation and synchronous brain metastasis: Appropriate timing and technique.Thorac. Cancer202112233157316810.1111/1759‑7714.1416934651449
    [Google Scholar]
  17. WangZ. LiX. ZhangL. XuY. WangM. LiangL. JiaoP. LiY. HeS. DuJ. HeL. TangM. SunM. YangL. DiJ. ZhuG. LiL. LiuD. Sputum cell‐free DNA: Valued surrogate sample for the detection of EGFR exon 20 p.T790M mutation in patients with advanced lung adenocarcinoma and acquired resistance to EGFR‐TKIs.Cancer Med.202110103323333110.1002/cam4.381733932095
    [Google Scholar]
  18. TianX. GuT. LeeM.H. DongZ. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer.Biochim. Biophys. Acta Rev. Cancer20221877118864510.1016/j.bbcan.2021.18864534793897
    [Google Scholar]
  19. HuangD. LinG. ChuQ. HuY. WangJ. WangZ. YangF. ZhongW. ZhouC. ZhuB. AiX. CaoB. CaoY. ChenM. ChenX. ChuT. DuanJ. FanY. FangY. FengS. FengW. GuoH. HanC. HeY. HongS. HuJ. HuangM. HuangY. JiangD. JiangK. JiangR. JinB. JinS. LiJ. LiM. LiZ. LiC. LinJ. LiuA. LiuS.Y.M. LiuY. LiuZ. LiuZ. LiuZ. LiuZ. LiuZ. LuY. LvT. MaZ. MiaoQ. PengM. PuX. RenX.B. ShanJ. ShanJ. ShenP. ShenB. ShiM. SongY. SongZ. SuC. SunJ. TianP. WangJ. WangF. WangH. WangJ. WangQ. WangW. WangY. WuL. WuF. XiaY. XieC. XieC. XinT. XiongJ. XuH. XuS. XuY. XuB. XuC. YanX. YangZ. YaoW. YuY. FengY. YuZ. YuY. YueD. ZhangH. ZhangH. ZhangL. ZhangL. ZhangQ. ZhangT. ZhangB. ZhaoJ. ZhaoM. ZhengX. ZhongF. ZhouJ. ZhouP. ZhuZ. ZouJ. ZouZ. Clinical definition of secondary resistance to immunotherapy in non‐small cell lung cancer.Thorac. Cancer202314343421342910.1111/1759‑7714.1515737963454
    [Google Scholar]
  20. XuY. LiuY. GeY. LiH. ZhangY. WangL. Drug resistance mechanism and reversal strategy in lung cancer immunotherapy.Front. Pharmacol.202314123082410.3389/fphar.2023.123082437795038
    [Google Scholar]
  21. MollicaV. RizzoA. MarchettiA. TateoV. TassinariE. RoselliniM. MassafraR. SantoniM. MassariF. The impact of ECOG performance status on efficacy of immunotherapy and immune-based combinations in cancer patients: the MOUSEION-06 study.Clin. Exp. Med.20232385039504910.1007/s10238‑023‑01159‑137535194
    [Google Scholar]
  22. RizzoA. CusmaiA. GiovannelliF. AcquafreddaS. RinaldiL. MisinoA. MontagnaE.S. UngaroV. LorussoM. PalmiottiG. Impact of proton pump inhibitors and histamine-2-receptor antagonists on non-small cell lung cancer immunotherapy: A systematic review and meta-analysis.Cancers2022146140410.3390/cancers1406140435326555
    [Google Scholar]
  23. Dall’OlioF.G. RizzoA. MollicaV. MassucciM. MaggioI. MassariF. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: a meta-analysis.Immunotherapy202113325727010.2217/imt‑2020‑017933225800
    [Google Scholar]
  24. MaoL. SunG. ZhaoJ. XuG. YuanM. LiY.M. Design, synthesis and antitumor activity of icotinib derivatives.Bioorg. Chem.202010510442110.1016/j.bioorg.2020.10442133181408
    [Google Scholar]
  25. GaoE. WangY. FanG. XuG. WuZ.Y. LiuZ.J. LiuJ.C. MaoL.F. HouX. LiS. Discovery of gefitinib-1,2,3-triazole derivatives against lung cancer via inducing apoptosis and inhibiting the colony formation.Sci. Rep.2024141922310.1038/s41598‑024‑60000‑138649732
    [Google Scholar]
  26. GuoY. SangD. GuoB. WangD. XuX. WangH. HouC. MaoL. LiF. LiS. Synthesis and biological evaluation of novel 1,2,3-triazole hybrids of cabotegravir: identification of potent antitumor activity against lung cancer.Front. Pharmacol.202314126524510.3389/fphar.2023.126524537799973
    [Google Scholar]
  27. GandhamS.K. KudaleA.A. AllakaT.R. ChepuriK. JhaA. New tetrazolopyrrolidine-1,2,3-triazole analogues as potent anticancer agents: design, synthesis and molecular docking studies.Mol. Divers.2023Epub ahead of print.10.1007/s11030‑023‑10762‑z37938509
    [Google Scholar]
  28. SongJ. ZhangS. ZhangB. MaJ. The anti‐breast cancer therapeutic potential of 1,2,3‐triazole‐containing hybrids.Arch. Pharm.20243573230064110.1002/ardp.20230064138110853
    [Google Scholar]
  29. ZhaoS. LiuJ. LvZ. ZhangG. XuZ. Recent updates on 1,2,3-triazole-containing hybrids with in vivo therapeutic potential against cancers: A mini-review.Eur. J. Med. Chem.202325111525410.1016/j.ejmech.2023.11525436893627
    [Google Scholar]
  30. ChenX. MaoL.F. TianS. TianX. MengX. WangM.K. XuW. LiY.M. LiuK. DongZ. Icotinib derivatives as tyrosine kinase inhibitors with anti-esophageal squamous carcinoma activity.Front. Pharmacol.202213102869210.3389/fphar.2022.102869236467103
    [Google Scholar]
  31. Von HoffD.D. CasperJ. BradleyE. TrentJ.M. HodachA. ReichertC. MakuchR. AltmanA. Direct cloning of human neuroblastoma cells in soft agar culture.Cancer Res.19804010359135977002289
    [Google Scholar]
  32. NaruseI. OhmoriT. AoY. FukumotoH. KurokiT. MoriM. SaijoN. NishioK. Antitumor activity of the selective epidermal growth factor receptor‐tyrosine kinase inhibitor (EGFR‐TKI) Iressa® (ZD1839) in an EGFR‐expressing multidrug‐resistant cell line in vitro and in vivo.Int. J. Cancer200298231031510.1002/ijc.1017311857424
    [Google Scholar]
  33. PassaroA. MokT.S.K. AttiliI. WuY.L. TsuboiM. de MarinisF. PetersS. Adjuvant treatments for surgically resected non–small cell lung cancer harboring EGFR Mutations.JAMA Oncol.2023981124113110.1001/jamaoncol.2023.045937166792
    [Google Scholar]
  34. BlaquierJ.B. Ortiz-CuaranS. RicciutiB. MezquitaL. CardonaA.F. RecondoG. Tackling osimertinib resistance in EGFR-mutant non–small cell lung cancer.Clin. Cancer Res.202329183579359110.1158/1078‑0432.CCR‑22‑191237093192
    [Google Scholar]
  35. ZhengX. SongX. ZhuG. PanD. LiH. HuJ. XiaoK. GongQ. GuZ. LuoK. LiW. Nanomedicine combats drug resistance in lung cancer.Adv. mater.202436e230897710.1002/adma.202308977
    [Google Scholar]
  36. IsozakiH. SakhtemaniR. AbbasiA. NikpourN. StanzioneM. OhS. LangenbucherA. MonroeS. SuW. CabanosH.F. SiddiquiF.M. PhanN. JaliliP. TimoninaD. BiltonS. Gomez-CaraballoM. ArchibaldH.L. NangiaV. DionneK. RileyA. LawlorM. BanwaitM.K. CobbR.G. ZouL. DysonN.J. OttC.J. BenesC. GetzG. ChanC.S. ShawA.T. GainorJ.F. LinJ.J. SequistL.V. PiotrowskaZ. YeapB.Y. EngelmanJ.A. LeeJ.J.K. MaruvkaY.E. BuissonR. LawrenceM.S. HataA.N. Therapy-induced APOBEC3A drives evolution of persistent cancer cells.Nature2023620797339340110.1038/s41586‑023‑06303‑137407818
    [Google Scholar]
  37. CarlucciR. LisaM.N. LabadieG.R. 1,2,3-triazoles in biomolecular crystallography: A geometrical data-mining approach.J. Med. Chem.20236621143771439010.1021/acs.jmedchem.3c0109737903297
    [Google Scholar]
  38. XuZ. ZhaoS.J. LiuY. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships.Eur. J. Med. Chem.201918311170010.1016/j.ejmech.2019.11170031546197
    [Google Scholar]
  39. AlamM.M. 1,2,3‐Triazole hybrids as anticancer agents: A review.Arch. Pharm.20223551210015810.1002/ardp.20210015834559414
    [Google Scholar]
  40. GracianoI.A. de CarvalhoA.S. de Carvalho da SilvaF. FerreiraV.F. Ferreira, 1,2,3-triazole- and quinoline-based hybrids with potent antiplasmodial activity.Med. chem.202218521535
    [Google Scholar]
  41. ChenX. WuH. ChenH. WangQ. XieX.J. ShenJ. Astragaloside VI promotes neural stem cell proliferation and enhances neurological function recovery in transient cerebral ischemic injury via activating EGFR/MAPK signaling cascades.20195630533067
    [Google Scholar]
  42. LiangY. ZhangT. JingS. ZuoP. LiT. WangY. XingS. ZhangJ. WeiZ. 20(S)-ginsenoside Rg3 inhibits lung cancer cell proliferation by targeting EGFR-mediated Ras/Raf/MEK/ERK Pathway.Am. J. Chin. Med.202149375376510.1142/S0192415X2150035X33641655
    [Google Scholar]
  43. EftekhariA. HasanzadehA. KhalilovR. HosainzadeganH. AhmadianE. EghbalM.A. Hepatoprotective role of berberine against paraquat-induced liver toxicity in rat.Environ. Sci. Pollut. Res. Int.20202754969497510.1007/s11356‑019‑07232‑131845254
    [Google Scholar]
  44. GuptaD. BooraA. ThakurA. GuptaT.K. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations.Environ. Res.2023231Pt 311631610.1016/j.envres.2023.11631637270084
    [Google Scholar]
  45. KhafagaD.S.R. El-KhawagaA.M. Elfattah MohammedR.A. AbdelhakimH.K. Green synthesis of nano-based drug delivery systems developed for hepatocellular carcinoma treatment: a review.Mol. Biol. Rep.20235012103511036410.1007/s11033‑023‑08823‑537817020
    [Google Scholar]
  46. ChaudharyV. SonuR. ChowdhuryR. ThukralP. PathaniaD. SaklaniS. Lucky RustagiS. GautamA. MishraY.K. SinghP. KaushikA. Biogenic green metal nano systems as efficient anti-cancer agents.Environ. Res.202322911593310.1016/j.envres.2023.11593337080272
    [Google Scholar]
  47. KhoobchandaniM. KattiK.K. KarikacheryA.R. ThipeV.C. SrisrimalD. Dhurvas MohandossD.K. DarshakumarR.D. JoshiC.M. KattiK.V. New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine – pre-clinical and pilot human clinical investigations.Int. J. Nanomedicine20201518119710.2147/IJN.S21904232021173
    [Google Scholar]
  48. LingL.X. OuyangY. HuY. Research trends on nanomaterials in gastric cancer: A bibliometric analysis from 2004 to 2023.J. Nanobiotechnology202321124810.1186/s12951‑023‑02033‑837533041
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096302595240605114828
Loading
/content/journals/ccdt/10.2174/0115680096302595240605114828
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher’s website.


  • Article Type:
    Research Article
Keyword(s): 1,2,3-triazole; bidrug-resistance; derivative; drug-resistance; EGFR-PTK; Icotinib; NSCLC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test