Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Triple-Negative Breast Cancer (TNBC) accounts for 15–20% of all breast cancers and approximately 50% of breast cancer deaths. Chemotherapy remains the mainstay of systemic treatment due to the lack of effective therapy targets. Thus, more studies are urgently needed to identify new therapeutic targets in TNBC patients.

Methods

GAPVD1 expression and prognosis value in breast cancer samples were explored in The Cancer Genome Atlas database (TCGA). GAPVD1 knockdown and overexpression TNBC cell lines were constructed. CCK-8 and colony formation assays were performed to detect cell viability. Flow cytometry analysis was performed to detect cell cycle variation. Western blotting was conducted to determine the levels of target genes. Finally, an enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed.

Results

GAPVD1 is overexpressed in breast cancer tissues and predicts poor prognosis. experiments demonstrated that GAPVD1 is correlated with cell proliferation and the cell cycle of TNBC cells. Mechanistically, alteration in GAPVD1 expression was found to be associated with cell cycle-related proteins PCNA, Cyclin A, and the activity of the ERK/MAPK signaling pathway. Consistent with these findings, enrichment analysis of GAPVD1-involving partners and signaling pathways revealed that the cellular biosynthetic process, macromolecule biosynthetic process, and cell cycle signaling are related to GAPVD1. experiment demonstrated that GAPVD1 inhibition impedes tumor growth and expression of cell cycle-related proteins.

Conclusion

Taken together, our results indicate that GAPVD1 may participate in TNBC cell growth by regulating the cell cycle and ERK/MAPK signaling pathway.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096303983240616191051
2024-07-15
2025-04-16
Loading full text...

Full text loading...

References

  1. FoulkesW.D. SmithI.E. Reis-FilhoJ.S. Triple-negative breast cancer.N. Engl. J. Med.2010363201938194810.1056/NEJMra1001389 21067385
    [Google Scholar]
  2. De LaurentiisM. CiannielloD. CaputoR. StanzioneB. ArpinoG. CinieriS. LorussoV. De PlacidoS. Treatment of triple negative breast cancer (TNBC): current options and future perspectives.Cancer Treat. Rev.201036Suppl. 3S80S8610.1016/S0305‑7372(10)70025‑6 21129616
    [Google Scholar]
  3. HarbeckN. GnantM. Breast cancer.Lancet2017389100741134115010.1016/S0140‑6736(16)31891‑8 27865536
    [Google Scholar]
  4. LehmannB.D. BauerJ.A. ChenX. SandersM.E. ChakravarthyA.B. ShyrY. PietenpolJ.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies.J. Clin. Invest.201112172750276710.1172/JCI45014 21633166
    [Google Scholar]
  5. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑5 32517735
    [Google Scholar]
  6. RizzoA. CusmaiA. AcquafreddaS. Ladiratuzumab vedotin for metastatic triple negative cancer: preliminary results, key challenges, and clinical potential.Expert Opin. Investig. Drugs202231649549810.1080/13543784.2022.2042252
    [Google Scholar]
  7. MollicaV. RizzoA. MarchettiA. TateoV. TassinariE. RoselliniM. MassafraR. SantoniM. MassariF. The impact of ECOG performance status on efficacy of immunotherapy and immune-based combinations in cancer patients: the MOUSEION-06 study.Clin. Exp. Med.20232385039504910.1007/s10238‑023‑01159‑1 37535194
    [Google Scholar]
  8. Leon-FerreR.A. GoetzM.P. Advances in systemic therapies for triple negative breast cancer.BMJ2023381e07167410.1136/bmj‑2022‑071674 37253507
    [Google Scholar]
  9. RizzoA. RicciA.D. LanotteL. LombardiL. Di FedericoA. BrandiG. Gadaleta-CaldarolaG. Immune-based combinations for metastatic triple negative breast cancer in clinical trials: current knowledge and therapeutic prospects.Expert Opin. Investig. Drugs202231655756510.1080/13543784.2022.2009456 34802383
    [Google Scholar]
  10. AryalR.P. KwakP.B. TamayoA.G. GebertM. ChiuP.L. WalzT. WeitzC.J. Macromolecular assemblies of the mammalian circadian clock.Mol. Cell2017675770782.e610.1016/j.molcel.2017.07.017 28886335
    [Google Scholar]
  11. DucommunS. DeakM. ZeigererA. GöranssonO. SeitzS. CollodetC. MadsenA.B. JensenT.E. ViolletB. ForetzM. GutP. SumptonD. SakamotoK. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates.Cell. Signal.201957455710.1016/j.cellsig.2019.02.001 30772465
    [Google Scholar]
  12. LodhiI.J. ChiangS.H. ChangL. VollenweiderD. WatsonR.T. InoueM. PessinJ.E. SaltielA.R. Gapex-5, a Rab31 guanine nucleotide exchange factor that regulates Glut4 trafficking in adipocytes.Cell Metab.200751597210.1016/j.cmet.2006.12.006 17189207
    [Google Scholar]
  13. IbrahimH. ReusP. MundorfA.K. GrothoffA.L. RudenkoV. BuschhausC. StefanskiA. BerlethN. StorkB. StühlerK. KalfalahF. ReinkeH. Phosphorylation of GAPVD1 is regulated by the PER complex and linked to GAPVD1 degradation.Int. J. Mol. Sci.2021227378710.3390/ijms22073787 33917494
    [Google Scholar]
  14. YaoJ. HeC. ZhaoW. HuN. LongD. Circadian clock and cell cycle: Cancer and chronotherapy.Acta Histochem.2021123815181610.1016/j.acthis.2021.151816 34800857
    [Google Scholar]
  15. WangL. ZhangL. ZhaoL. VEGFA/NRP-1/GAPVD1 axis promotes progression and cancer stemness of triple-negative breast cancer by enhancing tumor cell-macrophage crosstalk.Int. J. Biol. Sci.2024202446463
    [Google Scholar]
  16. DegirmenciU. WangM. HuJ. Targeting Aberrant RAS/RAF/MEK/ERK signaling for cancer therapy.Cells20209119810.3390/cells9010198 31941155
    [Google Scholar]
  17. ZhangW. LiuH.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells.Cell Res.200212191810.1038/sj.cr.7290105 11942415
    [Google Scholar]
  18. PearsonG. RobinsonF. Beers GibsonT. XuB.E. KarandikarM. BermanK. CobbM.H. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions.Endocr. Rev.2001222153183 11294822
    [Google Scholar]
  19. GuoY.J. PanW.W. LiuS.B. ShenZ.F. XuY. HuL.L. ERK/MAPK signalling pathway and tumorigenesis.Exp. Ther. Med.202019319972007 32104259
    [Google Scholar]
  20. LiC. WangY. WuC. ZhouJ. ZhouY. JiaoY. LiY. ZhaoL. Ebracteolatain A exerts anti-proliferation of breast cancer by inhibiting Protein kinase D 1 in MEK/ERK and PI3K/AKT signaling pathways.Phytomedicine202310915458810.1016/j.phymed.2022.154588 36610131
    [Google Scholar]
  21. FujiiS. TokitaK. WadaN. ItoK. YamauchiC. ItoY. OchiaiA. MEK–ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes.Oncogene201130394118412810.1038/onc.2011.118 21499305
    [Google Scholar]
  22. AhnH.J. KimG. ParkK.S. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway.Biochem. Biophys. Res. Commun.2013437455756410.1016/j.bbrc.2013.06.114 23850691
    [Google Scholar]
  23. XuD. XuN. SunL. YangZ. HeM. LiY. TG2 as a novel breast cancer prognostic marker promotes cell proliferation and glycolysis by activating the MEK/ERK/LDH pathway.BMC Cancer2022221126710.1186/s12885‑022‑10364‑2 36471278
    [Google Scholar]
  24. KimS. YouD. JeongY. YuJ. KimS.W. NamS.J. LeeJ.E. Berberine down-regulates IL-8 expression through inhibition of the EGFR/MEK/ERK pathway in triple-negative breast cancer cells.Phytomedicine201850434910.1016/j.phymed.2018.08.004 30466991
    [Google Scholar]
  25. ChaudharyP. ThamakeS.I. ShettyP. VishwanathaJ.K. Inhibition of triple-negative and Herceptin-resistant breast cancer cell proliferation and migration by Annexin A2 antibodies.Br. J. Cancer2014111122328234110.1038/bjc.2014.542 25321192
    [Google Scholar]
  26. JiangT. PanC.Q. LowB.C. BPGAP1 spatially integrates JNK/ERK signaling crosstalk in oncogenesis.Oncogene201736223178319210.1038/onc.2016.466 28092672
    [Google Scholar]
  27. DhillonA.S. HaganS. RathO. KolchW. MAP kinase signalling pathways in cancer.Oncogene200726223279329010.1038/sj.onc.1210421 17496922
    [Google Scholar]
  28. HunkerC.M. GalvisA. KrukI. GiambiniH. VeisagaM.L. BarbieriM.A. Rab5-activating protein 6, a novel endosomal protein with a role in endocytosis.Biochem. Biophys. Res. Commun.2006340396797510.1016/j.bbrc.2005.12.099 16410077
    [Google Scholar]
  29. GuillenR.X. BeckleyJ.R. ChenJ.S. GouldK.L. CRISPR-mediated gene targeting of CK1δ/ε leads to enhanced understanding of their role in endocytosis via phosphoregulation of GAPVD1.Sci. Rep.2020101679710.1038/s41598‑020‑63669‑2 32321936
    [Google Scholar]
  30. HermleT. SchneiderR. SchapiroD. BraunD.A. van der VenA.T. WarejkoJ.K. DagaA. WidmeierE. NakayamaM. Jobst-SchwanT. MajmundarA.J. AshrafS. RaoJ. FinnL.S. TasicV. HernandezJ.D. BaggaA. JalalahS.M. El DesokyS. KariJ.A. LaricchiaK.M. LekM. RehmH.L. MacArthurD.G. ManeS. LiftonR.P. ShrilS. HildebrandtF. GAPVD1 and ANKFY1 mutations implicate RAB5 regulation in nephrotic syndrome.J. Am. Soc. Nephrol.20182982123213810.1681/ASN.2017121312 29959197
    [Google Scholar]
  31. KhapreR.V. SamsaW.E. KondratovR.V. Circadian regulation of cell cycle: Molecular connections between aging and the circadian clock.Ann. Med.201042640441510.3109/07853890.2010.499134 20568980
    [Google Scholar]
  32. QuM. ZhangG. QuH. VuA. WuR. TsukamotoH. JiaZ. HuangW. LenzH.J. RichJ.N. KayS.A. Circadian regulator BMAL1:CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle.Proc. Natl. Acad. Sci.20231202e221482912010.1073/pnas.2214829120 36595671
    [Google Scholar]
  33. DongZ. ZhangG. QuM. GimpleR.C. WuQ. QiuZ. PragerB.C. WangX. KimL.J.Y. MortonA.R. DixitD. ZhouW. HuangH. LiB. ZhuZ. BaoS. MackS.C. ChavezL. KayS.A. RichJ.N. Targeting glioblastoma stem cells through disruption of the circadian clock.Cancer Discov.20199111556157310.1158/2159‑8290.CD‑19‑0215 31455674
    [Google Scholar]
  34. KelleherF.C. RaoA. MaguireA. Circadian molecular clocks and cancer.Cancer Lett.2014342191810.1016/j.canlet.2013.09.040 24099911
    [Google Scholar]
  35. BartholomeuszC. Gonzalez-AnguloA.M. LiuP. HayashiN. LluchA. Ferrer-LozanoJ. HortobágyiG.N. High ERK protein expression levels correlate with shorter survival in triple-negative breast cancer patients.Oncologist201217676677410.1634/theoncologist.2011‑037722584435
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096303983240616191051
Loading
/content/journals/ccdt/10.2174/0115680096303983240616191051
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test