Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Glycyrrhizic Acid (GA), a compound derived from licorice, has exhibited promising anticancer properties against several cancer types, including Prostate Cancer (PCa) and Gastric Cancer (GCa).

Objective

This study has introduced a novel approach involving the encapsulation of GA and Licorice extract (Lic) into Polyethylene Glycol Liposomes (PEG-Lip) and assessed their efficacy against AGS (human gastric cancer) and PC-3 (human prostate cancer) cells, marking the first report of this endeavor.

Methods

We synthesized GA-loaded PEG-Lip (GA PEG-Lip) and Lic-loaded PEG-Lip (Lic PEG-Lip) through the reverse-phase evaporation method.

Results

Characterization of these liposomal formulations revealed their size, drug encapsulation, and loading efficiencies to be 110 ± 2.05 nm, 117 ± 1.24 nm; 61 ± 0.81%, 34 ± 0.47%; and 8 ± 0.41% and 4.6 ± 0.21%, respectively. Importantly, the process has retained the chemical structure of both GA and Lic. Furthermore, GA and Lic have been released from the PEG-Lip formulations in a controlled manner.

In our experiments, both nanoformulations exhibited enhanced cytotoxic effects against AGS and PC-3 cells. Notably, GA PEG-Lip outperformed Lic PEG-Lip, reducing the viability of PC-3 and AGS cells by 12.5% and 15.9%, respectively.

Conclusion

These results have been corroborated by apoptosis assays, which have demonstrated GA PEG-Lip and Lic PEG-Lip to induce stronger apoptotic effects compared to free GA and Lic on both PC-3 and AGS cells.

This study has underscored the potential of encapsulating GA and Lic in PEG-Lip as a promising strategy to augment their anticancer efficacy against prostate and gastric cancers.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096292153240416115744
2024-04-29
2025-07-05
Loading full text...

Full text loading...

References

  1. RattaR. GuidaA. ScottéF. NeuzilletY. TeilletA.B. LebretT. BeuzebocP. PARP inhibitors as a new therapeutic option in metastatic prostate cancer: A systematic review.Prostate Cancer Prostatic Dis.202023454956010.1038/s41391‑020‑0233‑332367009
    [Google Scholar]
  2. NagarajuG.P. SrivaniG. DariyaB. ChalikondaG. FarranB. BeheraS.K. Nanoparticles guided drug delivery and imaging in gastric cancer.Seminars in Cancer Biology.Elsevier2021
    [Google Scholar]
  3. LiN. XieX. HuY. HeH. FuX. FangT. LiC. Herceptin-conjugated liposomes co-loaded with doxorubicin and simvastatin in targeted prostate cancer therapy.Am. J. Transl. Res.20191131255126930972160
    [Google Scholar]
  4. SadaghianiM.S. SheikhbahaeiS. WernerR.A. PientaK.J. PomperM.G. SolnesL.B. GorinM.A. WangN.Y. RoweS.P. A systematic review and meta-analysis of the effectiveness and toxicities of lutetium-177–labeled prostate-specific membrane antigen–targeted radioligand therapy in metastatic castration-resistant prostate cancer.Eur. Urol.2021801829410.1016/j.eururo.2021.03.00433840558
    [Google Scholar]
  5. BhanjiY. IsaacsW.B. XuJ. CooneyK.A. Prostate cancer predisposition.Urol. Clin. North Am.202148328329610.1016/j.ucl.2021.03.00134210485
    [Google Scholar]
  6. SmythE.C. NilssonM. GrabschH.I. van GriekenN.C.T. LordickF. Gastric cancer.Lancet20203961025163564810.1016/S0140‑6736(20)31288‑532861308
    [Google Scholar]
  7. RawlaP. Epidemiology of prostate cancer.World J. Oncol.2019102638910.14740/wjon119131068988
    [Google Scholar]
  8. ChangH.Y. ChenS.Y. WuC.H. LuC.C. YenG.C. Glycyrrhizin attenuates the process of epithelial-to-mesenchymal transition by modulating HMGB1 initiated novel signaling pathway in prostate cancer cells.J. Agric. Food Chem.201967123323333210.1021/acs.jafc.9b0025130832473
    [Google Scholar]
  9. KashyapD. TuliH.S. YererM.B. SharmaA. SakK. SrivastavaS. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges.Seminars in cancer biology.Elsevier2021
    [Google Scholar]
  10. CraggGM PezzutoJM Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents.Med Princ Pract.201625Suppl 2415910.1159/000443404
    [Google Scholar]
  11. TangQ. CaoY. XiongW. KeX. ZhangJ. XiaY. LiuD. Glycyrrhizic acid exerts protective effects against hypoxia/reoxygenation‑induced human coronary artery endothelial cell damage by regulating mitochondria.Exp. Ther. Med.202020133534210.3892/etm.2020.866832509013
    [Google Scholar]
  12. PastorinoG. CornaraL. SoaresS. RodriguesF. OliveiraM.B.P.P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review.Phytother. Res.201832122323233910.1002/ptr.617830117204
    [Google Scholar]
  13. LeeC.S. KimY.J. LeeM.S. HanE.S. LeeS.J. 18β-Glycyrrhetinic acid induces apoptotic cell death in SiHa cells and exhibits a synergistic effect against antibiotic anti-cancer drug toxicity.Life Sci.20088313-1448148910.1016/j.lfs.2008.07.01418721818
    [Google Scholar]
  14. HasanS.K. SiddiqiA. NafeesS. AliN. RashidS. AliR. ShahidA. SultanaS. Chemopreventive effect of 18β-glycyrrhetinic acid via modulation of inflammatory markers and induction of apoptosis in human hepatoma cell line (HepG2).Mol. Cell. Biochem.20164161-216917710.1007/s11010‑016‑2705‑227116616
    [Google Scholar]
  15. ThirugnanamS. XuL. RamaswamyK. GnanasekarM. Glycyrrhizin induces apoptosis in prostate cancer cell lines DU-145 and LNCaP.Oncol. Rep.20082061387139219020719
    [Google Scholar]
  16. WangH. GeX. QuH. WangN. ZhouJ. XuW. XieJ. ZhouY. ShiL. QinZ. JiangZ. YinW. XiaJ. Glycyrrhizic acid inhibits proliferation of gastric cancer cells by inducing cell cycle arrest and apoptosis.Cancer Manag. Res.2020122853286110.2147/CMAR.S24448132425599
    [Google Scholar]
  17. ShenC. ZhuJ. SongJ. WangJ. ShenB. YuanH. LiX. Formulation of pluronic F127/TPGS mixed micelles to improve the oral absorption of glycyrrhizic acid.Drug Dev. Ind. Pharm.20204671100110710.1080/03639045.2020.177563432463722
    [Google Scholar]
  18. Beltrán-GraciaE. López-CamachoA. Higuera-CiaparaI. Velázquez-FernándezJ.B. Vallejo-CardonaA.A. Nanomedicine review: Clinical developments in liposomal applications.Cancer Nanotechnol.20191011110.1186/s12645‑019‑0055‑y
    [Google Scholar]
  19. LiY. WangY. HuangG. GaoJ. Cooperativity principles in self-assembled nanomedicine.Chem. Rev.2018118115359539110.1021/acs.chemrev.8b0019529693377
    [Google Scholar]
  20. EsfahaniM.K.M. IslamN. CabotP.J. IzakeE.L. Development of thiabendazole-loaded mesoporous silica nanoparticles for cancer therapy.ACS Biomater. Sci. Eng.20228104153416210.1021/acsbiomaterials.1c0006634056895
    [Google Scholar]
  21. YanW. LeungS.S.Y. ToK.K.W. Updates on the use of liposomes for active tumor targeting in cancer therapy.Nanomedicine202015330331810.2217/nnm‑2019‑030831802702
    [Google Scholar]
  22. BoshrouyehR. AmariS. Boshrouyeh GhandashtaniM. AlaviS.E. Ebrahimi ShahmabadiH. A topical gel nanoformulation of amphotericin B (AmB) for the treatment of cutaneous leishmaniasis (CL).J. Sol-Gel Sci. Technol.2023105376878010.1007/s10971‑023‑06041‑w
    [Google Scholar]
  23. KhanAA AllemailemKS AlmatroodiSA AlmatroudiA RahmaniAH Recent strategies towards the surface modification of liposomes: An innovative approach for different clinical applications.3 Biotech2020104163
    [Google Scholar]
  24. O’BrienM.E.R. WiglerN. InbarM. RossoR. GrischkeE. SantoroA. CataneR. KiebackD.G. TomczakP. AcklandS.P. OrlandiF. MellarsL. AllandL. TendlerC. CAELYX Breast Cancer Study Group Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer.Ann. Oncol.200415344044910.1093/annonc/mdh09714998846
    [Google Scholar]
  25. ChoiJ.S. ParkJ.W. SeuY.B. DohK.O. Enhanced efficacy of folate-incorporated cholesteryl doxorubicin liposome in folate receptor abundant cancer cell.J. Drug Deliv. Sci. Technol.20216210238510.1016/j.jddst.2021.102385
    [Google Scholar]
  26. AlaviS.E. RazaA. Koohi Moftakhari EsfahaniM. AkbarzadehA. AbdollahiS.H. Ebrahimi ShahmabadiH. Carboplatin niosomal nanoplatform for potentiated chemotherapy.J. Pharm. Sci.2022111113029303710.1016/j.xphs.2022.06.00235675875
    [Google Scholar]
  27. AlaviS. Muflih Al HarthiS. Ebrahimi ShahmabadiH. AkbarzadehA. Cisplatin-loaded polybutylcyanoacrylate nanoparticles with improved properties as an anticancer agent.Int. J. Mol. Sci.2019207153110.3390/ijms2007153130934689
    [Google Scholar]
  28. EsfahaniM.K.M. AlaviS.E. AkbarzadehA. GhassemiS. SaffariZ. FarahnakM. ChianiM. Pegylation of nanoliposomal paclitaxel enhances its efficacy in breast cancer.Trop. J. Pharm. Res.20141381195119810.4314/tjpr.v13i8.1
    [Google Scholar]
  29. EsfahaniM.K.M. AlaviS.E. CabotP.J. IslamN. IzakeE.L. PEGylated mesoporous silica nanoparticles (MCM-41): A promising carrier for the targeted delivery of fenbendazole into prostrate cancer cells.Pharmaceutics20211310160510.3390/pharmaceutics1310160534683898
    [Google Scholar]
  30. AlaviS.E. CabotP.J. YapG.Y. MoyleP.M. Optimized methods for the production and bioconjugation of site-specific, alkyne-modified glucagon-like peptide-1 (GLP-1) analogs to azide-modified delivery platforms using copper-catalyzed alkyne–azide cycloaddition.Bioconjug. Chem.20203171820183410.1021/acs.bioconjchem.0c0029132543833
    [Google Scholar]
  31. AlaviS.E. CabotP.J. RazaA. MoyleP.M. Developing GLP-1 conjugated self-assembling nanofibers using copper-catalyzed alkyne–azide cycloaddition and evaluation of their biological activity.Bioconjug. Chem.202132481082010.1021/acs.bioconjchem.1c0009133843208
    [Google Scholar]
  32. AlaviS.E. CabotP.J. MoyleP.M. Glucagon-like peptide-1 receptor agonists and strategies to improve their efficiency.Mol. Pharm.20191662278229510.1021/acs.molpharmaceut.9b0030831050435
    [Google Scholar]
  33. Abdel-WahabA-H.A. EffatH. MahrousE.A. AliM.A. Al-ShafieT.A. A licorice roots extract induces apoptosis and cell cycle arrest and improves metabolism via regulating MiRNAs in liver cancer cells.Nutr. Cancer202011232578448
    [Google Scholar]
  34. LeQ.Q. YuZ. RETRACTED: Two new α, β-unsaturated bis-enone derivatives: Anti-gastric cancer activity and docking study.Main Group Chem.20201911710.3233/MGC‑190810
    [Google Scholar]
  35. GhassamiE VarshosazJ MirianM Jahanian-NajafabadiA. HER-2 aptamer-targeted Ecoflex® nanoparticles loaded with docetaxel promote breast cancer cells apoptosis and anti-metastatic effect.IET nanobiotechnology2019134428434
    [Google Scholar]
  36. FehaidA. TaniguchiA. Silver nanoparticles reduce the apoptosis induced by tumor necrosis factor-α.Sci. Technol. Adv. Mater.201819152653410.1080/14686996.2018.148776130034561
    [Google Scholar]
  37. AlaviS.E. EsfahaniM.K.M. AlaviF. MovahediF. AkbarzadehA. Drug delivery of hydroxyurea to breast cancer using liposomes.Indian J. Clin. Biochem.201328329930210.1007/s12291‑012‑0291‑y24426227
    [Google Scholar]
  38. SongH. SuX. YangK. NiuF. LiJ. SongJ. ChenH. LiB. LiW. QianW. CaoX. GuoS. DaiJ. FengS.S. GuoY. YinC. GaoJ. CD20 antibody-conjugated immunoliposomes for targeted chemotherapy of melanoma cancer initiating cells.J. Biomed. Nanotechnol.201511111927194610.1166/jbn.2015.212926554153
    [Google Scholar]
  39. SanthoshP.B. GenovaJ. IgljA. Kralj-IgliV. UlrihN.P. Influence of cholesterol on bilayer fluidity and size distribution of liposomes.C. R. Acad. Bulg. Sci202073794995810.7546/CRABS.2020.07.07
    [Google Scholar]
  40. HsiehY.F. ChenT.L. WangY.T. ChangJ.H. ChangH.M. Properties of liposomes prepared with various lipids.J. Food Sci.20026782808281310.1111/j.1365‑2621.2002.tb08820.x
    [Google Scholar]
  41. TaiK. LiuF. HeX. MaP. MaoL. GaoY. YuanF. The effect of sterol derivatives on properties of soybean and egg yolk lecithin liposomes: Stability, structure and membrane characteristics.Food Res. Int.2018109243410.1016/j.foodres.2018.04.01429803447
    [Google Scholar]
  42. AlaviS.E. BakhtU. Koohi Moftakhari EsfahaniM. AdelniaH. AbdollahiS.H. Ebrahimi ShahmabadiH. RazaA. A PEGylated nanostructured lipid carrier for enhanced oral delivery of antibiotics.Pharmaceutics2022148166810.3390/pharmaceutics1408166836015294
    [Google Scholar]
  43. HeY. LuoL. LiangS. LongM. XuH. Influence of probe-sonication process on drug entrapment efficiency of liposomes loaded with a hydrophobic drug.Int. J. Polym. Mater.201968419319710.1080/00914037.2018.1434651
    [Google Scholar]
  44. HuangC.Y. ChenC.M. LeeY.D. Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion.Int. J. Pharm.20073381-226727510.1016/j.ijpharm.2007.01.05217368981
    [Google Scholar]
  45. DuanX. HeC. KronS.J. LinW. Nanoparticle formulations of cisplatin for cancer therapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168577679110.1002/wnan.139026848041
    [Google Scholar]
  46. ZhongJ. HuangH.L. LiJ. QianF.C. LiL.Q. NiuP.P. DaiL.C. Development of hybrid-type modified chitosan derivative nanoparticles for the intracellular delivery of midkine-siRNA in hepatocellular carcinoma cells.Hepatobiliary Pancreat. Dis. Int.2015141828910.1016/S1499‑3872(15)60336‑825655295
    [Google Scholar]
  47. Koohi Moftakhari EsfahaniM. AlaviS.E. CabotP.J. IslamN. IzakeE.L. Application of mesoporous silica nanoparticles in cancer therapy and delivery of repurposed anthelmintics for cancer therapy.Pharmaceutics2022148157910.3390/pharmaceutics1408157936015204
    [Google Scholar]
  48. LiuM. ZhangX. YangB. DengF. JiJ. YangY. HuangZ. ZhangX. WeiY. Luminescence tunable fluorescent organic nanoparticles from polyethyleneimine and maltose: facile preparation and bioimaging applications.RSC Advances2014443222942229810.1039/c4ra03103b
    [Google Scholar]
  49. GhaferiM. RazaA. KoohiM. ZahraW. AkbarzadehA. Ebrahimi ShahmabadiH. AlaviS.E. Impact of PEGylated liposomal doxorubicin and carboplatin combination on glioblastoma.Pharmaceutics20221410218310.3390/pharmaceutics1410218336297618
    [Google Scholar]
  50. TosiM.M. RamosA.P. EspostoB.S. JafariS.M. Chapter Six - Dynamic light scattering (DLS) of nanoencapsulated food ingredients.Characterization of Nanoencapsulated Food Ingredients. 4. JafariS.M. Academic Press202019121110.1016/B978‑0‑12‑815667‑4.00006‑7
    [Google Scholar]
  51. RomesN.B. WahabR.A. Abdul HamidM. HashimS.E. D-optimal design-assisted Elaeis guineensis leaves extract in olive oil-sunflower seed nanoemulsions: Development, characterization, and physical stability.J. Dispers. Sci. Technol.2020113
    [Google Scholar]
  52. EidA.M. IstateyehI. SalhiN. IstateyehT. Antibacterial activity of fusidic acid and sodium fusidate nanoparticles incorporated in pine oil nanoemulgel.Int. J. Nanomedicine2019149411942110.2147/IJN.S22955731819440
    [Google Scholar]
  53. JiaoY. LiD. LiuC. ChangY. SongJ. XiaoY. Polypeptide – decorated nanoliposomes as novel delivery systems for lutein.RSC Advances2018855313723138110.1039/C8RA05838E35548209
    [Google Scholar]
  54. McDaidH.M. BhattacharyaS.K. ChenX.T. HeL. ShenH.J. GutteridgeC.E. HorwitzS.B. DanishefskyS.J. Structure-activity profiles of eleutherobin analogs and their cross-resistance in Taxol-resistant cell lines.Cancer Chemother. Pharmacol.199944213113710.1007/s00280005095710412947
    [Google Scholar]
  55. ZeeshanM. AtiqA. AinQ.U. AliJ. KhanS. AliH. Evaluating the mucoprotective effects of glycyrrhizic acid-loaded polymeric nanoparticles in a murine model of 5-fluorouracil-induced intestinal mucositis via suppression of inflammatory mediators and oxidative stress.Inflammopharmacology20212951539155310.1007/s10787‑021‑00866‑z34420176
    [Google Scholar]
  56. BenzineY. Enzymatically triggered polymeric drug delivery systems for colon targeting Innovative bacteria-sensitive dosage forms for targeting the colonUniversity of Lille20191191
    [Google Scholar]
  57. QaderiA. DadgarN. MansouriH. AlaviS.E. Koohi Moftakhari EsfahaniM. AkbarzadehA. Modeling and prediction of cytotoxicity of artemisinin for treatment of the breast cancer by using artificial neural networks.Springerplus20132134010.1186/2193‑1801‑2‑34023961405
    [Google Scholar]
  58. GhaferiM. ZahraW. AkbarzadehA. Ebrahimi ShahmabadiH. AlaviS.E. Enhancing the efficacy of albendazole for liver cancer treatment using mesoporous silica nanoparticles: An in vitro study.EXCLI J.20222123624935221842
    [Google Scholar]
  59. AlaviS.E. RazaA. GholamiM. GilesM. Al-SammakR. IbrahimA. Ebrahimi ShahmabadiH. SharmaL.A. Advanced drug delivery platforms for the treatment of oral pathogens.Pharmaceutics20221411229310.3390/pharmaceutics1411229336365112
    [Google Scholar]
  60. Ebrahimi ShahmabadiH. MovahediF. Koohi Moftakhari EsfahaniM. AlaviS.E. EslamifarA. Mohammadi AnarakiG. AkbarzadehA. Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma.Tumour Biol.20143554799480610.1007/s13277‑014‑1630‑924443270
    [Google Scholar]
  61. AlaviS.E. Ebrahimi ShahmabadiH. Anthelmintics for drug repurposing: Opportunities and challenges.Saudi Pharm. J.202129543444510.1016/j.jsps.2021.04.00434135669
    [Google Scholar]
  62. AlaviS.E. Ebrahimi ShahmabadiH. GLP-1 peptide analogs for targeting pancreatic beta cells.Drug Discov. Today20212681936194310.1016/j.drudis.2021.03.03233839290
    [Google Scholar]
  63. Koohi Moftakhari EsfahaniM. AlaviS.E. ShahbazianS. Ebrahimi ShahmabadiH. Drug delivery of cisplatin to breast cancer by polybutylcyanoacrylate nanoparticles.Adv. Polym. Technol.201837367467810.1002/adv.21709
    [Google Scholar]
  64. AlaviS.E. MansouriH. EsfahaniM.K.M. MovahediF. AkbarzadehA. ChianiM. Archaeosome: As new drug carrier for delivery of Paclitaxel to breast cancer.Indian J. Clin. Biochem.201429215015310.1007/s12291‑013‑0305‑424757295
    [Google Scholar]
  65. BatoolM. KhurshidS. DaoushW.M. SiddiqueS.A. NadeemT. Green synthesis and biomedical applications of ZnO nanoparticles: Role of PEGylated-ZnO nanoparticles as doxorubicin drug carrier against MDA-MB-231(TNBC) cells line.Crystals202111434410.3390/cryst11040344
    [Google Scholar]
  66. ChanK.M. VasilevK. ShiraziH.S. McNicholasK. LiJ. GleadleJ. MacGregorM. Biosensor device for the photo-specific detection of immuno-captured bladder cancer cells using hexaminolevulinate: An ex-vivo study.Photodiagn. Photodyn. Ther.20192823824710.1016/j.pdpdt.2019.08.00131394301
    [Google Scholar]
  67. XiaoX. HaoM. YangX. BaQ. LiM. NiS. WangL.S. DuX. Licochalcone A inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis.Cancer Lett.20113021697510.1016/j.canlet.2010.12.01621216524
    [Google Scholar]
  68. SharmaG. KarS. PalitS. DasP.K. 18β‐glycyrrhetinic acid induces apoptosis through modulation of Akt/FOXO3a/Bim pathway in human breast cancer MCF‐7 cells.J. Cell. Physiol.201222751923193110.1002/jcp.2292021732363
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096292153240416115744
Loading
/content/journals/ccdt/10.2174/0115680096292153240416115744
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Cancer; drug side effects; glycyrrhizic acid; in vitro; licorice; PEGylated liposome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test