Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Sorafenib is currently the first choice for the treatment of patients with advanced hepatocellular carcinoma, but its therapeutic effect is still limited.

Objectives

This study aims to examine whether WEE family kinase inhibitors can enhance the anticancer effect of sorafenib.

Methods

We analyzed the expression levels of PKMYT1 kinase and WEE1 kinase in HCC, studied the inhibitory effect of PKMYT1 kinase inhibitor RP-6306, WEE1 kinase inhibitor adavosertib combined with sorafenib on the proliferation of HCC cells, and detected the effect of drug combination on CDK1 phosphorylation.

Results

We found that PKMYT1 and WEE1 were upregulated in HCC and were detrimental to patient survival. Cell experiments showed that both RP-6306 and adavosertib (1-100 μM) inhibited the proliferation of HCC cell lines in a dose-dependent manner alone, and the combination of the two drugs had a synergistic effect. In HCC cell lines, sorafenib combined with RP-6306 or adavosertib showed a synergistic antiproliferation effect and less toxicity to normal cells. Sorafenib combined with RP-6306 and adavosertib further inhibited the proliferation of HCC cells and caused complete dephosphorylation of CDK1.

Conclusion

Taken together, our findings provide experimental evidence for the future use of sorafenib in combination with RP-6306 or adavosertib for the treatment of HCC.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096298370240520093003
2024-06-10
2025-05-11
Loading full text...

Full text loading...

References

  1. McGlynnK.A. PetrickJ.L. El-SeragH.B. Epidemiology of hepatocellular carcinoma.Hepatology202173Suppl 141310.1002/hep.31288
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. RumgayH. FerlayJ. de MartelC. GeorgesD. IbrahimA.S. ZhengR. WeiW. LemmensV.E.P.P. SoerjomataramI. Global, regional and national burden of primary liver cancer by subtype.Eur. J. Cancer202216110811810.1016/j.ejca.2021.11.02334942552
    [Google Scholar]
  4. RizzoA. RicciA.D. BrandiG. Systemic adjuvant treatment in hepatocellular carcinoma: Tempted to do something rather than nothing.Future Oncol.202016322587258910.2217/fon‑2020‑066932772560
    [Google Scholar]
  5. LlovetJ.M. KelleyR.K. VillanuevaA. SingalA.G. PikarskyE. RoayaieS. LencioniR. KoikeK. Zucman-RossiJ. FinnR.S. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑333479224
    [Google Scholar]
  6. RizzoA. RicciA.D. BrandiG. Immune-based combinations for advanced hepatocellular carcinoma: Shaping the direction of first-line therapy.Future Oncol.202117775575710.2217/fon‑2020‑098633508960
    [Google Scholar]
  7. ChengA.L. QinS. IkedaM. GalleP.R. DucreuxM. KimT.Y. LimH.Y. KudoM. BrederV. MerleP. KasebA.O. LiD. VerretW. MaN. NicholasA. WangY. LiL. ZhuA.X. FinnR.S. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma.J. Hepatol.202276486287310.1016/j.jhep.2021.11.03034902530
    [Google Scholar]
  8. SalemR. LiD. SommerN. HernandezS. VerretW. DingB. LencioniR. Characterization of response to atezolizumab + bevacizumab versus sorafenib for hepatocellular carcinoma: Results from the IMbrave150 trial.Cancer Med.202110165437544710.1002/cam4.409034189869
    [Google Scholar]
  9. GalleP.R. FinnR.S. QinS. IkedaM. ZhuA.X. KimT.Y. KudoM. BrederV. MerleP. KasebA. LiD. MullaS. VerretW. XuD.Z. HernandezS. DingB. LiuJ. HuangC. LimH.Y. ChengA.L. DucreuxM. Patient-reported outcomes with atezolizumab plus bevacizumab versus sorafenib in patients with unresectable hepatocellular carcinoma (IMbrave150): An open-label, randomised, phase 3 trial.Lancet Oncol.2021227991100110.1016/S1470‑2045(21)00151‑034051880
    [Google Scholar]
  10. SongX. KelleyR.K. KhanA.A. StandiferN. ZhouD. LimK. KrishnaR. LiuL. WangK. McCoonP. NegroA. HeP. GibbsM. KurlandJ.F. Abou-AlfaG.K. Exposure-response analyses of tremelimumab monotherapy or in combination with durvalumab in patients with unresectable hepatocellular carcinoma.Clin. Cancer Res.202329475476310.1158/1078‑0432.CCR‑22‑198336477555
    [Google Scholar]
  11. ZhuA.X. FinnR.S. EdelineJ. CattanS. OgasawaraS. PalmerD. VerslypeC. ZagonelV. FartouxL. VogelA. SarkerD. VersetG. ChanS.L. KnoxJ. DanieleB. WebberA.L. EbbinghausS.W. MaJ. SiegelA.B. ChengA.L. KudoM. AlistarA. AsselahJ. BlancJ-F. BorbathI. CannonT. ChungK. CohnA. CosgroveD.P. DamjanovN. GuptaM. KarinoY. KarwalM. KaubischA. KelleyR. Van LaethemJ-L. LarsonT. LeeJ. LiD. ManhasA. ManjiG.A. NumataK. ParsonsB. PaulsonA.S. PintoC. RamirezR. RatnamS. RizellM. RosmorducO. SadaY. SasakiY. StalP.I. StrasserS. TrojanJ. VaccaroG. Van VlierbergheH. WeissA. WeissK-H. YamashitaT. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial.Lancet Oncol.201819794095210.1016/S1470‑2045(18)30351‑629875066
    [Google Scholar]
  12. YauT. KangY.K. KimT.Y. El-KhoueiryA.B. SantoroA. SangroB. MeleroI. KudoM. HouM.M. MatillaA. TovoliF. KnoxJ.J. Ruth HeA. El-RayesB.F. Acosta-RiveraM. LimH.Y. NeelyJ. ShenY. WisniewskiT. AndersonJ. HsuC. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib.JAMA Oncol.2020611e20456410.1001/jamaoncol.2020.456433001135
    [Google Scholar]
  13. LlovetJ.M. PinyolR. KelleyR.K. El-KhoueiryA. ReevesH.L. WangX.W. GoresG.J. VillanuevaA. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma.Nat. Can.20223438640110.1038/s43018‑022‑00357‑235484418
    [Google Scholar]
  14. MontironiC. CastetF. HaberP.K. PinyolR. Torres-MartinM. TorrensL. MesropianA. WangH. PuigvehiM. MaedaM. LeowW.Q. HarrodE. TaikP. ChinburenJ. TaivanbaatarE. ChinboldE. Solé ArquésM. DonovanM. ThungS. NeelyJ. MazzaferroV. AndersonJ. RoayaieS. SchwartzM. VillanuevaA. FriedmanS.L. UzilovA. SiaD. LlovetJ.M. Inflamed and non-inflamed classes of HCC: A revised immunogenomic classification.Gut202372112914010.1136/gutjnl‑2021‑32591835197323
    [Google Scholar]
  15. MollicaV. RizzoA. MarchettiA. TateoV. TassinariE. RoselliniM. MassafraR. SantoniM. MassariF. The impact of ECOG performance status on efficacy of immunotherapy and immune-based combinations in cancer patients: The MOUSEION-06 study.Clin. Exp. Med.20232385039504910.1007/s10238‑023‑01159‑137535194
    [Google Scholar]
  16. Dall’OlioF.G. RizzoA. MollicaV. MassucciM. MaggioI. MassariF. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: A meta-analysis.Immunotherapy202113325727010.2217/imt‑2020‑017933225800
    [Google Scholar]
  17. LlovetJ.M. RicciS. MazzaferroV. HilgardP. GaneE. BlancJ.F. de OliveiraA.C. SantoroA. RaoulJ.L. FornerA. SchwartzM. PortaC. ZeuzemS. BolondiL. GretenT.F. GalleP.R. SeitzJ.F. BorbathI. HäussingerD. GiannarisT. ShanM. MoscoviciM. VoliotisD. BruixJ. Sorafenib in advanced hepatocellular carcinoma.N. Engl. J. Med.2008359437839010.1056/NEJMoa070885718650514
    [Google Scholar]
  18. KudoM. FinnR.S. QinS. HanK.H. IkedaK. PiscagliaF. BaronA. ParkJ.W. HanG. JassemJ. BlancJ.F. VogelA. KomovD. EvansT.R.J. LopezC. DutcusC. GuoM. SaitoK. KraljevicS. TamaiT. RenM. ChengA.L. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial.Lancet2018391101261163117310.1016/S0140‑6736(18)30207‑129433850
    [Google Scholar]
  19. WilhelmS.M. DumasJ. AdnaneL. LynchM. CarterC.A. SchützG. ThierauchK.H. ZopfD. Regorafenib (BAY 73‐4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity.Int. J. Cancer2011129124525510.1002/ijc.2586421170960
    [Google Scholar]
  20. YakesF.M. ChenJ. TanJ. YamaguchiK. ShiY. YuP. QianF. ChuF. BentzienF. CancillaB. OrfJ. YouA. LairdA.D. EngstS. LeeL. LeschJ. ChouY.C. JolyA.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth.Mol. Cancer Ther.201110122298230810.1158/1535‑7163.MCT‑11‑026421926191
    [Google Scholar]
  21. LlovetJ.M. MontalR. SiaD. FinnR.S. Molecular therapies and precision medicine for hepatocellular carcinoma.Nat. Rev. Clin. Oncol.2018151059961610.1038/s41571‑018‑0073‑430061739
    [Google Scholar]
  22. SchmidtM. RoheA. PlatzerC. NajjarA. ErdmannF. SipplW. Regulation of G2/M Transition by Inhibition of WEE1 and PKMYT1 Kinases.Molecules20172212204510.3390/molecules2212204529168755
    [Google Scholar]
  23. LiuY. QiJ. DouZ. HuJ. LuL. DaiH. WangH. YangW. Systematic expression analysis of WEE family kinases reveals the importance of PKMYT1 in breast carcinogenesis.Cell Prolif.2020532e1274110.1111/cpr.1274131837068
    [Google Scholar]
  24. MirS.E. De Witt HamerP.C. KrawczykP.M. BalajL. ClaesA. NiersJ.M. Van TilborgA.A.G. ZwindermanA.H. GeertsD. KaspersG.J.L. Peter VandertopW. CloosJ. TannousB.A. WesselingP. AtenJ.A. NoskeD.P. Van NoordenC.J.F. WürdingerT. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma.Cancer Cell201018324425710.1016/j.ccr.2010.08.01120832752
    [Google Scholar]
  25. JeongD. KimH. KimD. BanS. OhS. JiS. KangD. LeeH. AhnT.S. KimH.J. BaeS.B. LeeM.S. KimC.J. KwonH.Y. BaekM.J. Protein kinase, membrane‑associated tyrosine/threonine 1 is associated with the progression of colorectal cancer.Oncol. Rep.20183962829283629658598
    [Google Scholar]
  26. WangX.M. LiQ.Y. RenL.L. LiuY.M. WangT.S. MuT.C. FuS. LiuC. XiaoJ.Y. Effects of MCRS1 on proliferation, migration, invasion, and epithelial mesenchymal transition of gastric cancer cells by interacting with Pkmyt1 protein kinase.Cell. Signal.20195917118110.1016/j.cellsig.2019.04.00230953699
    [Google Scholar]
  27. MuellerP.R. ColemanT.R. KumagaiA. DunphyW.G. Myt1: A membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15.Science19952705233869010.1126/science.270.5233.867569953
    [Google Scholar]
  28. ElbækC.R. PetrosiusV. SørensenC.S. WEE1 kinase limits CDK activities to safeguard DNA replication and mitotic entry.Mutat. Res.2020819-82011169410.1016/j.mrfmmm.2020.11169432120135
    [Google Scholar]
  29. Ghelli Luserna di RoràA. CerchioneC. MartinelliG. SimonettiG. A WEE1 family business: Regulation of mitosis, cancer progression, and therapeutic target.J. Hematol. Oncol.202013112610.1186/s13045‑020‑00959‑232958072
    [Google Scholar]
  30. NgC.K.Y. DazertE. BoldanovaT. Coto-LlerenaM. NuciforoS. ErcanC. SuslovA. MeierM.A. BockT. SchmidtA. KettererS. WangX. WielandS. MatterM.S. ColombiM. PiscuoglioS. TerraccianoL.M. HallM.N. HeimM.H. Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages.Nat. Commun.2022131243610.1038/s41467‑022‑29960‑835508466
    [Google Scholar]
  31. SzychowskiJ. PappR. DietrichE. LiuB. ValléeF. LeclaireM.E. FourtounisJ. MartinoG. PerrymanA.L. PauV. YinS.Y. MaderP. RoulstonA. TruchonJ.F. MarshallC.G. DialloM. DuffyN.M. StoccoR. GodboutC. Bonneau-FortinA. KryczkaR. BhaskaranV. MaoD. OrlickyS. BeaulieuP. TurcotteP. KurinovI. SicheriF. MamaneY. GallantM. BlackW.C. Discovery of an orally bioavailable and selective PKMYT1 inhibitor, RP-6306.J. Med. Chem.20226515102511028410.1021/acs.jmedchem.2c0055235880755
    [Google Scholar]
  32. KongA. MehannaH. WEE1 inhibitor: Clinical development.Curr. Oncol. Rep.202123910710.1007/s11912‑021‑01098‑834269904
    [Google Scholar]
  33. Ghelli Luserna Di RoràA. BeeharryN. ImbrognoE. FerrariA. RobustelliV. RighiS. SabattiniE. Verga FalzacappaM.V. RonchiniC. TestoniN. BaldazziC. PapayannidisC. AbbenanteM.C. MarconiG. PaoliniS. ParisiS. SartorC. FontanaM.C. De MatteisS. IacobucciI. PelicciP.G. CavoM. YenT.J. MartinelliG. Targeting WEE1 to enhance conventional therapies for acute lymphoblastic leukemia.J. Hematol. Oncol.20181119910.1186/s13045‑018‑0641‑130068368
    [Google Scholar]
  34. YinY. ShenQ. TaoR. ChangW. LiR. XieG. LiuW. ZhangP. TaoK. Wee1 inhibition can suppress tumor proliferation and sensitize p53 mutant colonic cancer cells to the anticancer effect of irinotecan.Mol. Med. Rep.20181723344334929257266
    [Google Scholar]
  35. ZhuJ.Y. CuellarR.A. BerndtN. LeeH.E. OlesenS.H. MartinM.P. JensenJ.T. GeorgG.I. SchönbrunnE. Structural basis of wee kinases functionality and inactivation by diverse small molecule inhibitors.J. Med. Chem.201760187863787510.1021/acs.jmedchem.7b0099628792760
    [Google Scholar]
  36. QiW. XieC. LiC. CaldwellJ.T. EdwardsH. TaubJ.W. WangY. LinH. GeY. CHK1 plays a critical role in the anti-leukemic activity of the wee1 inhibitor MK-1775 in acute myeloid leukemia cells.J. Hematol. Oncol.2014715310.1186/s13045‑014‑0053‑925084614
    [Google Scholar]
  37. RestelliV. ChilàR. LupiM. RinaldiA. KweeI. BertoniF. DamiaG. CarrassaL. Characterization of a mantle cell lymphoma cell line resistant to the Chk1 inhibitor PF-00477736.Oncotarget2015635372293724010.18632/oncotarget.595426439697
    [Google Scholar]
  38. YoungL.A. O’ConnorL.O. de RentyC. Veldman-JonesM.H. DorvalT. WilsonZ. JonesD.R. LawsonD. OdedraR. Maya-MendozaA. ReimerC. BartekJ. LauA. O’ConnorM.J. Differential activity of ATR and WEE1 inhibitors in a highly sensitive subpopulation of DLBCL linked to replication stress.Cancer Res.201979143762377510.1158/0008‑5472.CAN‑18‑248031123088
    [Google Scholar]
  39. OzaA.M. Estevez-DizM. GrischkeE.M. HallM. MarméF. ProvencherD. UyarD. WeberpalsJ.I. WenhamR.M. LaingN. TracyM. FreshwaterT. LeeM.A. LiuJ. QiuJ. RoseS. RubinE.H. MooreK. A Biomarker-enriched, randomized Phase II Trial of Adavosertib (AZD1775) plus paclitaxel and carboplatin for women with platinum-sensitive TP53 -mutant Ovarian Cancer.Clin. Cancer Res.202026184767477610.1158/1078‑0432.CCR‑20‑021932611648
    [Google Scholar]
  40. FriedmanJ. MorisadaM. SunL. MooreE.C. PadgetM. HodgeJ.W. SchlomJ. GameiroS.R. AllenC.T. Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies.J. Immunother. Cancer2018615910.1186/s40425‑018‑0374‑229925431
    [Google Scholar]
  41. GalloD. YoungJ.T.F. FourtounisJ. MartinoG. Álvarez-QuilónA. BernierC. DuffyN.M. PappR. RoulstonA. StoccoR. SzychowskiJ. VelosoA. AlamH. BaruahP.S. FortinA.B. BowlanJ. ChaudharyN. DesjardinsJ. DietrichE. FournierS. Fugère-DesjardinsC. Goullet de RugyT. LeclaireM.E. LiuB. BhaskaranV. MamaneY. MeloH. NicolasO. SinghaniaA. SzilardR.K. TkáčJ. YinS.Y. MorrisS.J. ZindaM. MarshallC.G. DurocherD. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition.Nature2022604790774975610.1038/s41586‑022‑04638‑935444283
    [Google Scholar]
  42. ChouT.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies.Pharmacol. Rev.200658362168110.1124/pr.58.3.1016968952
    [Google Scholar]
  43. MartoranaF. Da SilvaL.A. SessaC. ColomboI. Everything comes with a price: The toxicity profile of DNA-damage response targeting agents.Cancers (Basel)202214495310.3390/cancers1404095335205700
    [Google Scholar]
  44. ToledoC.M. DingY. HoellerbauerP. DavisR.J. BasomR. GirardE.J. LeeE. CorrinP. HartT. BolouriH. DavisonJ. ZhangQ. HardcastleJ. AronowB.J. PlaisierC.L. BaligaN.S. MoffatJ. LinQ. LiX.N. NamD.H. LeeJ. PollardS.M. ZhuJ. DelrowJ.J. ClurmanB.E. OlsonJ.M. PaddisonP.J. Genome-wide CRISPR-Cas9 screens reveal loss of redundancy between PKMYT1 and WEE1 in glioblastoma stem-like cells.Cell Rep.201513112425243910.1016/j.celrep.2015.11.02126673326
    [Google Scholar]
  45. BenadaJ. BulanovaD. AzzoniV. PetrosiusV. GhazanfarS. WennerbergK. Synthetic lethal interaction between WEE1 and PKMYT1 is a target for multiple low-dose treatment of high-grade serous ovarian carcinoma.NAR Cancer202353zcad029
    [Google Scholar]
  46. TangW. ChenZ. ZhangW. ChengY. ZhangB. WuF. WangQ. WangS. RongD. ReiterF.P. De ToniE.N. WangX. The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects.Signal Transduct. Target. Ther.2020518710.1038/s41392‑020‑0187‑x32532960
    [Google Scholar]
  47. NiuM. YiM. LiN. WuK. WuK. Advances of targeted therapy for hepatocellular carcinoma.Front. Oncol.20211171989610.3389/fonc.2021.71989634381735
    [Google Scholar]
  48. AbduS. JuaidN. AminA. MoulayM. MiledN. Therapeutic effects of crocin alone or in combination with sorafenib against hepatocellular carcinoma: In vivo & in vitro insights.Antioxidants2022119164510.3390/antiox1109164536139719
    [Google Scholar]
  49. AwadB. HamzaA.A. Al-MaktoumA. Al-SalamS. AminA. Combining crocin and sorafenib improves their tumor-inhibiting effects in a rat model of diethylnitrosamine-induced cirrhotic-hepatocellular carcinoma.Cancers (Basel)20231516406310.3390/cancers1516406337627094
    [Google Scholar]
  50. AbduS. JuaidN. AminA. MoulayM. MiledN. Effects of sorafenib and quercetin alone or in combination in treating hepatocellular carcinoma: In vitro and in vivo approaches.Molecules20222722808210.3390/molecules2722808236432184
    [Google Scholar]
  51. GaoQ. ZhuH. DongL. ShiW. ChenR. SongZ. HuangC. LiJ. DongX. ZhouY. LiuQ. MaL. WangX. ZhouJ. LiuY. BojaE. RoblesA.I. MaW. WangP. LiY. DingL. WenB. ZhangB. RodriguezH. GaoD. ZhouH. FanJ. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma.Cell20191795124010.1016/j.cell.2019.10.03831730861
    [Google Scholar]
  52. WilliamsA.B. SchumacherB. p53 in the DNA-damage-repair process.Cold Spring Harb. Perspect. Med.201665a02607010.1101/cshperspect.a02607027048304
    [Google Scholar]
  53. MillsC.C. KolbE. SampsonV.B. Development of chemotherapy with cell-cycle inhibitors for adult and pediatric cancer therapy.Cancer Res.201878232032510.1158/0008‑5472.CAN‑17‑278229311160
    [Google Scholar]
  54. CetinM.H. RieckmannT. HofferK. RiepenB. ChristiansenS. GatzemeierF. FeyerabendS. SchoofM. SchüllerU. PetersenC. MynarekM. RothkammK. KriegsM. StruveN. G2 checkpoint targeting via wee1 inhibition radiosensitizes EGFRvIII-positive glioblastoma cells.Radiat. Oncol.20231811910.1186/s13014‑023‑02210‑x36709315
    [Google Scholar]
  55. SeoH.R. NamA.R. BangJ.H. OhK.S. KimJ.M. YoonJ. KimT.Y. OhD.Y. Inhibition of WEE1 potentiates sensitivity to PARP inhibitor in biliary tract cancer.Cancer Res. Treat.202254254155310.4143/crt.2021.47334352995
    [Google Scholar]
  56. Nguyen VuT.H. KikuchiO. OhashiS. SaitoT. IdaT. NakaiY. CaoY. YamamotoY. KondoY. MitaniY. KataokaS. KondoT. KatadaC. YamadaA. MatsubaraJ. MutoM. Combination therapy with WEE1 inhibition and trifluridine/tipiracil against esophageal squamous cell carcinoma.Cancer Sci.2023114124664467610.1111/cas.1596637724648
    [Google Scholar]
  57. ChenD. HongR. CaoY. WuQ. WangY. ChenJ. LiJ. ZhangW. ZhanQ. Combined Wee1 and EGFR inhibition reveals synergistic antitumor effect in esophageal squamous cell carcinoma.Carcinogenesis202344645146210.1093/carcin/bgad03837279554
    [Google Scholar]
  58. ChenJ. JiaX. LiZ. SongW. JinC. ZhouM. XieH. ZhengS. SongP. Targeting WEE1 by adavosertib inhibits the malignant phenotypes of hepatocellular carcinoma.Biochem. Pharmacol.202118811449410.1016/j.bcp.2021.11449433684390
    [Google Scholar]
  59. SandA. PiacsekM. DonohoeD.L. DuffinA.T. RiddellG.T. SunC. TangM. RovinR.A. TjoeJ.A. YinJ. WEE1 inhibitor, AZD1775, overcomes trastuzumab resistance by targeting cancer stem-like properties in HER2-positive breast cancer.Cancer Lett.202047211913110.1016/j.canlet.2019.12.02331866466
    [Google Scholar]
  60. JinM.H. NamA.R. ParkJ.E. BangJ.H. BangY.J. OhD.Y. Therapeutic co-targeting of WEE1 and ATM downregulates PD-L1 expression in pancreatic cancer.Cancer Res. Treat.202052114916610.4143/crt.2019.18331291716
    [Google Scholar]
  61. SunQ.S. LuoM. ZhaoH.M. SunH. Overexpression of PKMYT1 indicates the poor prognosis and enhances proliferation and tumorigenesis in non-small cell lung cancer via activation of Notch signal pathway.Eur. Rev. Med. Pharmacol. Sci.201923104210421931173292
    [Google Scholar]
  62. ZhangQ. ZhaoX. ZhangC. WangW. LiF. LiuD. WuK. ZhuD. LiuS. ShenC. YuanX. ZhangK. YangY. ZhangY. ZhaoS. Overexpressed PKMYT1 promotes tumor progression and associates with poor survival in esophageal squamous cell carcinoma.Cancer Manag. Res.2019117813782410.2147/CMAR.S21424331695486
    [Google Scholar]
  63. WuF. TuC. ZhangK. CheH. LinQ. LiZ. ZhouQ. TangB. YangY. ChenM. ShaoC. Knockdown of PKMYT1 is associated with autophagy inhibition and apoptosis induction and suppresses tumor progression in hepatocellular carcinoma.Biochem. Biophys. Res. Commun.202364017318210.1016/j.bbrc.2022.11.08436512849
    [Google Scholar]
  64. LongH. LiuJ. YuY. QiaoQ. LiG. PKMYT1 as a potential target to improve the radiosensitivity of lung adenocarcinoma.Front. Genet.20201137610.3389/fgene.2020.0037632411179
    [Google Scholar]
  65. ZhangQ.Y. ChenX.Q. LiuX.C. WuD.M. PKMYT1 promotes gastric cancer cell proliferation and apoptosis resistance.OncoTargets Ther.2020137747775710.2147/OTT.S25574632801781
    [Google Scholar]
  66. LiuL. WuJ. WangS. LuoX. DuY. HuangD. GuD. ZhangF. PKMYT1 promoted the growth and motility of hepatocellular carcinoma cells by activating beta-catenin/TCF signaling.Exp. Cell Res.2017358220921610.1016/j.yexcr.2017.06.01428648520
    [Google Scholar]
  67. AsquithC.R.M. LaitinenT. EastM.P. PKMYT1: A forgotten member of the WEE1 family.Nat. Rev. Drug Discov.202019315710.1038/d41573‑019‑00202‑932127662
    [Google Scholar]
  68. LewisC.W. BukhariA.B. XiaoE.J. ChoiW.S. SmithJ.D. HomolaE. MackeyJ.R. CampbellS.D. GamperA.M. ChanG.K. Upregulation of Myt1 promotes acquired resistance of cancer cells to wee1 inhibition.Cancer Res.201979235971598510.1158/0008‑5472.CAN‑19‑196131594837
    [Google Scholar]
  69. ChowJ.P.H. PoonR.Y.C. The CDK1 inhibitory kinase MYT1 in DNA damage checkpoint recovery.Oncogene201332404778478810.1038/onc.2012.50423146904
    [Google Scholar]
  70. NiuL. LiuL. YangS. RenJ. LaiP.B.S. ChenG.G. New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies.Biochim. Biophys. Acta Rev. Cancer20171868256457010.1016/j.bbcan.2017.10.00229054475
    [Google Scholar]
  71. DahiyaM. DurejaH. Sorafenib for hepatocellular carcinoma: Potential molecular targets and resistance mechanisms.J. Chemother.202234528630110.1080/1120009X.2021.195520234291704
    [Google Scholar]
  72. SunT. LiuH. MingL. Multiple roles of autophagy in the sorafenib resistance of hepatocellular carcinoma.Cell. Physiol. Biochem.201744271672710.1159/00048528529169150
    [Google Scholar]
  73. WuS. WangS. GaoF. LiL. ZhengS. YungW.K.A. KoulD. Activation of WEE1 confers resistance to PI3K inhibition in glioblastoma.Neuro-oncol.2018201789110.1093/neuonc/nox12829016926
    [Google Scholar]
  74. LiJ. PanC. BoeseA.C. KangJ. UmanoA.D. MaglioccaK.R. YangW. ZhangY. LonialS. JinL. KangS. DGKA provides platinum resistance in ovarian cancer through activation of c-JUN–WEE1 signaling.Clin. Cancer Res.202026143843385510.1158/1078‑0432.CCR‑19‑379032341033
    [Google Scholar]
  75. WangS. LiuX. ZhouT. LiJ. LinY. ZhouA. HuangJ. ZhaoJ. CaiJ. CaiX. HuangY. LiX. PKMYT1 inhibits lung adenocarcinoma progression by abrogating AKT1 activity.Cell Oncol. (Dordr.)202346119520910.1007/s13402‑022‑00744‑y36350496
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096298370240520093003
Loading
/content/journals/ccdt/10.2174/0115680096298370240520093003
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): adavosertib; HCC; hepatocellular carcinoma; RP-6306; Sorafenib; WEE family kinase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test