Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Cisplatin (DDP) is a commonly used chemotherapy agent. However, its resistance to the drug is a major challenge in its clinical application. Earlier research has suggested a connection between HEATR1 and chemoresistance in cancer. However, additional investigation is needed to better understand its involvement in resistance to DDP. In this study, we aimed to determine the regulatory effect of HEATR1 on the resistance of cisplatin in NSCLC.

Methods

We collected specimens of both DDP-resistant and non-resistant NSCLC to examine the expression of HEATR1. Additionally, we established cisplatin-resistant cells of NSCLC using the A549 cell line. Cell ability was examined by CCK-8 assay. Cell apoptosis and lipid ROS were examined by flow cytometry. The expressions of HEATR1, p53, SAT1, and ALOX15 were determined by qRT-PCR and Western blot. The tumor xenograft experiment was conducted to assess the impact of silencing HEATR1 on cisplatin resistance in NSCLC.

Results

The expression levels of HEATR1 were found to be significantly elevated in DDP-resistant tissues and cells of NSCLC as compared to non-resistant counterparts. Conversely, the expression levels of p53, SAT1, and ALOX15 were observed to be reduced in DDP-resistant cells. Through the inhibition of HEATR1, the proliferation of DDP-resistant cells was significantly suppressed, while the generation of lipid ROS was enhanced. This effect was achieved by activating ferroptosis and the p53/SAT1/ALOX15 pathway, as demonstrated both and . Conversely, the overexpression of HEATR1 exhibited opposite effects. Furthermore, the silencing of p53 and ALOX15 reversed the oncogenic effects of HEATR1 and inhibited ferroptosis in DDP-resistant NSCLC cells, suggesting the involvement of p53 and ALOX15 in HEATR1-mediated DDP resistance.

Conclusion

Finally, the findings revealed that HEATR1 silencing reduced DDP resistance in NSCLC by inducing ferroptosis the p53/SAT1/ALOX15 axis. HEATR1 might become a potential target for overcoming DDP resistance in NSCLC treatment.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096284068240506095417
2024-05-30
2025-05-07
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. ThaiA.A. SolomonB.J. SequistL.V. GainorJ.F. HeistR.S. Lung cancer.Lancet20213981029953555410.1016/S0140‑6736(21)00312‑334273294
    [Google Scholar]
  3. NowakA.K. ChanskyK. RiceD.C. PassH.I. KindlerH.L. ShemanskiL. BilléA. RintoulR.C. BatirelH.F. ThomasC.F. FriedbergJ. CedresS. de PerrotM. RuschV.W. GoldstrawP. Rami-PortaR. AsamuraH. BallD. BeerD. BeyrutiR. BolejackV. ChanskyK. CrowleyJ. DetterbeckF. EberhardtW.E.E. EdwardsJ. Galateau-SalléF. GirouxD. GleesonF. GroomeP. HuangJ. KennedyC. KimJ. KimY.T. KingsburyL. KondoH. KrasnikM. KubotaK. LerutA. LyonsG. MarinoM. MaromE.M. van MeerbeeckJ. MitchellA. NakanoT. NicholsonA.G. NowakA. PeakeM. RiceT. RosenzweigK. RuffiniE. RuschV. SaijoN. Van SchilP. SculierJ-P. ShemanskiL. StrattonK. SuzukiK. TachimoriY. ThomasC.F.Jr TravisW. TsaoM.S. TurrisiA. VansteenkisteJ. WatanabeH. WuY-L. BaasP. ErasmusJ. HasegawaS. InaiK. KernstineK. KindlerH. KrugL. NackaertsK. PassH. RiceD. FalksonC. FilossoP.L. GiacconeG. KondoK. LucchiM. OkumuraM. BlackstoneE. AsamuraH. BatirelH. BilleA. PastorinoU. CallS. CangirA. CedresS. FriedbergJ. Galateau-SalleF. HasagawaS. KernstineK. KindlerH. McCaughanB. NakanoT. NowakA. OzturkC.A. PassH. de PerrotM. ReaF. RiceD. RintoulR. RuffiniE. RuschV. SpaggiariL. GalettaD. SyrigosK. ThomasC. van MeerbeeckJ. NafteuxP. VansteenkisteJ. WederW. OptizI. YoshimuraM. Staging and Prognostic Factors Committee, Advisory Boards and Participating Institutions The iaslc mesothelioma staging project: Proposals for revisions of the t descriptors in the forthcoming eighth edition of the TNM classification for pleural mesothelioma.J. Thorac. Oncol.201611122089209910.1016/j.jtho.2016.08.14727687963
    [Google Scholar]
  4. ChenP. LiuY. WenY. ZhouC. Non‐small cell lung cancer in China.Cancer Commun.2022421093797010.1002/cac2.1235936075878
    [Google Scholar]
  5. GalluzziL. VitaleI. MichelsJ. BrennerC. SzabadkaiG. Harel-BellanA. CastedoM. KroemerG. Systems biology of cisplatin resistance: Past, present and future.Cell Death Dis.201455e125710.1038/cddis.2013.42824874729
    [Google Scholar]
  6. KonoshenkoM. LansukhayY. KrasilnikovS. LaktionovP. MicroRNAs as predictors of lung-cancer resistance and sensitivity to cisplatin.Int. J. Mol. Sci.20222314759410.3390/ijms2314759435886942
    [Google Scholar]
  7. MiksadR.A. GönenM. LynchT.J. RobertsT.G.Jr Interpreting trial results in light of conflicting evidence: a Bayesian analysis of adjuvant chemotherapy for non-small-cell lung cancer.J. Clin. Oncol.200927132245225210.1200/JCO.2008.16.258619307513
    [Google Scholar]
  8. GalluzziL. SenovillaL. VitaleI. MichelsJ. MartinsI. KeppO. CastedoM. KroemerG. Molecular mechanisms of cisplatin resistance.Oncogene201231151869188310.1038/onc.2011.38421892204
    [Google Scholar]
  9. QinY. LiuH. LiM. ZhaiD. TangY. YangL. QiaoK. YangJ. ZhongW. ZhangQ. LiuY. YangG. SunT. YangC. Salidroside improves the hypoxic tumor microenvironment and reverses the drug resistance of platinum drugs via HIF-1α signaling pathway.EBioMedicine201838253610.1016/j.ebiom.2018.10.06930396856
    [Google Scholar]
  10. ZhangC. XuC. GaoX. YaoQ. Platinum-based drugs for cancer therapy and anti-tumor strategies.Theranostics20221252115213210.7150/thno.6942435265202
    [Google Scholar]
  11. AmableL. Cisplatin resistance and opportunities for precision medicine.Pharmacol. Res.2016106273610.1016/j.phrs.2016.01.00126804248
    [Google Scholar]
  12. BerthelootD. LatzE. FranklinB.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death.Cell. Mol. Immunol.20211851106112110.1038/s41423‑020‑00630‑333785842
    [Google Scholar]
  13. MouY. WangJ. WuJ. HeD. ZhangC. DuanC. LiB. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer.J. Hematol. Oncol.20191213410.1186/s13045‑019‑0720‑y30925886
    [Google Scholar]
  14. ChenH. WangL. LiuJ. WanZ. ZhouL. LiaoH. WanR. LncRNA ITGB2-AS1 promotes cisplatin resistance of non-small cell lung cancer by inhibiting ferroptosis via activating the FOSL2/NAMPT axis.Cancer Biol. Ther.2023241222337710.1080/15384047.2023.222337737370246
    [Google Scholar]
  15. LeiG. MaoC. YanY. ZhuangL. GanB. Ferroptosis, radiotherapy, and combination therapeutic strategies.Protein Cell2021121183685710.1007/s13238‑021‑00841‑y33891303
    [Google Scholar]
  16. LeiG. ZhuangL. GanB. Targeting ferroptosis as a vulnerability in cancer.Nat. Rev. Cancer202222738139610.1038/s41568‑022‑00459‑035338310
    [Google Scholar]
  17. RodriguezR. SchreiberS.L. ConradM. Persister cancer cells: Iron addiction and vulnerability to ferroptosis.Mol. Cell202282472874010.1016/j.molcel.2021.12.00134965379
    [Google Scholar]
  18. ZhaoL. ZhouX. XieF. ZhangL. YanH. HuangJ. ZhangC. ZhouF. ChenJ. ZhangL. Ferroptosis in cancer and cancer immunotherapy.Cancer Commun.20224228811610.1002/cac2.1225035133083
    [Google Scholar]
  19. TangD. ChenX. KangR. KroemerG. Ferroptosis: Molecular mechanisms and health implications.Cell Res.202131210712510.1038/s41422‑020‑00441‑133268902
    [Google Scholar]
  20. LiH. YangP. WangJ. ZhangJ. MaQ. JiangY. WuY. HanT. XiangD. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk.J. Hematol. Oncol.2022151210.1186/s13045‑021‑01223‑x34991659
    [Google Scholar]
  21. LiuC. LiS. TangY. Mechanism of cisplatin resistance in gastric cancer and associated microRNAs.Cancer Chemother. Pharmacol.202392532934010.1007/s00280‑023‑04572‑137535106
    [Google Scholar]
  22. WangY. WangY. QinZ. CaiS. YuL. HuH. ZengS. The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer.Expert Opin. Drug Metab. Toxicol.202117329130610.1080/17425255.2021.188713933544643
    [Google Scholar]
  23. FengX. LiuH. ZhangZ. GuY. QiuH. HeZ. Annexin A2 contributes to cisplatin resistance by activation of JNK-p53 pathway in non-small cell lung cancer cells.J. Exp. Clin. Cancer Res.201736112310.1186/s13046‑017‑0594‑128886730
    [Google Scholar]
  24. ZhangX. QiZ. YinH. YangG. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1α-mediated regulation of apoptosis and autophagy.Theranostics2019941096111410.7150/thno.2967330867818
    [Google Scholar]
  25. ZhaoR. LiuX. ZhangL. YangH. ZhangQ. Current progress of research on neurodegenerative diseases of salvianolic Acid B.Oxid. Med. Cell. Longev.201920191910.1155/2019/328126031341529
    [Google Scholar]
  26. OuY. WangS.J. LiD. ChuB. GuW. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.Proc. Natl. Acad. Sci.201611344E6806E681210.1073/pnas.160715211327698118
    [Google Scholar]
  27. KangR. KroemerG. TangD. The tumor suppressor protein p53 and the ferroptosis network.Free Radic. Biol. Med.201913316216810.1016/j.freeradbiomed.2018.05.07429800655
    [Google Scholar]
  28. YoshimuraS.H. HiranoT. HEAT repeats versatile arrays of amphiphilic helices working in crowded environments?J. Cell Sci.201612921jcs.18571010.1242/jcs.18571027802131
    [Google Scholar]
  29. WuZ.B. QiuC. ZhangA.L. CaiL. LinS.J. YaoY. TangQ.S. XuM. HuaW. ChuY.W. MaoY. ZhuJ.H. XuJ. ZhouL.F. Glioma-associated antigen HEATR1 induces functional cytotoxic T lymphocytes in patients with glioma.J. Immunol. Res.2014201411210.1155/2014/13149425126583
    [Google Scholar]
  30. LiuT. FangY. ZhangH. DengM. GaoB. NiuN. YuJ. LeeS. KimJ. QinB. XieF. EvansD. WangL. LouW. LouZ. HEATR1 negatively regulates Akt to help sensitize pancreatic cancer cells to chemotherapy.Cancer Res.201676357258110.1158/0008‑5472.CAN‑15‑067126676747
    [Google Scholar]
  31. YangX.M. WangX.Q. HuL.P. FengM.X. ZhouY.Q. LiD.X. LiJ. MiaoX.C. ZhangY.L. YaoL.L. NieH.Z. HuangS. XiaQ. ZhangX.L. JiangS.H. ZhangZ.G. Nucleolar HEAT repeat containing 1 up-regulated by the mechanistic target of rapamycin complex 1 signaling promotes hepatocellular carcinoma growth by dominating ribosome biogenesis and proteome homeostasis.Gastroenterology2023165362964610.1053/j.gastro.2023.05.02937247644
    [Google Scholar]
  32. ZhaoJ. ZhuY. FuQ. ZhuY. ZhaoG. HEATR1 promotes proliferation in gastric cancer in vitro and in vivo.Acta Biochim. Biophys. Sin.20205291030103910.1093/abbs/gmaa07732634230
    [Google Scholar]
  33. NakamuraA. KakiharaY. FunayamaA. HagaK. MikamiT. KobayashiD. YoshidaY. IzumiK. KobayashiT. SaekiM. HEATR1, a novel interactor of Pontin/Reptin, stabilizes Pontin/Reptin and promotes cell proliferation of oral squamous cell carcinoma.Biochem. Biophys. Res. Commun.202155755729430110.1016/j.bbrc.2021.04.02133894417
    [Google Scholar]
  34. HeS. MaX. YeY. ZhangM. ZhuangJ. SongY. XiaW. HEATR1 modulates cell survival in non-small cell lung cancer via activation of the p53/PUMA signaling pathway.OncoTargets Ther.2019124001401110.2147/OTT.S19582631190896
    [Google Scholar]
  35. LiX. WangT.X. HuangX. LiY. SunT. ZangS. GuanK.L. XiongY. LiuJ. YuanH.X. Targeting ferroptosis alleviates methionine‐choline deficient (MCD)‐diet induced NASH by suppressing liver lipotoxicity.Liver Int.20204061378139410.1111/liv.1442832145145
    [Google Scholar]
  36. XieH. YaoJ. WangY. NiB. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis.Drug Deliv.20222911257127110.1080/10717544.2022.205761735467477
    [Google Scholar]
  37. ZhuC. XieY. LiQ. ZhangZ. ChenJ. ZhangK. XiaX. YuD. ChenD. YuZ. ChenJ. CPSF6-mediated XBP1 3’UTR shortening attenuates cisplatin-induced ER stress and elevates chemo-resistance in lung adenocarcinoma.Drug Resist. Updat.20236810093310.1016/j.drup.2023.10093336821972
    [Google Scholar]
  38. LiuJ. ZhangC. WangJ. HuW. FengZ. The regulation of ferroptosis by tumor suppressor p53 and its pathway.Int. J. Mol. Sci.20202121838710.3390/ijms2121838733182266
    [Google Scholar]
  39. LiangD. MinikesA.M. JiangX. Ferroptosis at the intersection of lipid metabolism and cellular signaling.Mol. Cell202282122215222710.1016/j.molcel.2022.03.02235390277
    [Google Scholar]
  40. ZhengD. LiuJ. PiaoH. ZhuZ. WeiR. LiuK. ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis.Front. Immunol.202213103924110.3389/fimmu.2022.103924136389728
    [Google Scholar]
  41. JiangL. KonN. LiT. WangS.J. SuT. HibshooshH. BaerR. GuW. Ferroptosis as a p53-mediated activity during tumour suppression.Nature20155207545576210.1038/nature1434425799988
    [Google Scholar]
  42. LiuY. GuW. p53 in ferroptosis regulation: The new weapon for the old guardian.Cell Death Differ.202229589591010.1038/s41418‑022‑00943‑y35087226
    [Google Scholar]
  43. JiangX. StockwellB.R. ConradM. Ferroptosis: Mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑833495651
    [Google Scholar]
  44. De FeudisP. DebernardisD. BeccagliaP. ValentiM. Graniela SiréE. ArzaniD. StanzioneS. ParodiS. D’IncalciM. RussoP. BrogginiM. DDP-induced cytotoxicity is not influenced by p53 in nine human ovarian cancer cell lines with different p53 status.Br. J. Cancer199776447447910.1038/bjc.1997.4129275024
    [Google Scholar]
  45. LiD. LuX. XuG. LiuS. GongZ. LuF. XiaX. JiangJ. WangH. ZouF. MaX. Dihydroorotate dehydrogenase regulates ferroptosis in neurons after spinal cord injury via the P53‐ALOX15 signaling pathway.CNS Neurosci. Ther.20232971923193910.1111/cns.1415036942513
    [Google Scholar]
  46. DuY. TaylorC.G. AukemaH.M. ZahradkaP. PD146176 affects human EA.hy926 endothelial cell function by differentially modulating oxylipin production of LOX, COX and CYP epoxygenase.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20221867715915610.1016/j.bbalip.2022.15915635367352
    [Google Scholar]
  47. AbrialC. Grassin-DelyleS. SalvatorH. BrolloM. NalineE. DevillierP. 15‐Lipoxygenases regulate the production of chemokines in human lung macrophages.Br. J. Pharmacol.2015172174319433010.1111/bph.1321026040494
    [Google Scholar]
  48. KatoI. KasukabeT. KumakuraS. Menin‑MLL inhibitors induce ferroptosis and enhance the anti‑proliferative activity of auranofin in several types of cancer cells.Int. J. Oncol.20205741057107110.3892/ijo.2020.511632945449
    [Google Scholar]
  49. WangM. HerbstR.S. BoshoffC. Toward personalized treatment approaches for non-small-cell lung cancer.Nat. Med.20212781345135610.1038/s41591‑021‑01450‑234385702
    [Google Scholar]
  50. PassaroA. BrahmerJ. AntoniaS. MokT. PetersS. Managing resistance to immune checkpoint inhibitors in lung cancer: Treatment and novel strategies.J. Clin. Oncol.202240659861010.1200/JCO.21.0184534985992
    [Google Scholar]
  51. WuJ. LinZ. Non-small cell lung cancer targeted therapy: Drugs and mechanisms of drug resistance.Int. J. Mol. Sci.202223231505610.3390/ijms23231505636499382
    [Google Scholar]
  52. GuoH. ZhangJ. QinC. YanH. LiuT. HuH. TangS. TangS. ZhouH. Biomarker-targeted therapies in non–small cell lung cancer: Current status and perspectives.Cells20221120320010.3390/cells1120320036291069
    [Google Scholar]
  53. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: Past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑232015325
    [Google Scholar]
  54. GaoW. WangX. ZhouY. WangX. YuY. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy.Signal Transduct. Target. Ther.20227119610.1038/s41392‑022‑01046‑335725836
    [Google Scholar]
  55. LiangC. ZhangX. YangM. DongX. Recent progress in ferroptosis inducers for cancer therapy.Adv. Mater.20193151190419710.1002/adma.20190419731595562
    [Google Scholar]
  56. LiD. WangY. DongC. ChenT. DongA. RenJ. LiW. ShuG. YangJ. ShenW. QinL. HuL. ZhouJ. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1.Oncogene2023422839810.1038/s41388‑022‑02537‑x36369321
    [Google Scholar]
  57. YangF. XiaoY. DingJ.H. JinX. MaD. LiD.Q. ShiJ.X. HuangW. WangY.P. JiangY.Z. ShaoZ.M. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy.Cell Metab.202335184100.e810.1016/j.cmet.2022.09.02136257316
    [Google Scholar]
  58. ZhaoW. ZhangX. ChenY. ShaoY. FengY. Downregulation of TRIM8 protects neurons from oxygen–glucose deprivation/re-oxygenation-induced injury through reinforcement of the AMPK/Nrf2/ARE antioxidant signaling pathway.Brain Res.2020172814659010.1016/j.brainres.2019.14659031862654
    [Google Scholar]
  59. ZhouY. WangK. ZhouY. LiT. YangM. WangR. ChenY. CaoM. HuR. HEATR1 deficiency promotes pancreatic cancer proliferation and gemcitabine resistance by up-regulating Nrf2 signaling.Redox Biol.20202910139010.1016/j.redox.2019.10139031785531
    [Google Scholar]
  60. FangY. HanX. LiJ. KuangT. LouW. HEATR1 deficiency promotes chemoresistance via upregulating ZNF185 and downregulating SMAD4 in pancreatic cancer.J. Oncol.2020202011010.1155/2020/318159632565799
    [Google Scholar]
  61. ChenX. KangR. KroemerG. TangD. Organelle-specific regulation of ferroptosis.Cell Death Differ.202128102843285610.1038/s41418‑021‑00859‑z34465893
    [Google Scholar]
  62. SunS. ShenJ. JiangJ. WangF. MinJ. Targeting ferroptosis opens new avenues for the development of novel therapeutics.Signal Transduct. Target. Ther.20238137210.1038/s41392‑023‑01606‑137735472
    [Google Scholar]
  63. YaoX. LiW. FangD. XiaoC. WuX. LiM. LuoZ. Emerging roles of energy metabolism in ferroptosis regulation of tumor cells.Adv. Sci.2021822210099710.1002/advs.20210099734632727
    [Google Scholar]
  64. XuH. YeD. RenM. ZhangH. BiF. Ferroptosis in the tumor microenvironment: Perspectives for immunotherapy.Trends Mol. Med.202127985686710.1016/j.molmed.2021.06.01434312075
    [Google Scholar]
  65. YuanH. PratteJ. GiardinaC. Ferroptosis and its potential as a therapeutic target.Biochem. Pharmacol.202118611448610.1016/j.bcp.2021.11448633631189
    [Google Scholar]
  66. LangX. GreenM.D. WangW. YuJ. ChoiJ.E. JiangL. LiaoP. ZhouJ. ZhangQ. DowA. SaripalliA.L. KryczekI. WeiS. SzeligaW. VatanL. StoneE.M. GeorgiouG. CieslikM. WahlD.R. MorganM.A. ChinnaiyanA.M. LawrenceT.S. ZouW. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11.Cancer Discov.20199121673168510.1158/2159‑8290.CD‑19‑033831554642
    [Google Scholar]
  67. WangY. ZhaoG. CondelloS. HuangH. CardenasH. TannerE.J. WeiJ. JiY. LiJ. TanY. DavuluriR.V. PeterM.E. ChengJ.X. MateiD. Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis.Cancer Res.202181238439910.1158/0008‑5472.CAN‑20‑148833172933
    [Google Scholar]
  68. FuJ. LiT. YangY. JiangL. WangW. FuL. ZhuY. HaoY. Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors.Biomaterials202126812053710.1016/j.biomaterials.2020.12053733260096
    [Google Scholar]
  69. LiuM.Y. LiH.M. WangX.Y. XiaR. LiX. MaY.J. WangM. ZhangH.S. TIGAR drives colorectal cancer ferroptosis resistance through ROS/AMPK/SCD1 pathway.Free Radic. Biol. Med.202218221923110.1016/j.freeradbiomed.2022.03.00235271998
    [Google Scholar]
  70. AnandhanA. DodsonM. ShakyaA. ChenJ. LiuP. WeiY. TanH. WangQ. JiangZ. YangK. GarciaJ.G.N. ChambersS.K. ChapmanE. OoiA. Yang-HartwichY. StockwellB.R. ZhangD.D. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8.Sci. Adv.202395eade958510.1126/sciadv.ade958536724221
    [Google Scholar]
  71. HuangJ. Current developments of targeting the p53 signaling pathway for cancer treatment.Pharmacol. Ther.202122010772010.1016/j.pharmthera.2020.10772033130194
    [Google Scholar]
  72. ChahatB.R. BhatiaR. KumarB. p53 as a potential target for treatment of cancer: A perspective on recent advancements in small molecules with structural insights and SAR studies.Eur. J. Med. Chem.202324711502010.1016/j.ejmech.2022.11502036543034
    [Google Scholar]
  73. DengL. LiaoL. ZhangY.L. HuS.Y. YangS.Y. MaX.Y. HuangM.Y. ZhangF.L. LiD.Q. MYC-driven U2SURP regulates alternative splicing of SAT1 to promote triple-negative breast cancer progression.Cancer Lett.202356021612410.1016/j.canlet.2023.21612436907504
    [Google Scholar]
  74. KanapathipillaiM. Treating p53 mutant aggregation-associated cancer.Cancers201810615410.3390/cancers1006015429789497
    [Google Scholar]
  75. KooN. SharmaA.K. NarayanS. Therapeutics targeting p53-MDM2 interaction to induce cancer cell death.Int. J. Mol. Sci.2022239500510.3390/ijms2309500535563397
    [Google Scholar]
  76. WanK. JiaM. ZhangH. LanY. WangS. ZhangK. WangZ. ZhuH. ZhengX. LuoY. PeiL. WuC. LiuY. LiM. Electroacupuncture alleviates neuropathic pain by suppressing ferroptosis in dorsal root ganglion via SAT1/ALOX15 signaling.Mol. Neurobiol.202360106121613210.1007/s12035‑023‑03463‑z37421564
    [Google Scholar]
  77. YangL JiangL SunX LiJ WangN LiuX YaoX ZhangC DengH WangS YangG. DEHP induces ferroptosis in testes via p38 α -lipid ROS circulation and destroys the BTB integrity.Food Chem Toxicol.202216411304610.1016/j.fct.2022.113046
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096284068240506095417
Loading
/content/journals/ccdt/10.2174/0115680096284068240506095417
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ALOX15 axis; DDP resistance; ferroptosis; HEATR1; NSCLC; p53; SAT1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test