Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Glioblastoma multiforme (GBM), the most prevalent form of central nervous system (CNS) cancer, stands as a highly aggressive glioma deemed virtually incurable according to the World Health Organization (WHO) standards, with survival rates typically falling between 6 to 18 months. Despite concerted efforts, advancements in survival rates have been elusive. Recent cutting-edge research has unveiled bionanocatalysts with 1% Pt, demonstrating unparalleled selectivity in cleaving C-C, C-N, and C-O bonds within DNA in malignant cells. The application of these nanoparticles has yielded promising outcomes.

Objective

The objective of this study is to employ bionanocatalysts for the treatment of Glioblastoma Multiforme (GBM) in a patient, followed by the evaluation of obtained tissues through electronic microscopy.

Methods

Bionanocatalysts were synthesized using established protocols. These catalysts were then surgically implanted into the GBM tissue through stereotaxic procedures. Subsequently, tissue samples were extracted from the patient and meticulously examined using Scanning Electron Microscopy (SEM).

Results and Discussion

Detailed examination of biopsies SEM unveiled a complex network of small capillaries branching from a central vessel, accompanied by a significant presence of solid carbonate formations. Remarkably, the patient subjected to this innovative approach exhibited a three-year extension in survival, highlighting the potential efficacy of bionanocatalysts in combating GBM and its metastases.

Conclusion

Bionanocatalysts demonstrate promise as a viable treatment option for severe cases of GBM. Additionally, the identification of solid calcium carbonate formations may serve as a diagnostic marker not only for GBM but also for other CNS pathologies.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096289012240311023133
2024-03-28
2025-01-18
Loading full text...

Full text loading...

References

  1. BergerT.R. WenP.Y. Lang-OrsiniM. ChukwuekeU.N. World health organization 2021 classification of central nervous system tumors and implications for therapy for adult-type gliomas.JAMA Oncol.20228101493150110.1001/jamaoncol.2022.284436006639
    [Google Scholar]
  2. SharmaA. GraberJ.J. Overview of prognostic factors in adult gliomas.Ann. Palliat. Med.202110186387410.21037/apm‑20‑64032787379
    [Google Scholar]
  3. MairM.J. GeurtsM. van den BentM.J. BerghoffA.S. A basic review on systemic treatment options in WHO grade II-III gliomas.Cancer Treat. Rev.20219210212410.1016/j.ctrv.2020.10212433227622
    [Google Scholar]
  4. Suarez-MeadeP. Marenco-HillembrandL. PrevattC. Murguia-FuentesR. MohamedA. AlsaeedT. LehrerE.J. BrighamT. Ruiz-GarciaH. SabsevitzD. MiddlebrooksE.H. BechtleP.S. Quinones-HinojosaA. ChaichanaK.L. Awake vs. asleep motor mapping for glioma resection: A systematic review and meta-analysis.Acta Neurochir.202016271709172010.1007/s00701‑020‑04357‑y32388682
    [Google Scholar]
  5. LouisD.N. PerryA. WesselingP. BratD.J. CreeI.A. Figarella-BrangerD. HawkinsC. NgH.K. PfisterS.M. ReifenbergerG. SoffiettiR. von DeimlingA. EllisonD.W. The 2021 WHO classification of tumors of the central nervous system: A summary.Neuro-oncol.20212381231125110.1093/neuonc/noab10634185076
    [Google Scholar]
  6. LiY. ZhangZ.X. HuangG.H. XiangY. YangL. PeiY.C. YangW. LvS.Q. A systematic review of multifocal and multicentric glioblastoma.J. Clin. Neurosci.202183717610.1016/j.jocn.2020.11.02533358091
    [Google Scholar]
  7. ŚledzińskaP. BebynM.G. FurtakJ. KowalewskiJ. LewandowskaM.A. Prognostic and predictive biomarkers in gliomas.Int. J. Mol. Sci.202122191037310.3390/ijms22191037334638714
    [Google Scholar]
  8. GrochansS. CybulskaA.M. SimińskaD. KorbeckiJ. KojderK. ChlubekD. Baranowska-BosiackaI. Epidemiology of glioblastoma multiforme–literature review.Cancers20221410241210.3390/cancers1410241235626018
    [Google Scholar]
  9. CzarnywojtekA. BorowskaM. DyrkaK. Van GoolS. Sawicka-GutajN. MoskalJ. KościńskiJ. GraczykP. HałasT. LewandowskaA.M. CzepczyńskiR. RuchałaM. Glioblastoma multiforme: The latest diagnostics and treatment techniques.Pharmacology2023108542343110.1159/00053131937459849
    [Google Scholar]
  10. KingJ.L. BenhabbourS.R. Glioblastoma multiforme—a look at the past and a glance at the future.Pharmaceutics2021137105310.3390/pharmaceutics1307105334371744
    [Google Scholar]
  11. WuW. KlockowJ.L. ZhangM. LafortuneF. ChangE. JinL. WuY. Daldrup-LinkH.E. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance.Pharmacol. Res.202117110578010.1016/j.phrs.2021.10578034302977
    [Google Scholar]
  12. LahT.T. NovakM. BreznikB. Brain malignancies: Glioblastoma and brain metastases.Semin. Cancer Biol.20206026227310.1016/j.semcancer.2019.10.01031654711
    [Google Scholar]
  13. JenaL. McErleanE. McCarthyH. Delivery across the blood-brain barrier: Nanomedicine for glioblastoma multiforme.Drug Deliv. Transl. Res.202010230431810.1007/s13346‑019‑00679‑231728942
    [Google Scholar]
  14. PanditR. ChenL. GötzJ. The blood-brain barrier: Physiology and strategies for drug delivery.Adv. Drug Deliv. Rev.2020165-16611410.1016/j.addr.2019.11.00931790711
    [Google Scholar]
  15. KadryH. NooraniB. CuculloL. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑333208141
    [Google Scholar]
  16. LiuD. DaiX. YeL. WangH. QianH. ChengH. WangX. Nanotechnology meets glioblastoma multiforme: Emerging therapeutic strategies.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023151e183810.1002/wnan.183835959642
    [Google Scholar]
  17. RezaeiV. RabieeA. KhademiF. Glioblastoma multiforme: A glance at advanced therapies based on nanotechnology.J. Chemother.202032310711710.1080/1120009X.2020.171350831984871
    [Google Scholar]
  18. Aparicio-BlancoJ. Sanz-ArriazuL. LorenzoniR. Blanco-PrietoM.J. Glioblastoma chemotherapeutic agents used in the clinical setting and in clinical trials: Nanomedicine approaches to improve their efficacy.Int. J. Pharm.202058111928310.1016/j.ijpharm.2020.11928332240807
    [Google Scholar]
  19. ElmehrathS. NguyenH.L. KaramS.M. AminA. GreishY.E. BioMOF-based anti-cancer drug delivery systems.Nanomaterials202313595310.3390/nano1305095336903831
    [Google Scholar]
  20. BrinkerC.J. SchererG.W. Sol-gel science: The physics and chemistry of sol-gel processing.1st edSan DiegoAcademic Press Inc.1990
    [Google Scholar]
  21. López GoerneT.M. Nanotechnology and nanomedicine: The science of the future today.1st edMexico CityArkhé Ediciones2011
    [Google Scholar]
  22. López-GoerneT.M. Padilla-GodínezF.J. CastellanosM. Perez-DavalosL.A. Catalytic nanomedicine: A brief review of bionanocatalysts.Nanomedicine202217161131115610.2217/nnm‑2022‑002736103160
    [Google Scholar]
  23. LópezT. AlvarezM. GonzálezR.D. UddinM.J. BustosJ. ArroyoS. SánchezA. Synthesis, characterization and in vitro cytotoxicity of Pt-TiO2 nanoparticles.Adsorption20111757358110.1007/s10450‑011‑9330‑x
    [Google Scholar]
  24. BiX. DuG. KalamA. SunD. YuY. SuQ. XuB. Al-SehemiA.G. Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance.Chem. Eng. Sci.202123411644010.1016/j.ces.2021.116440
    [Google Scholar]
  25. LopezT. GomezR. RomeroE. SchifterI. Phenylacetylene hydrogenation on Pt/TiO2 sol-gel catalysts.React. Kinet. Catal. Lett.19934919510110.1007/BF02084034
    [Google Scholar]
  26. GomezR. LopezT. CastilloS. GonzalezR.D. Carbon monoxide oxidation on Pt/TiO2 sol-gel catalysts.J. Sol-Gel Sci. Technol.19941220521110.1007/BF00490250
    [Google Scholar]
  27. LópezT. RecillasS. GuevaraP. SoteloJ. AlvarezM. OdriozolaJ.A. Pt/TiO2 brain biocompatible nanoparticles: GBM treatment using the C6 model in Wistar rats.Acta Biomater.2008462037204410.1016/j.actbio.2008.05.02718640082
    [Google Scholar]
  28. MaoJ.Z. AgyeiJ.O. KhanA. HessR.M. JowdyP.K. MullinJ.P. PollinaJ. Technologic evolution of navigation and robotics in spine surgery: A historical perspective.World Neurosurg.202114515916710.1016/j.wneu.2020.08.22432916361
    [Google Scholar]
  29. ChanJ.K.C. The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology.Int. J. Surg. Pathol.2014221123210.1177/106689691351793924406626
    [Google Scholar]
  30. LuganoR. RamachandranM. DimbergA. Tumor angiogenesis: Causes, consequences, challenges and opportunities.Cell. Mol. Life Sci.20207791745177010.1007/s00018‑019‑03351‑731690961
    [Google Scholar]
  31. JiangX. WangJ. DengX. XiongF. ZhangS. GongZ. LiX. CaoK. DengH. HeY. LiaoQ. XiangB. ZhouM. GuoC. ZengZ. LiG. LiX. XiongW. The role of microenvironment in tumor angiogenesis.J. Exp. Clin. Cancer Res.202039120410.1186/s13046‑020‑01709‑532993787
    [Google Scholar]
  32. Al-OstootF.H. SalahS. KhameesH.A. KhanumS.A. Tumor angiogenesis: Current challenges and therapeutic opportunities.Cancer Treat. Res. Commun.20212810042210.1016/j.ctarc.2021.10042234147821
    [Google Scholar]
  33. GeerlingsP. ChamorroE. ChattarajP.K. De ProftF. GázquezJ.L. LiuS. MorellC. Toro-LabbéA. VelaA. AyersP. Conceptual density functional theory: Status, prospects, issues.Theor. Chem. Acc.202013923610.1007/s00214‑020‑2546‑7
    [Google Scholar]
  34. López-GoerneT. Padilla-GodínezF. Catalytic nanomedicine as a therapeutic approach to brain tumors: Main hypotheses for mechanisms of action.Nanomaterials2023139154110.3390/nano1309154137177086
    [Google Scholar]
  35. González-LarrazaP.G. López-GoerneT.M. Padilla-GodínezF.J. González-LópezM.A. Hamdan-PartidaA. GómezE. IC 50 evaluation of platinum nanocatalysts for cancer treatment in fibroblast, heLa, and DU-145 cell lines.ACS Omega2020539253812538910.1021/acsomega.0c0375933043218
    [Google Scholar]
  36. López-GoerneT. GraciaA. Padilla-GodínezF.J. LotticiP. Silvestre-AlberoA.M. Characteristic of Ag/TiO2–SiO2 bionanocatalysts prepared by sol–gel method as potential antineoplastic compounds.Bull. Mater. Sci.2022451310.1007/s12034‑021‑02570‑8
    [Google Scholar]
  37. Padilla-GodínezF.J. RamírezP. CruzR. SánchezI. de la RosaJ.M. López-GoerneT. Cytotoxic effect of bionanocatalysts evaluated by diffuse reflectance spectroscopy in an in vivo model of hepatocellular carcinoma.Results in Chem.2023510089410.1016/j.rechem.2023.100894
    [Google Scholar]
  38. López-GoerneT.M. Padilla-GodínezF.J. ÁlvarezD. GómezE. RamírezP. BarragánE. Chico-Ponce de LeónF. González-CarranzaV. García-BeristainJ.C. Dies-SuárezP. Titania-platinum nanobiocatalyst as treatment for central nervous system tumors: A case report on a pediatric ependymoma.J. Neuro. Neuro. Care2020311810.31038/JNNC.2020312
    [Google Scholar]
  39. ParkS.J. Protein–nanoparticle interaction: Corona formation and conformational changes in proteins on nanoparticles.Int. J. Nanomedicine2020155783580210.2147/IJN.S25480832821101
    [Google Scholar]
  40. KopacT. Protein corona, understanding the nanoparticle–protein interactions and future perspectives: A critical review.Int. J. Biol. Macromol.202116929030110.1016/j.ijbiomac.2020.12.10833340622
    [Google Scholar]
  41. ChongW.L. ChupraditK. ChinS.P. KhooM.M. KhorS.M. TayapiwatanaC. NimmanpipugP. ThongkumW. LeeV.S. Protein-protein interactions: Insight from molecular dynamics simulations and nanoparticle tracking analysis.Molecules20212618569610.3390/molecules2618569634577167
    [Google Scholar]
  42. HuY.B. DammerE.B. RenR.J. WangG. The endosomal-lysosomal system: From acidification and cargo sorting to neurodegeneration.Transl. Neurodegener.2015411810.1186/s40035‑015‑0041‑126448863
    [Google Scholar]
  43. SaricA. FreemanS.A. Endomembrane tension and trafficking.Front. Cell Dev. Biol.2021861132610.3389/fcell.2020.61132633490077
    [Google Scholar]
  44. GruenbergJ. Life in the lumen: The multivesicular endosome.Traffic2020211769310.1111/tra.1271531854087
    [Google Scholar]
  45. HeidariM. BregullaA. LandinS.M. CichosF. von KlitzingR. Self-propulsion of janus particles near a brush-functionalized substrate.Langmuir202036277775778010.1021/acs.langmuir.0c0046132544339
    [Google Scholar]
  46. LopezT. RomeroA. GomezR. Metal-support interaction in Pt/SiO2 catalysts prepared by the sol-gel method.J. Non-Cryst. Solids1991127110511310.1016/0022‑3093(91)90406‑V
    [Google Scholar]
  47. López-GoerneT. RamírezP. ArévaloA. HuantesM. Padilla-GodínezF.J. Catalytic nanomedicine: A new approach and solution for chronic ulcers: Case series.Int. J. Low. Extrem. Wounds202215347346221119010.1177/1534734622111900635942717
    [Google Scholar]
  48. LópezT. Sánchez de la BarqueraV. Padilla-GodínezF.J. RamírezP. Gómez-LópezE. Post-breast cancer chronic wounds with solid calcifications treated with Cu/SiO2-TiO2 nanobiocatalysts.Mod. Appr. Mat. Sci.2020337438310.32474/MAMS.2020.03.000163
    [Google Scholar]
  49. López-GoerneT. Padilla-GodínezF.J. Pérez-DávalosL. Ramírez-OlivaresP. ArellanoD. Nanobiocatalysts: Cu/TiO2-SiO2 nanoparticles as tissue-regeneration treatment for diabetic foot ulcers: In vivo studies.Curr. Biotechnol.20209323023910.2174/2211550109999201026085353
    [Google Scholar]
  50. JiménezE. Hamdan-PartidaA. Padilla-GodínezF.J. Arellano-LaraD. Gómez-LópezE. López-GoerneT.M. Spectroscopic analysis and microbicidal effect of Ag/TiO2-SiO2 bionanocatalysts.IEEE Trans. Nanobiosci.202221224625510.1109/TNB.2021.312208434694999
    [Google Scholar]
  51. López-GoerneT. de la Rosa-GutiérrezG. Padilla-GodínezF.J. Bustos-MartínezJ. LópezS. Xoconostle-CázaresB. de la RosaJ.M. Inhibition of influenza A (H1N1) virus infection by Pt/TiO 2 -SiO 2 bionanocatalysts.Curr. Nanosci.202218673374210.2174/1573413717666211118110801
    [Google Scholar]
  52. LibertiM.V. LocasaleJ.W. The warburg effect: How does it benefit cancer cells?Trends Biochem. Sci.201641321121810.1016/j.tibs.2015.12.00126778478
    [Google Scholar]
  53. HardieD.G. 100 years of the Warburg effect: A historical perspective.Endocr. Relat. Cancer20222912T1T1310.1530/ERC‑22‑017336094878
    [Google Scholar]
  54. LiuC. JinY. FanZ. The mechanism of warburg effect-induced chemoresistance in cancer.Front. Oncol.20211169802310.3389/fonc.2021.69802334540667
    [Google Scholar]
  55. BennyS. MishraR. ManojkumarM.K. AneeshT.P. From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy.Med. Hypotheses202014411021610.1016/j.mehy.2020.11021633254523
    [Google Scholar]
  56. GasmiA. PeanaM. ArshadM. ButnariuM. MenzelA. BjørklundG. Krebs cycle: Activators, inhibitors and their roles in the modulation of carcinogenesis.Arch. Toxicol.20219541161117810.1007/s00204‑021‑02974‑933649975
    [Google Scholar]
  57. MazatJ.P. DevinA. RansacS. Modelling mitochondrial ROS production by the respiratory chain.Cell. Mol. Life Sci.202077345546510.1007/s00018‑019‑03381‑131748915
    [Google Scholar]
  58. LennickeC. CocheméH.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function.Mol. Cell202181183691370710.1016/j.molcel.2021.08.01834547234
    [Google Scholar]
  59. MaillouxR.J. An update on mitochondrial reactive oxygen species production.Antioxidants20209647210.3390/antiox906047232498250
    [Google Scholar]
  60. PrevarskayaN. SkrymaR. ShubaY. Targeting Ca 2+ transport in cancer: Close reality or long perspective?Expert Opin. Ther. Targets201317322524110.1517/14728222.2013.74159423294334
    [Google Scholar]
  61. RosenbergS.S. SpitzerN.C. Calcium signaling in neuronal development.Cold Spring Harb. Perspect. Biol.2011310a004259a00425910.1101/cshperspect.a00425921730044
    [Google Scholar]
  62. ParkashJ. AsotraK. Calcium wave signaling in cancer cells.Life Sci.20108719-2258759510.1016/j.lfs.2010.09.01320875431
    [Google Scholar]
  63. MonteithG.R. PrevarskayaN. Roberts-ThomsonS.J. The calcium–cancer signalling nexus.Nat. Rev. Cancer201717637338010.1038/nrc.2017.1828386091
    [Google Scholar]
  64. MonteithG.R. DavisF.M. Roberts-ThomsonS.J. Calcium channels and pumps in cancer: Changes and consequences.J. Biol. Chem.201228738316663167310.1074/jbc.R112.34306122822055
    [Google Scholar]
  65. CuddapahV.A. SontheimerH. Ion channels and tranporters in cancer. 2. Ion channels and the control of cancer cell migration.Am. J. Physiol. Cell Physiol.20113013C541C54910.1152/ajpcell.00102.201121543740
    [Google Scholar]
  66. MakladA. SharmaA. AzimiI. Calcium signaling in brain cancers: Roles and therapeutic targeting.Cancers201911214510.3390/cancers1102014530691160
    [Google Scholar]
  67. WarburgO. Tests on surviving carcinoma cultures.Biochem. Z.1923142317333
    [Google Scholar]
  68. Vander HeidenM.G. CantleyL.C. ThompsonC.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.Science200932459301029103310.1126/science.116080919460998
    [Google Scholar]
  69. VaupelP. SchmidbergerH. MayerA. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression.Int. J. Radiat. Biol.201995791291910.1080/09553002.2019.158965330822194
    [Google Scholar]
  70. VaupelP. MulthoffG. The warburg effect: Historical dogma versus current rationale.Adv Exp Med Biol.20211269169177
    [Google Scholar]
  71. BaderA. BeitzE. Transmembrane facilitation of lactate/H+ instead of lactic acid is not a question of semantics but of cell viability.Membranes202010923610.3390/membranes1009023632942665
    [Google Scholar]
  72. ThewsO. RiemannA. Tumor pH and metastasis: A malignant process beyond hypoxia.Cancer Metastasis Rev.2019381-211312910.1007/s10555‑018‑09777‑y30607627
    [Google Scholar]
  73. IppolitoL. MorandiA. GiannoniE. ChiarugiP. Lactate: A metabolic driver in the tumour landscape.Trends Biochem. Sci.201944215316610.1016/j.tibs.2018.10.01130473428
    [Google Scholar]
  74. Calvo-RodriguezM. BacskaiB.J. Mitochondria and calcium in alzheimer’s disease: From cell signaling to neuronal cell death.Trends Neurosci.202144213615110.1016/j.tins.2020.10.00433160650
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096289012240311023133
Loading
/content/journals/ccdt/10.2174/0115680096289012240311023133
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Bionanocatalyst; CaCO3; catalytic nanomedicine; glioblastoma multiforme; NPt; Pt/TiO2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test