Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Doxorubicin (DOX) is a chemotherapy drug that is widely used in cancer therapy, especially in Triple-Negative Breast Cancer (TNBC) patients. Nevertheless, cytoprotective autophagy induction by DOX limits its cytotoxic effect and drug resistance induction in patients. Therefore, finding a new way is essential for increasing the effectiveness of this drug for cancer treatment.

Objective

This study aimed to investigate the effect of L-lysine on DOX cytotoxicity, probably through autophagy modulation in TNBC cell lines.

Methods

We used two TNBC cell lines, MDA-MB-231 and MDA-MB-468, with various levels of autophagy activity. Cell viability after treatment with L-lysine alone and in combination therapy was evaluated by MTT assay. Reactive Oxygen Species (ROS), nitric oxide (NO) concentration, and arginase activity were assessed using flow cytometric analysis, Griess reaction, and arginase activity assay kit, respectively. Real-time PCR and western blot analysis were used to evaluate the L-lysine effect on the autophagy-related genes and protein expression. Cell cycle profile and apoptotic assay were performed using flow cytometric analysis.

Results

The obtained data indicated that L-lysine in both concentrations of 24 and 32 mM increased the autophagy flux and enhanced the DOX cytotoxicity, especially in MDA-MB-231, which demonstrated higher autophagy activity than MDA-MB-468, by inducing ROS and NO production. Furthermore, L-lysine induced G2/M arrest autophagy cell death, while significant apoptotic changes were not observed.

Conclusion

These findings suggest that L-lysine can increase DOX cytotoxicity through autophagy modulation. Thus, L-lysine, in combination with DOX, may facilitate the development of novel adjunct therapy for cancer.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096288665240315072646
2024-04-05
2025-01-18
Loading full text...

Full text loading...

References

  1. AndersC.K. CareyL.A. Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer.Clin. Breast Cancer200992S73S8110.3816/CBC.2009.s.00819596646
    [Google Scholar]
  2. WahbaH.A. El-HadaadH.A. Current approaches in treatment of triple-negative breast cancer.Cancer Biol. Med.201512210611610.7497/j.issn.2095‑3941.2015.003026175926
    [Google Scholar]
  3. MansooriB. MohammadiA. DavudianS. ShirjangS. BaradaranB. The different mechanisms of cancer drug resistance: A brief review.Adv. Pharm. Bull.20177333934810.15171/apb.2017.04129071215
    [Google Scholar]
  4. BadadaniM. Autophagy mechanism, regulation, functions, and disorders.ISRN Cell Biol.2012201211110.5402/2012/927064
    [Google Scholar]
  5. LevineB. Autophagy and cancer.Nature2007446713774574710.1038/446745a17429391
    [Google Scholar]
  6. YangX. YuD.D. YanF. JingY.Y. HanZ.P. SunK. LiangL. HouJ. WeiL.X. The role of autophagy induced by tumor microenvironment in different cells and stages of cancer.Cell Biosci.2015511410.1186/s13578‑015‑0005‑225844158
    [Google Scholar]
  7. LevyJ.M.M. TowersC.G. ThorburnA. Targeting autophagy in cancer.Nat. Rev. Cancer201717952854210.1038/nrc.2017.5328751651
    [Google Scholar]
  8. SuiX. ChenR. WangZ. HuangZ. KongN. ZhangM. HanW. LouF. YangJ. ZhangQ. WangX. HeC. PanH. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment.Cell Death Dis.2013410e838e83810.1038/cddis.2013.35024113172
    [Google Scholar]
  9. KumarA. GautamB. DubeyC. TripathiP.K. A review: Role of doxorubicin in treatment of cancer.Int. J. Pharm. Sci. Res.2014510410510.13040/IJPSR.0975‑8232.5(10).4117‑28
    [Google Scholar]
  10. TanQ. WangH. HuY. HuM. LiX. Aodengqimuge MaY. WeiC. SongL. Src/ STAT 3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy.Cancer Sci.201510681023103210.1111/cas.1271226041409
    [Google Scholar]
  11. JahaniM. AzadbakhtM. RasouliH. YaraniR. RezazadehD. SalariN. MansouriK. L-arginine/5-fluorouracil combination treatment approaches cells selectively: Rescuing endothelial cells while killing MDA-MB-468 breast cancer cells.Food Chem. Toxicol.201912339941110.1016/j.fct.2018.11.018
    [Google Scholar]
  12. JahaniM. AzadbakhtM. NorooznezhadF. MansouriK. l -arginine alters the effect of 5-fluorouracil on breast cancer cells in favor of apoptosis.Biomed. Pharmacother.20178811412310.1016/j.biopha.2017.01.04728103504
    [Google Scholar]
  13. RoomiM. IvanovV. KalinovskyT. NiedzwieckiA. RathM. In vivo antitumor effect of ascorbic acid, lysine, proline and green tea extract on human colon cancer cell HCT 116 xenografts in nude mice: Evaluation of tumor growth and immunohistochemistry.Oncol. Rep.200513342142510.3892/or.13.3.42115706410
    [Google Scholar]
  14. RoomiM.W. IvanovV. KalinovskyT. NiedzwieckiA. RathM. In vivo and in vitro antitumor effect of ascorbic acid, lysine, proline, arginine, and green tea extract on human fibrosarcoma cells HT-1080.Med. Oncol.200623110511210.1385/MO:23:1:10516645235
    [Google Scholar]
  15. RoomiM.W. IvanovV. NetkeS. KalinovskyT. NiedzwieckiA. RathM.J.i.v. In vivo and in vitro antitumor effect of ascorbic acid, lysine, proline and green tea extract on human melanoma cell line A2058.In Vivo20062012532
    [Google Scholar]
  16. JahaniM. NoroznezhadF. MansouriK. Arginine: Challenges and opportunities of this two-faced molecule in cancer therapy.Biomed Pharmacother201810259460110.1016/j.biopha.2018.02.109
    [Google Scholar]
  17. LuikingY.C. DeutzN.E.P. Biomarkers of arginine and lysine excess.J. Nutr.200713761662S1668S10.1093/jn/137.6.1662S17513444
    [Google Scholar]
  18. AbdelmagidS.A. RickardJ.A. McDonaldW.J. ThomasL.N. TooC.K.L. CAT-1-mediated arginine uptake and regulation of nitric oxide synthases for the survival of human breast cancer cell lines.J. Cell. Biochem.201111241084109210.1002/jcb.2302221308737
    [Google Scholar]
  19. KandemirF.M. Inhibitory effect of L-canavanine and l-lysine on arginase activity in sheep spleen tissue.Kafkas Univ. Vet. Fak. Derg.201420684184610.9775/kvfd.2014.11099
    [Google Scholar]
  20. VerzolaD. FamàA. VillaggioB. Di RoccoM. SimonatoA. D’AmatoE. GianiorioF. GaribottoG. Lysine triggers apoptosis through a NADPH oxidase-dependent mechanism in human renal tubular cells.J. Inherit. Metab. Dis.20123561011101910.1007/s10545‑012‑9468‑z22403019
    [Google Scholar]
  21. CarrollB. KorolchukV.I. SarkarS. Amino acids and autophagy: Cross-talk and co-operation to control cellular homeostasis.Amino Acids201547102065208810.1007/s00726‑014‑1775‑224965527
    [Google Scholar]
  22. JahaniM. ShahlaeiM. NorooznezhadF. MiraghaeeS.S. HosseinzadehL. MoasefiN. KhodarahmiR. FarokhiA. MahnamA. MansouriK. TSGA10 Over Expression Decreases Metastasic and Metabolic Activity by Inhibiting HIF-1 in Breast Cancer Cells TSGA10 over expression decreases metastasic and metabolic activity by inhibiting hif-1 in breast cancer cells.Arch. Med. Res.2020511415310.1016/j.arcmed.2019.12.00232086108
    [Google Scholar]
  23. ShokoohiniaY. RashidiM. HosseinzadehL. JelodarianZ. Quercetin-3-O-β-d-glucopyranoside, a dietary flavonoid, protects PC12 cells from H2O2-induced cytotoxicity through inhibition of reactive oxygen species.Food Chem.201516716216710.1016/j.foodchem.2014.06.07925148973
    [Google Scholar]
  24. GottliebR.A. FinleyK.D. MentzerR.M.Jr Cardioprotection requires taking out the trash.Basic Res. Cardiol.2009104216918010.1007/s00395‑009‑0011‑919242643
    [Google Scholar]
  25. RubinsteinA.D. KimchiA. Life in the balance: A mechanistic view of the crosstalk between autophagy and apoptosis.J. Cell Sci.2012125225259526810.1242/jcs.11586523377657
    [Google Scholar]
  26. CarewJ.S. KellyK.R. NawrockiS.T. Autophagy as a target for cancer therapy: New developments.Cancer Manag Res.20124357365https://doi.org/10.2147/CMAR.S26133
    [Google Scholar]
  27. KobayashiS. VoldenP. TimmD. MaoK. XuX. LiangQ. Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death.J. Biol. Chem.2010285179380410.1074/jbc.M109.07003719901028
    [Google Scholar]
  28. ChenK. XuX. KobayashiS. TimmD. JeppersonT. LiangQ. Caloric restriction mimetic 2-deoxyglucose antagonizes doxorubicin-induced cardiomyocyte death by multiple mechanisms.J. Biol. Chem.201128625219932200610.1074/jbc.M111.22580521521688
    [Google Scholar]
  29. ZhouF. YangY. XingD. Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis.FEBS J.2011278340341310.1111/j.1742‑4658.2010.07965.x21182587
    [Google Scholar]
  30. ShimizuS. KanasekiT. MizushimaN. MizutaT. Arakawa-KobayashiS. ThompsonC.B. TsujimotoY. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes.Nat. Cell Biol.20046121221122810.1038/ncb119215558033
    [Google Scholar]
  31. MarquezR.T. XuL. Bcl-2:Beclin 1 complex: Multiple, mechanisms regulating autophagy/apoptosis toggle switch.Am. J. Cancer Res.20122221422122485198
    [Google Scholar]
  32. PattingreS. TassaA. QuX. GarutiR. LiangX.H. MizushimaN. PackerM. SchneiderM.D. LevineB. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy.Cell2005122692793910.1016/j.cell.2005.07.00216179260
    [Google Scholar]
  33. AlhoshaniA. AlatawiF.O. Al-AnaziF.E. AttafiI.M. ZeidanA. AgouniA. El GamalH.M. ShamoonL.S. KhalafS. KorashyH.M. BCL-2 inhibitor venetoclax induces autophagy-associated cell death, cell cycle arrest, and apoptosis in human breast cancer cells.OncoTargets Ther.202013133571337010.2147/OTT.S28151933414642
    [Google Scholar]
  34. KlionskyD.J. The molecular machinery of autophagy: Unanswered questions.J. Cell Sci.2005118171810.1242/jcs.0162015615779
    [Google Scholar]
  35. Poillet-PerezL. DespouyG. Delage-MourrouxR. Boyer-GuittautM. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy.Redox Biol2015418419210.1016/j.redox.2014.12.003
    [Google Scholar]
  36. LiL. TanJ. MiaoY. LeiP. ZhangQ. ROS and autophagy: Interactions and molecular regulatory mechanisms.Cell. Mol. Neurobiol.201535561562110.1007/s10571‑015‑0166‑x25722131
    [Google Scholar]
  37. ZhengN. LiuL. LiuW. LiF. HayashiT. TashiroS. OnoderaS. IkejimaT. Crosstalk of ROS/RNS and autophagy in silibinin-induced apoptosis of MCF-7 human breast cancer cells in vitro.Acta Pharmacol. Sin.201738227728910.1038/aps.2016.11727867187
    [Google Scholar]
  38. Di MeoS. ReedT.T. VendittiP. VictorV.M. Role of ROS and RNS sources in physiological and pathological conditions.Oxid. Med. Cell. Longev.2016201614410.1155/2016/124504927478531
    [Google Scholar]
  39. Filippi-ChielaE.C. VillodreE.S. ZaminL.L. LenzG. Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells.PLoS One201166e2084910.1371/journal.pone.002084921695150
    [Google Scholar]
  40. KuJ.M. KimM.J. ChoiY.J. LeeS.Y. ImJ.Y. JoY.K. YoonS. KimJ.H. ChaJ.W. ShinY.C. KoS.G. JI017 induces cell autophagy and apoptosis via elevated levels of reactive oxygen species in human lung cancer cells.Int. J. Mol. Sci.2023248752810.3390/ijms2408752837108692
    [Google Scholar]
  41. SinghR. PervinS. KarimiA. CederbaumS. Arginase activity in human breast cancer cell lines: N(omega)-hydroxy-L-arginine selectively inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells.Cancer Res.2000601233053312
    [Google Scholar]
  42. NeufeldT.P. Autophagy and cell growth: The yin and yang of nutrient responses.J. Cell Sci.2012125Pt 10jcs.10333310.1242/jcs.10333322649254
    [Google Scholar]
  43. ChenK. ShouL.M. LinF. DuanW.M. WuM.Y. XieX. XieY.F. LiW. TaoM. Artesunate induces G2/M cell cycle arrest through autophagy induction in breast cancer cells.Anticancer Drugs201425665266210.1097/CAD.000000000000008924518199
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096288665240315072646
Loading
/content/journals/ccdt/10.2174/0115680096288665240315072646
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test