Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2665-9972
  • E-ISSN: 2665-9964

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cccs/10.2174/2665997202666220330101445
2022-04-01
2025-06-01
Loading full text...

Full text loading...

References

  1. JabarullaM. LeeH.N. Speckle reduction on ultrasound liver images based on a sparse representation over a learned dictionary.Appl. Sci.20188690310.3390/app8060903
    [Google Scholar]
  2. MagudOgnjen TubaEva BacaninN. Medical ultrasound image speckle noise reduction by adaptive median filter.Wseas Trans. Biol. Biomed.2017143846
    [Google Scholar]
  3. MafiM. TabarestaniS. CabrerizoM. BarretoA. AdjouadiM. Denoising of ultrasound images affected by combined speckle and Gaussian noise.IET Image Process.201812122346235110.1049/iet‑ipr.2018.5292
    [Google Scholar]
  4. SudharsonS. PratapT. KokilP. Noise level estimation for effective blind despeckling of medical ultrasound images.Biomed. Signal Process. Control20216810274410.1016/j.bspc.2021.102744
    [Google Scholar]
  5. AfshariP. ZakianC. NtziachristosV. Improving ultrasound images with elevational angular compounding based on acoustic refraction.Sci. Rep.20201011817310.1038/s41598‑020‑75092‑8 33097780
    [Google Scholar]
  6. ZhangJ. XiuX. ZhouJ. ZhaoK. TianZ. ChengY. A novel despeckling method for medical ultrasound images based on the nonsubsampled shearlet and guided filter.Circuits Syst. Signal Process.20203931449147010.1007/s00034‑019‑01201‑2
    [Google Scholar]
  7. AlexD.M. ChandyD.A. Evaluation of inpainting in speckled and despeckled 2D ultrasound medical images.In: 2020 Advanced Computing and Communication Technologies for High Performance Applications.ACCTHPA202022122510.1109/ACCTHPA49271.2020.9213203
    [Google Scholar]
  8. JainS.K. RayR.K. Non-linear diffusion models for despeckling of images: Achievements and future challenges.IETE Tech. Rev.2020371668210.1080/02564602.2019.1565960
    [Google Scholar]
  9. AkkasaligarP.T. BiradarS. Automatic segmentation and analysis of renal calculi in medical ultrasound images.Pattern Recognit. Image Anal.202030474875610.1134/S1054661820040021
    [Google Scholar]
  10. AghababaeiH. FerraioliG. Statistical indices for despeckling evaluation in multichannel SAR images.IEEE Geosci. Remote Sens. Lett.202018231632010.1109/LGRS.2020.2973462
    [Google Scholar]
  11. BasavarajappaL. BaekJ. ReddyS. SongJ. TaiH. RijalG. ParkerK.J. HoytK. Multiparametric ultrasound imaging for the assessment of normal versus steatotic livers.Sci. Rep.2021111265510.1038/s41598‑021‑82153‑z 33514796
    [Google Scholar]
  12. KokilP. SudharsonS. Despeckling of clinical ultrasound images using deep residual learning.Comput. Methods Programs Biomed.202019410547710.1016/j.cmpb.2020.105477 32454323
    [Google Scholar]
  13. LiH. WengJ. ShiY. GuW. MaoY. WangY. LiuW. ZhangJ. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images.Sci. Rep.201881660010.1038/s41598‑018‑25005‑7 29700427
    [Google Scholar]
  14. WuS. ZhuQ. XieY. Evaluation of various speckle reduction filters on medical ultrasound images. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)201311481151
    [Google Scholar]
/content/journals/cccs/10.2174/2665997202666220330101445
Loading
/content/journals/cccs/10.2174/2665997202666220330101445
Loading

Data & Media loading...


  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test