Skip to content
2000
image of Evaluation of Antioxidant Properties and Antihyperlipidemic Activity of Phytochemicals in Luffa acutangula Leaves

Abstract

Background

Hyperlipidaemia, characterized by elevated triglyceride and cholesterol levels in the blood, is linked to premature aging and degenerative diseases, often driven by free radicals. Antioxidants can help address these issues by neutralizing free radicals. leaves are known for their antioxidant properties due to their content of flavonoids and phenolic compounds.

Objective

This study aimed to extract, fractionate, and analyze the phytochemical composition of leaves and to evaluate their antioxidant and antihyperlipidemic activities across different fractions: ethyl acetate, chloroform, hexane, and methanol.

Methods

The extraction was performed using 96% methanol and liquid-liquid fractionation with solvents n-hexane, ethyl acetate, chloroform, and methanol. Phytochemical screening and antioxidant activity assessments were conducted on the methanolic extract, with LC-MS/MS analysis revealing various phytoconstituents. Antioxidant activity was measured using standard methods, along with enzyme inhibition assays.

Results

Methanol extraction yielded 19.73% of the extract, with the methanol fraction providing the highest dried extract (41.64%), followed by the ethyl acetate fraction at 14.09%. The methanolic extract contained flavonoids, phenolic compounds, and other phytoconstituents. The ethyl acetate fraction showed the lowest IC value (22.04, 115.2, and 69.74) for DPPH, ABTS, and FRAP, respectively, demonstrating the strongest antioxidant potential. The ethyl acetate fraction displayed maximum antihyperlipidemic potential (IC-17.85 for HMG-CoA reductase). Each fraction exhibited varying yields and secondary metabolites, with the ethyl acetate fraction showing the most significant antioxidant and antihyperlipidemic effects.

Conclusion

This study provided comprehensive information regarding the extraction, fractionation, and phytochemical composition of leaves, noting that the ethyl acetate fraction possesses significant antioxidant and antihyperlipidemic potential.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968351878241204103648
2024-12-17
2025-04-23
Loading full text...

Full text loading...

References

  1. Martemucci G. Costagliola C. Mariano M. D’andrea L. Napolitano P. D’Alessandro A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022 2 2 48 78 10.3390/oxygen2020006
    [Google Scholar]
  2. García-Carrasco B. Fernandez-Dacosta R. Dávalos A. Ordovás J. Rodriguez-Casado A. In vitro hypolipidemic and antioxidant effects of leaf and root extracts of taraxacum officinale. Med. Sci. 2015 3 2 38 54 10.3390/medsci3020038 29083390
    [Google Scholar]
  3. Wang L. Gao S. Jiang W. Luo C. Xu M. Bohlin L. Rosendahl M. Huang W. Antioxidative dietary compounds modulate gene expression associated with apoptosis, DNA repair, inhibition of cell proliferation and migration. Int. J. Mol. Sci. 2014 15 9 16226 16245 10.3390/ijms150916226 25226533
    [Google Scholar]
  4. Heyland D. Muscedere J. Wischmeyer P.E. Cook D. Jones G. Albert M. Elke G. Berger M.M. Day A.G. A randomized trial of glutamine and antioxidants in critically ill patients. N. Engl. J. Med. 2013 368 16 1489 1497 10.1056/NEJMoa1212722 23594003
    [Google Scholar]
  5. Pham-Huy L.A. He H. Pham-Huyc C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008 4 2 89 96 10.59566/IJBS.2008.4089 23675073
    [Google Scholar]
  6. Flieger J. Flieger W. Baj J. Maciejewski R. Antioxidants: Classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials 2021 14 15 4135 10.3390/ma14154135 34361329
    [Google Scholar]
  7. Makover M.E. Shapiro M.D. Toth P.P. There is urgent need to treat atherosclerotic cardiovascular disease risk earlier, more intensively, and with greater precision: A review of current practice and recommendations for improved effectiveness. Am J Prev Cardiol 2022 12 100371 10.1016/j.ajpc.2022.100371 36124049
    [Google Scholar]
  8. Meghwanshi G.K. Kaur N. Verma S. Dabi N.K. Vashishtha A. Charan P.D. Purohit P. Bhandari H.S. Bhojak N. Kumar R. Enzymes for pharmaceutical and therapeutic applications. Biotechnol. Appl. Biochem. 2020 67 4 586 601 10.1002/bab.1919 32248597
    [Google Scholar]
  9. Laka K Makgoo L Mbita Z. Cholesterol-lowering phytochemicals: Targeting the mevalonate pathway for anticancer interventions. Front Genet 2022 13 841639
    [Google Scholar]
  10. Hou X.D. Guan X.Q. Cao Y.F. Weng Z.M. Hu Q. Liu H.B. Jia S.N. Zang S.Z. Zhou Q. Yang L. Ge G.B. Hou J. Inhibition of pancreatic lipase by the constituents in St. John’s Wort: In vitro and in silico investigations. Int. J. Biol. Macromol. 2020 145 620 633 10.1016/j.ijbiomac.2019.12.231 31883893
    [Google Scholar]
  11. Hossain U. Das A.K. Ghosh S. Sil P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol. 2020 145 111738 10.1016/j.fct.2020.111738 32916220
    [Google Scholar]
  12. Surguchov A. Bernal L. Surguchev A.A. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules 2021 11 5 624 629 10.3390/biom11050624 33922207
    [Google Scholar]
  13. Ahsan F. Siddiqui H.H. Mahmood T. Srivastav R.K. Nayeem A. Evaluation of Cardioprotective effect of Coleus forskohlii against Isoprenaline induced myocardial infarction in rats. Ind J Pharm Biol Res 2014 2 1 17 25 10.30750/ijpbr.2.1.3
    [Google Scholar]
  14. Khan M.M.U. Khalilullah H. Eid E.E.M. A Dig Deep to Scout the Pharmacological and Clinical Facet of Garlic (Allium sativum). Curr Tradit Med 2021 8 1 1 19
    [Google Scholar]
  15. Petcu C.D. Tăpăloagă D. Mihai O.D. Gheorghe-Irimia R.A. Negoiță C. Georgescu I.M. Tăpăloagă P.R. Borda C. Ghimpețeanu O.M. Harnessing natural antioxidants for enhancing food shelf life: Exploring sources and applications in the food industry. Foods 2023 12 17 3176 10.3390/foods12173176 37685108
    [Google Scholar]
  16. Sen S. Chakraborty R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J. Tradit. Complement. Med. 2017 7 2 234 244 10.1016/j.jtcme.2016.05.006 28417092
    [Google Scholar]
  17. Shendge P.N. Belemkar S. Therapeutic potential of Luffa acutangula: A review on its traditional uses, phytochemistry, pharmacology and toxicological aspects. Front. Pharmacol. 2018 9 OCT 1177 1189 10.3389/fphar.2018.01177 30459601
    [Google Scholar]
  18. Singh Gill N. Arora R. Kumar S.R. Evaluation of antioxidant, anti-inflammatory and analgesic potential of the Luffa acutangula Roxb. Var. amara. Res. J. Phytochem. 2011 5 4 201 208 10.3923/rjphyto.2011.201.208
    [Google Scholar]
  19. Dashora N. Chauhan L.S. In vitro antioxidant and in vivo anti-tumor activity of Luffa acutangula against Dalton’s Lymphoma Ascites (DLA) cells bearing mice. J. Chem. Pharm. Res. 2015 7 6 940 945
    [Google Scholar]
  20. Renuka M. Praveena G. Phytochemical analysis and antioxidant activity of Luffa Acutangula peel extract. J Clin Otorhinolaryngol Head Neck Surg 2023 27 2 381 392
    [Google Scholar]
  21. Swetha M.P. Muthukumar S.P. Characterization of nutrients, amino acids, polyphenols and antioxidant activity of Ridge gourd (Luffa acutangula) peel. J. Food Sci. Technol. 2016 53 7 3122 3128 10.1007/s13197‑016‑2285‑x 27765983
    [Google Scholar]
  22. Padmashree A. Sharma G.K. Semwal A.D. Bawa A.S. In vitro antioxygenic activity of ridge gourd luffa acutangula) pulp, peel and their extracts on peroxidation models. Am. J. Plant Sci. 2012 3 10 1413 1421 10.4236/ajps.2012.310171
    [Google Scholar]
  23. Pimple BP Kadam P V. Patil MJ. Protective effect of Luffa acutangula extracts on gastric ulceration in NIDDM rats: Role of gastric mucosal glycoproteins and antioxidants. Asian Pac J Trop Med 2012 5 8 610 615
    [Google Scholar]
  24. Viviandhari D. Prastiwi R. Puspitasari E.F. Perdianti P. Activity of ethanol fraction of Luffa acutangula (L.) Roxb. on cholesterol reduction in dyslipidemic hamster. Jurnal Jamu Indonesia 2020 5 2 45 55 10.29244/jji.v5i2.171
    [Google Scholar]
  25. Abubakar AR Haque M Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci 2020 12 1 1 10
    [Google Scholar]
  26. Ullah A. Munir S. Badshah S.L. Khan N. Ghani L. Poulson B.G. Emwas A.H. Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules 2020 25 22 5243 10.3390/molecules25225243 33187049
    [Google Scholar]
  27. González-Castejón M. Rodriguez-Casado A. Dietary phytochemicals and their potential effects on obesity: A review. Pharmacol. Res. 2011 64 5 438 455 10.1016/j.phrs.2011.07.004 21798349
    [Google Scholar]
  28. Noreen S. Rehman H. Tufail T. Badar Ul Ain H. Awuchi C.G. Secoisolariciresinol diglucoside and anethole ameliorate lipid abnormalities, oxidative injury, hypercholesterolemia, heart, and liver conditions. Food Sci. Nutr. 2023 11 6 2620 2630 10.1002/fsn3.3250 37324915
    [Google Scholar]
  29. Kirichenko T V. Sukhorukov VN Markin AM Medicinal plants as a potential and successful treatment option in the context of atherosclerosis. Front Pharmacol 2020 11 403 10.3389/fphar.2020.00403
    [Google Scholar]
  30. Shaikh J.R. Patil M.K. Qualitative tests for preliminary phytochemical screening: An overview. Int. J. Chem. Stud. 2020 8 2 603 608 10.22271/chemi.2020.v8.i2i.8834
    [Google Scholar]
  31. Melinda K.P. Rathinam X. Marimuthu K. Diwakar A. Ramanathan S. Kathiresan S. Subramaniam S. A comparative study on the antioxidant activity of methanolic leaf extracts of Ficus religiosa L, Chromolaena odorata (L.) King & Rabinson, Cynodon dactylon (L.) Pers. and Tridax procumbens L. Asian Pac. J. Trop. Med. 2010 3 5 348 350 10.1016/S1995‑7645(10)60084‑3
    [Google Scholar]
  32. Silitonga D.R. Arianto A. Silalahi J. Determination of antioxidant activity, total phenolic and total flavonoid contents in tamarillo (Solanum betaceum) peel’s ethanolic extracts. Int. J. Basic Clin. Pharmacol. 2023 13 1 29 35 10.18203/2319‑2003.ijbcp20233819
    [Google Scholar]
  33. Braca A. De Tommasi N. Di Bari L. Pizza C. Politi M. Morelli I. Antioxidant principles from Bauhinia t arapotensis. J. Nat. Prod. 2001 64 7 892 895 10.1021/np0100845 11473417
    [Google Scholar]
  34. Jain A.A. Sinha P.P. Desai N. Estimation of flavonoid, phenol content and antioxidant potential of Indian screw tree (Helicteres isora L.). Int. J. Pharm. Sci. Res. 2014 5 4 1320 1332
    [Google Scholar]
  35. Kumar Pal T. Bhattacharyya S. Dey A. Evaluation of antioxidant activities of flower extract (fresh and dried) of Saraca indica grown in West Bengal. Int. J. Curr. Microbiol. Appl. Sci. 2014 3 4 251 259
    [Google Scholar]
  36. Chelladurai G.R.M. Chinnachamy C. Alpha amylase and Alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis. Braz. J. Pharm. Sci 2018 54 1 e17151
    [Google Scholar]
  37. Bräunlich M. Slimestad R. Wangensteen H. Brede C. Malterud K. Barsett H. Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors. Nutrients 2013 5 3 663 678 10.3390/nu5030663 23459328
    [Google Scholar]
  38. Jeong J.Y. Jo Y.H. Lee K.Y. Do S.G. Hwang B.Y. Lee M.K. Optimization of pancreatic lipase inhibition by Cudrania tricuspidata fruits using response surface methodology. Bioorg. Med. Chem. Lett. 2014 24 10 2329 2333 10.1016/j.bmcl.2014.03.067 24751440
    [Google Scholar]
  39. Jaradat N. Zaid A. Hussein F. Zaqzouq M. Aljammal H. Ayesh O. Anti-lipase potential of the organic and aqueous extracts of ten traditional edible and medicinal plants in Palestine; a comparison study with orlistat. Medicines 2017 4 4 89 99 10.3390/medicines4040089 29292744
    [Google Scholar]
  40. Yunarto N. Helentina E.D. Sulistyowati I. Antioxidant activity and inhibition of HMG CoA reductase enzyme by bay leaf (syzygium polyanthum wight) extract as a treatment for hyperlipidemia. Trop J Nat Prod Res 2022 6 11 1798 1801
    [Google Scholar]
  41. Sreelatha S. Padma P.R. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum. Nutr. 2009 64 4 303 311 10.1007/s11130‑009‑0141‑0 19904611
    [Google Scholar]
  42. Akar Z. Küçük M. Doğan H. A new colorimetric DPPH • scavenging activity method with no need for a spectrophotometer applied on synthetic and natural antioxidants and medicinal herbs. J. Enzyme Inhib. Med. Chem. 2017 32 1 640 647 10.1080/14756366.2017.1284068 28262029
    [Google Scholar]
  43. Tariq S. Umbreen H. Noreen R. Petitbois C. Aftab K. Alasmary F.A. Almalki A.S. Mazid M.A. Comparative analysis of antioxidants activity of indigenously produced moringa oleifera seeds extracts. BioMed Res. Int. 2022 2022 1 11 10.1155/2022/4987929 36325499
    [Google Scholar]
  44. Ilyasov I.R. Beloborodov V.L. Selivanova I.A. Terekhov R.P. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci. 2020 21 3 1131 1139 10.3390/ijms21031131 32046308
    [Google Scholar]
  45. Shen G Quantitative estimation of the hydrogen-atom-donating ability of 4-substituted hantzsch ester radical cations. ACS Omega 2021 6 36 23621 23629
    [Google Scholar]
  46. Ahmad R. Khan M.A. Srivastava A.N. Gupta A. Srivastava A. Jafri T.R. Siddiqui Z. Chaubey S. Khan T. Srivastava A.K. Anticancer potential of dietary natural products: A comprehensive review. Anticancer. Agents Med. Chem. 2020 20 2 122 236 10.2174/1871520619666191015103712 31749433
    [Google Scholar]
  47. Sagheer R. Singh R. Nasibullah M. Exploration of hepatoprotective potential of methanolic extract of Tridax procumbens against isoniazid-rifampicin induced toxicity in albino rats. J Pharmacogn Phytochem 2018 7 3 384 390
    [Google Scholar]
  48. Sasi P.K. Raj R.K. Effect of piperazine on the level of phospholipids and on the activities of certain enzymes of phospholipid metabolism in humanAscaris lumbricoides. Experientia 1975 31 11 1261 1262 10.1007/BF01945767 1204764
    [Google Scholar]
  49. Azad I. Nasibullah M. Khan T. Hassan F. Akhter Y. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents. J. Mol. Graph. Model. 2018 81 211 228 10.1016/j.jmgm.2018.02.013 29609141
    [Google Scholar]
  50. Saha A.K. Rahman M.R. Shahriar M. Screening of six ayurvedic medicinal plant extracts for antioxidant and cytotoxic activity. J Pharmacogn Phytochem 2013 2 2 181 188
    [Google Scholar]
  51. Suryanti V. Marliyana S. Astuti I. Chemical constituents of Luffa acutangula (L.) Roxb fruit. IOP Conference Series Materials Science and Engineering 193(1):012050 2017
    [Google Scholar]
  52. S A.S. Vellapandian C. Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC–MS of the ethanolic extract of Luffa cylindrica (L.) fruit. Appl. Biochem. Biotechnol. 2022 194 9 4018 4032 10.1007/s12010‑022‑03961‑1 35583705
    [Google Scholar]
  53. Barreira J. Ferreira I. Oliveira M. Pereira J. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 2008 107 3 1106 1113 10.1016/j.foodchem.2007.09.030
    [Google Scholar]
  54. Das N. Islam M.E. Jahan N. Islam M.S. Khan A. Islam M.R. Parvin M.S. Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds. BMC Complement. Altern. Med. 2014 14 1 45 10.1186/1472‑6882‑14‑45 24495381
    [Google Scholar]
  55. Permana D. Lajis N. Abas F. Antioxidative constituents of hedyotis diffusa willd. Nat. Prod. Sci. 2003 9 1 7 9
    [Google Scholar]
  56. Jun M. Fu H.Y. Hong J. Comparison of antioxidant activities of isoflavones from kudzu root (Pueraria lobata Ohwi). J Food Sci 2003 68 6 2117 2122
    [Google Scholar]
  57. Nimse S.B. Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances 2015 5 35 27986 28006 10.1039/C4RA13315C
    [Google Scholar]
  58. Hussen E.M. Endalew S.A. In vitro antioxidant and free-radical scavenging activities of polar leaf extracts of Vernonia amygdalina. BMC Complementary Medicine and Therapies 2023 23 1 146 154 10.1186/s12906‑023‑03923‑y 37143058
    [Google Scholar]
  59. Basit A Ahmad S Evaluation of the anti-inflammatory, antioxidant, and cytotoxic potential of Cardamine amara L. (Brassicaceae): A comprehensive biochemical, toxicological, and in silico computational study. Front Chem 2023 10 1077581
    [Google Scholar]
  60. Neess D. Bek S. Engelsby H. Gallego S.F. Færgeman N.J. Long-chain acyl-CoA esters in metabolism and signaling: Role of acyl-CoA binding proteins. Prog. Lipid Res. 2015 59 1 25 10.1016/j.plipres.2015.04.001 25898985
    [Google Scholar]
  61. Burg J.S. Espenshade P.J. Regulation of HMG-CoA reductase in mammals and yeast. Prog. Lipid Res. 2011 50 4 403 410 10.1016/j.plipres.2011.07.002 21801748
    [Google Scholar]
  62. Harikumar K. Ramunaik M. Suvarna C. A review on hyperlipidemic. Int. J. Novel Trends Pharm. Sci. 2013 3 4 59 71
    [Google Scholar]
  63. Liu T.T. Liu X.T. Chen Q.X. Shi Y. Lipase inhibitors for obesity: A review. Biomed. Pharmacother. 2020 128 110314 10.1016/j.biopha.2020.110314 32485574
    [Google Scholar]
  64. Utama Q.D. Sitanggang A.B. Adawiyah D.R. Hariyadi P. Lipase-catalyzed interesterification for the synthesis of medium-long-medium (MLM) structured lipids - A review. Food Technol. Biotechnol. 2019 57 3 305 318 10.17113/ftb.57.03.19.6025 31866744
    [Google Scholar]
  65. Salhi A. Carriere F. Grundy M.M.L. Enzymes involved in lipid digestion. Bioaccessibility and Digestibility of Lipids from Food Springer International Publishing 2021 3 28
    [Google Scholar]
  66. Sonawane A. Srivastava R.S. Sanghavi N. Malode Y. Chavan B. Anti-diabetic activity of Tridax procumbens. J Sci Innov Res 2014 3 2 221 226 10.31254/jsir.2014.3217
    [Google Scholar]
  67. Raman B. Krishna N. Rao N. Plants with antidiabetic activities and their medicinal Values. Int Res J Pharm 2012 3 3 11 15
    [Google Scholar]
  68. Okuyama M. Saburi W. Mori H. Kimura A. α-Glucosidases and α-1,4-glucan lyases: Structures, functions, and physiological actions. Cell. Mol. Life Sci. 2016 73 14 2727 2751 10.1007/s00018‑016‑2247‑5 27137181
    [Google Scholar]
  69. Sudhir R. Mohan V. Postprandial hyperglycemia in patients with type 2 diabetes mellitus. Treat. Endocrinol. 2002 1 2 105 116 10.2165/00024677‑200201020‑00004 15765626
    [Google Scholar]
  70. Datta S. Bhattacharjee S. Seal T. Anti-diabetic, anti-inflammatory and anti-oxidant properties of four underutilized ethnomedicinal plants of West Bengal, India: An in vitro approach. S. Afr. J. Bot. 2022 149 768 780 10.1016/j.sajb.2022.06.029
    [Google Scholar]
  71. Dlamini B.S. Hernandez C.E. Chen C.R. Shih W-L. Hsu J-L. Chang C-I. In vitro antioxidant, antiglycation, and enzymatic inhibitory activity against α-glucosidase, α-amylase, lipase and HMG-CoA reductase of Terminalia boivinii Tul. Biocatal. Agric. Biotechnol. 2022 39 102235 10.1016/j.bcab.2021.102235
    [Google Scholar]
  72. Chavan R.S. Khatib N.A. Hariprasad M.G. Patil V.S. Redhwan M.A.M. Synergistic effects of Momordica charantia, Nigella sativa, and Anethum graveolens on metabolic syndrome targets: In vitro enzyme inhibition and in silico analyses. Heliyon 2024 10 2 e24907 10.1016/j.heliyon.2024.e24907 38304787
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968351878241204103648
Loading
/content/journals/ccb/10.2174/0122127968351878241204103648
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: antioxidants ; obesity ; Luffa acutangula ; extraction ; fraction ; antihyperlipidemic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test