Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Cr(VI) is a heavy metal characterized by potent toxic, carcinogenic, mutagenic, and prooxidant properties. Cr(VI) is one of the eight metals that are among the most toxic compounds and are of great concern to scientists due to the global risk to human health. In recent years, Cr(VI) has attracted the attention of environmental researchers due to the increased level of ecosystem contamination by Cr compounds in many countries. The toxic and carcinogenic effects of Cr(VI) in cells of living organisms are realized through the activation of three main mechanisms: oxidative stress, direct damage to cellular DNA, and disruption of epigenetic mechanisms of genome regulation. The review brings together updated data on the main mechanisms of Cr(VI) toxicity and the protective role of antioxidants in cells of living organisms poisoned by the corresponding heavy metal. The review also summarizes the currently available information on the negative impact of Cr(VI) compounds on the environment and Cr(VI)-induced disorders of pro/antioxidant status, hematological profile, and lipid and protein metabolism.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968319843241207142638
2024-12-23
2025-07-13
Loading full text...

Full text loading...

References

  1. SahaR. NandiR. SahaB. Sources and toxicity of hexavalent chromium.J. Coord. Chem.201164101782180610.1080/00958972.2011.583646
    [Google Scholar]
  2. MehanyH.A. Abo-youssefA.M. AhmedL.A. ArafaE.S.A. Abd El-LatifH.A. Protective effect of vitamin E and atorvastatin against potassium dichromate-induced nephrotoxicity in rats.Beni. Suef Univ. J. Basic Appl. Sci.2013229610210.1016/j.bjbas.2013.02.002
    [Google Scholar]
  3. HeX. LiP. Surface water pollution in the middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr6+): Occurrence, sources and health risks.Expo. Health202012338540110.1007/s12403‑020‑00344‑x
    [Google Scholar]
  4. OrabiS.H. ShawkyS.M. Ameliorative effects of grape seed oil on chromium-induced nephrotoxicity and oxidative stress in rats.Slov. Vet. Res.202057312313110.26873/SVR‑967‑2020
    [Google Scholar]
  5. HassanM. Abd-ElwahabW. MegahedR. MohammedA. An evaluation of hepatotoxicity, nephrotoxicity, and genotoxicity induced by acute toxicity of hexavalent chromium and comparison of the possible protective role of selenium and vitamin E on these effects.Ain Shams J. Forensic. Med. Clin. Toxicol.2019332485810.21608/ajfm.2019.36574
    [Google Scholar]
  6. LiX. HeS. ZhouJ. YuX. LiL. LiuY. LiW. Cr (VI) induces abnormalities in glucose and lipid metabolism through ROS/Nrf2 signaling.Ecotoxicol. Environ. Saf.202121911232010.1016/j.ecoenv.2021.11232033991932
    [Google Scholar]
  7. DesMaraisT.L. CostaM. Mechanisms of chromium-induced toxicity.Curr. Opin. Toxicol.2019141710.1016/j.cotox.2019.05.00331511838
    [Google Scholar]
  8. EmanS. FaragA.I. Chromium-induced hepatotoxicity and potential protective effect of selenium in adult male albino rat: A histological, immuno-histochemical and molecular study.Med. J. Cairo Univ.202088318719610.21608/mjcu.2020.93977
    [Google Scholar]
  9. FedalaA. AdjroudO. Abid-EssefiS. TimoumiR. Protective effects of selenium and zinc against potassium dichromate-induced thyroid disruption, oxidative stress, and DNA damage in pregnant Wistar rats.Environ. Sci. Pollut. Res. Int.20212818225632257610.1007/s11356‑020‑12268‑933423197
    [Google Scholar]
  10. FuS.C. LiuJ.M. LeeK.I. TangF.C. FangK.M. YangC.Y. SuC.C. ChenH.H. HsuR.J. ChenY.W. Cr(VI) induces ROS-mediated mitochondrial-dependent apoptosis in neuronal cells via the activation of Akt/ERK/AMPK signaling pathway.Toxicol. In Vitro 20206510479510.1016/j.tiv.2020.10479532061800
    [Google Scholar]
  11. SlejkoF.F. PetriniR. LutmanA. ForteC. GhezziL. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy.Isotopes Environ. Health Stud.2019551566910.1080/10256016.2018.156027830621468
    [Google Scholar]
  12. YangQ. HanB. LiS. WangX. WuP. LiuY. LiJ. HanB. DengN. ZhangZ. The link between deacetylation and hepatotoxicity induced by exposure to hexavalent chromium.J. Adv. Res.20213512914010.1016/j.jare.2021.04.00235024197
    [Google Scholar]
  13. ChakrabortyR. RenuK. EladlM.A. El-SherbinyM. ElsherbiniD.M.A. MirzaA.K. VellingiriB. IyerM. DeyA. Valsala GopalakrishnanA. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents.Biomed. Pharmacother.202215111311910.1016/j.biopha.2022.11311935613529
    [Google Scholar]
  14. GhoshP. DeyT. ChattopadhyayA. BandyopadhyayD. An insight into the ameliorative effects of melatonin against chromium induced oxidative stress and DNA damage: A review.Melatonin Research20214337740710.32794/mr112500101
    [Google Scholar]
  15. OginawatiK. SusetyoS.H. RosalynF.A. KurniawanS.B. AbdullahS.R.S. Risk analysis of inhaled hexavalent chromium (Cr6+) exposure on blacksmiths from industrial area.Environ. Sci. Pollut. Res. Int.20212811140001400810.1007/s11356‑020‑11590‑633201502
    [Google Scholar]
  16. HesselE.V.S. StaalY.C.M. PiersmaA.H. den Braver-SewradjS.P. EzendamJ. Occupational exposure to hexavalent chromium. Part I. Hazard assessment of non-cancer health effects.Regul. Toxicol. Pharmacol.202112610504810.1016/j.yrtph.2021.10504834563613
    [Google Scholar]
  17. MullerC.D. GarciaS.C. BruckerN. GoethelG. SauerE. LacerdaL.M. OliveiraE. TrombiniT.L. MachadoA.B. PressottoA. RechV.C. KlauckC.R. Basso da SilvaL. GiodaA. FeksaL.R. Occupational risk assessment of exposure to metals in chrome plating workers.Drug Chem. Toxicol.202245256056710.1080/01480545.2020.173152732106715
    [Google Scholar]
  18. FengH. HaF. HuG. WuY. YuS. JiZ. FengW. WangT. JiaG. Concentration of chromium in whole blood and erythrocytes showed different relationships with serum apolipoprotein levels in Cr(VI) exposed subjects.J. Trace Elem. Med. Biol.20185038439210.1016/j.jtemb.2018.08.00330262309
    [Google Scholar]
  19. PanC.H. JengH.A. LaiC.H. Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium.J. Expo. Sci. Environ. Epidemiol.2018281768310.1038/jes.2016.8528120834
    [Google Scholar]
  20. XuJ. ZhaoM. PeiL. ZhangR. LiuX. WeiL. YangM. XuQ. Oxidative stress and DNA damage in a long-term hexavalent chromium-exposed population in North China: A cross-sectional study.BMJ Open201886e02147010.1136/bmjopen‑2017‑02147029950470
    [Google Scholar]
  21. MohantyS. BenyaA. HotaS. KumarM.S. SinghS. Eco-toxicity of hexavalent chromium and its adverse impact on environment and human health in Sukinda Valley of India: A review on pollution and prevention strategies.ECE20235465410.1016/j.enceco.2023.01.002
    [Google Scholar]
  22. MehmoodK. AhmadH.R. Saifullah Quantitative assessment of human health risk posed with chromium in waste, ground, and surface water in an industrial hub of Pakistan.Arab. J. Geosci.201912928310.1007/s12517‑019‑4470‑5
    [Google Scholar]
  23. Di GiuseppeA. Review of anthropogenic Cr (VI) emissions in Spain and the EU; current situation and possible improvements.Doctoral dissertation, ETSI_Energia202174
    [Google Scholar]
  24. ZhaoY. ZhangH. HaoD. WangJ. ZhangD. SunZ. LiuC. Selenium alleviates chromium (VI)-induced ileum damage and cecal microbial disturbances in mice.Biol. Trace Elem. Res.2022200114750476110.1007/s12011‑021‑03061‑x35031963
    [Google Scholar]
  25. SuljevićD. SulejmanovićJ. FočakM. HalilovićE. PupalovićD. HasićA. AlijagicA. Assessing hexavalent chromium tissue-specific accumulation patterns and induced physiological responses to probe chromium toxicity in Coturnix japonica quail.Chemosphere202126612900510.1016/j.chemosphere.2020.12900533279236
    [Google Scholar]
  26. WangM. YanW. ChuM. LiT. LiuZ. YuY. HuangY. ZhuT. WanM. MaoC. ShiD. Erythrocyte membrane-wrapped magnetic nanotherapeutic agents for reduction and removal of blood Cr (VI).ACS Appl. Mater. Interfaces20201225280142802310.1021/acsami.0c0643732525652
    [Google Scholar]
  27. DeLougheryZ. LuczakM.W. Ortega-AtienzaS. ZhitkovichA. DNA double-strand breaks by Cr(VI) are targeted to euchromatin and cause ATR-dependent phosphorylation of histone H2AX and its ubiquitination.Toxicol. Sci.20151431546310.1093/toxsci/kfu20725288669
    [Google Scholar]
  28. QuievrynG. PetersonE. MesserJ. ZhitkovichA. Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells.Biochemistry20034241062107010.1021/bi027154712549927
    [Google Scholar]
  29. WangZ. WuJ. HumphriesB. KondoK. JiangY. ShiX. YangC. Upregulation of histone-lysine methyltransferases plays a causal role in hexavalent chromium-induced cancer stem cell-like property and cell transformation.Toxicol. Appl. Pharmacol.2018342223010.1016/j.taap.2018.01.02229391238
    [Google Scholar]
  30. FengH. LiuJ. HuG. JiaG. The role of epigenetics in the toxic effects induced by hexavalent chromium.Reactive Oxygen Species201851410711710.20455/ros.2018.821
    [Google Scholar]
  31. MandalA.K. Chromium induced developments of diseases and their inhibitions by cargos.Asian J. Biochem. Genet. Mol. Biol.202212410811910.9734/ajbgmb/2022/v12i4274
    [Google Scholar]
  32. ZhaoL. IslamR. WangY. ZhangX. LiuL.Z. Epigenetic regulation in chromium-, nickel- and cadmium-induced carcinogenesis.Cancers20221423576810.3390/cancers1423576836497250
    [Google Scholar]
  33. ChenQ.Y. MurphyA. SunH. CostaM. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis.Toxicol. Appl. Pharmacol.201937711463610.1016/j.taap.2019.11463631228494
    [Google Scholar]
  34. PavesiT. MoreiraJ.C. Mechanisms and individuality in chromium toxicity in humans.J. Appl. Toxicol.20204091183119710.1002/jat.396532166774
    [Google Scholar]
  35. WakemanT.P. YangA. DalalN.S. BoohakerR.J. ZengQ. DingQ. XuB. DNA mismatch repair protein Mlh1 is required for tetravalent chromium intermediate-induced DNA damage.Oncotarget2017848839758398510.18632/oncotarget.2015029137397
    [Google Scholar]
  36. ChenD. KluzT. FangL. ZhangX. SunH. JinC. CostaM. Hexavalent chromium (Cr(VI)) down-regulates acetylation of histone H4 at lysine 16 through induction of stressor protein Nupr1.PLoS One2016116e015731710.1371/journal.pone.015731727285315
    [Google Scholar]
  37. XiaH. YingS. FengL. WangH. YaoC. LiT. ZhangY. FuS. DingD. GuoX. TongY. WangX. ChenZ. JiangZ. ZhangX. LemosB. LouJ. Decreased 8-oxoguanine DNA glycosylase 1 (hOGG1) expression and DNA oxidation damage induced by Cr (VI).Chem. Biol. Interact.2019299445110.1016/j.cbi.2018.11.01930496737
    [Google Scholar]
  38. WiseJ.P.Jr YoungJ.L. CaiJ. CaiL. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives.Environ. Int.202215810687710.1016/j.envint.2021.10687734547640
    [Google Scholar]
  39. LiH. ShiJ. GaoH. YangX. FuY. PengY. XiaY. ZhouD. Hexavalent chromium causes apoptosis and autophagy by inducing mitochondrial dysfunction and oxidative stress in broiler cardiomyocytes.Biol. Trace Elem. Res.202220062866287510.1007/s12011‑021‑02877‑x34390448
    [Google Scholar]
  40. SinghV. SinghN. VermaM. KamalR. TiwariR. Sanjay ChivateM. RaiS.N. KumarA. SinghA. SinghM.P. VamanuE. MishraV. Hexavalent-chromium-induced oxidative stress and the protective role of antioxidants against cellular toxicity.Antioxidants20221112237510.3390/antiox1112237536552581
    [Google Scholar]
  41. PisoschiA.M. PopA. IordacheF. StancaL. PredoiG. SerbanA.I. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status.Eur. J. Med. Chem.202120911289110.1016/j.ejmech.2020.11289133032084
    [Google Scholar]
  42. Toboła-WróbelK. PietrygaM. DydowiczP. NapierałaM. BrązertJ. FlorekE. Association of oxidative stress on pregnancy.Oxid. Med. Cell. Longev.20202020639852010.1155/2020/639852033014274
    [Google Scholar]
  43. JoardarN. Guevara-FloresA. Martínez-GonzálezJ.J. Sinha BabuS.P. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era.Int. J. Biol. Macromol.2020165Pt A24926710.1016/j.ijbiomac.2020.09.09632961182
    [Google Scholar]
  44. Balali-MoodM. NaseriK. TahergorabiZ. KhazdairM.R. SadeghiM. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic.Front. Pharmacol.20211264397210.3389/fphar.2021.64397233927623
    [Google Scholar]
  45. MohamedA.A.R. El-HouseinyW. El-MurrA.E. EbraheimL.L.M. AhmedA.I. El-HakimY.M.A. Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: Role of curcumin supplemented diet.Ecotoxicol. Environ. Saf.202018810989010.1016/j.ecoenv.2019.10989031704321
    [Google Scholar]
  46. GavrilescuM. Enhancing phytoremediation of soils polluted with heavy metals.Curr. Opin. Biotechnol.202274213110.1016/j.copbio.2021.10.02434781102
    [Google Scholar]
  47. SinghV. SinghJ. MishraV. Development of a cost-effective, recyclable and viable metal ion doped adsorbent for simultaneous adsorption and reduction of toxic Cr (VI) ions.J. Environ. Chem. Eng.20219210512410.1016/j.jece.2021.105124
    [Google Scholar]
  48. WakeelA. XuM. GanY. Chromium-induced reactive oxygen species accumulation by altering the enzymatic antioxidant system and associated cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants.Int. J. Mol. Sci.202021372810.3390/ijms2103072831979101
    [Google Scholar]
  49. CohenM.D. KargacinB. KleinC.B. CostaM. Mechanisms of chromium carcinogenicity and toxicity.Crit. Rev. Toxicol.199323325528110.3109/104084493091050128260068
    [Google Scholar]
  50. Abu ZeidE.H. HusseinM.M.A. AliH. Ascorbic acid protects male rat brain from oral potassium dichromate-induced oxdative DNA damage and apoptotic changes: The expression patterns of caspase-3, P 53, Bax, and Bcl-2 genes.Environ. Sci. Pollut. Res. Int.20182513130561306610.1007/s11356‑018‑1546‑929484617
    [Google Scholar]
  51. GangulyU. KaurU. ChakrabartiS.S. SharmaP. AgrawalB.K. SasoL. ChakrabartiS. Oxidative stress, neuroinflammation, and NADPH oxidase: Implications in the pathogenesis and treatment of Alzheimer’s disease.Oxid. Med. Cell. Longev.202120211708651210.1155/2021/708651233953837
    [Google Scholar]
  52. HusainN. MahmoodR. Taurine attenuates Cr(VI)-induced cellular and DNA damage: An in vitro study using human erythrocytes and lymphocytes.Amino Acids2020521355310.1007/s00726‑019‑02807‑131781908
    [Google Scholar]
  53. El-DemerdashF.M. KarhibM.M. GhanemN.F. Abdel-DaimM.M. El-SayedR.A. Echinacea purpurea root extract mitigates hepatotoxicity, genotoxicity, and ultrastructural changes induced by hexavalent chromium via oxidative stress suppression.Environ. Sci. Pollut. Res. Int.20243118267602677210.1007/s11356‑024‑32763‑738459283
    [Google Scholar]
  54. KovačV. BergantM. ŠčančarJ. PrimožičJ. JamnikP. PoljšakB. Causation of oxidative stress and defense response of a yeast cell model after treatment with orthodontic alloys consisting of metal ions.Antioxidants20211116310.3390/antiox1101006335052565
    [Google Scholar]
  55. ZhangY. BianH. MaY. XiaoY. XiaoF. Cr(VI)-induced overactive mitophagy contributes to mitochondrial loss and cytotoxicity in L02 hepatocytes.Biochem. J.2020477142607261910.1042/BCJ2020026232597464
    [Google Scholar]
  56. WangC. ShangH. ZhangS. WangX. LiuD. ShenM. LiN. JiangY. WeiK. ZhuR. Hexavalent chromium disrupts the skin barrier by targeting ROS-mediated mitochondrial pathway apoptosis in keratinocytes.Chem. Biol. Interact.202337911052310.1016/j.cbi.2023.11052337146930
    [Google Scholar]
  57. MichalakM. Plant-derived antioxidants: Significance in skin health and the ageing process.Int. J. Mol. Sci.202223258510.3390/ijms2302058535054770
    [Google Scholar]
  58. SunY. DengZ. LiuR. ZhangH. ZhuH. JiangL. TsaoR. A comprehensive profiling of free, conjugated and bound phenolics and lipophilic antioxidants in red and green lentil processing by-products.Food Chem.202032512692510.1016/j.foodchem.2020.12692532387929
    [Google Scholar]
  59. OliynykI. Limits of application of initiated chemiluminescence in monitoring of oncological process of mucous membrane of mouth and larynx.Luminesc. : J. Biol. Chem. Luminesc.20163161213121910.1002/bio.3093
    [Google Scholar]
  60. OliynykI. Criteria analysis for kinetics curves of initiated blood serum chemiluminescence.Acta Biochim. Pol.202370365566010.18388/abp.2020_680737677090
    [Google Scholar]
  61. AsantewaaG. HarrisI.S. Glutathione and its precursors in cancer.Curr. Opin. Biotechnol.20216829229910.1016/j.copbio.2021.03.00133819793
    [Google Scholar]
  62. ClarkeM.W. BurnettJ.R. CroftK.D. Vitamin E in human health and disease.Crit. Rev. Clin. Lab. Sci.200845541745010.1080/1040836080211862518712629
    [Google Scholar]
  63. KatsuyamaM. MatsunoK. Yabe-NishimuraC. Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme.J. Clin. Biochem. Nutr.201250192210.3164/jcbn.11‑06SR22247596
    [Google Scholar]
  64. SaitoY. Diverse cytoprotective actions of vitamin E isoforms- Role as peroxyl radical scavengers and complementary functions with selenoproteins.Free Radic. Biol. Med.202117512112910.1016/j.freeradbiomed.2021.08.23434481936
    [Google Scholar]
  65. RosalovskyV.P. GrabovskaS.V. SalyhaY.T. Changes in glutathione system and lipid peroxidation in rat blood during the first hour after chlorpyrifos exposure.Ukr. Biochem. J.201587512413210.15407/ubj87.05.12426717603
    [Google Scholar]
  66. SeydiE. MahzariF. ZareiM.H. RamazaniM. PourahmadJ. Hexavalent chromium induced oxidative stress and toxicity on isolated human lymphocytes.Int. Pharm. Acta202031e110.22037/ipa.v3i1.28616
    [Google Scholar]
  67. SoudaniN. SefiM. Ben AmaraI. BoudawaraT. ZeghalN. Protective effects of Selenium (Se) on Chromium (VI) induced nephrotoxicity in adult rats.Ecotoxicol. Environ. Saf.201073467167810.1016/j.ecoenv.2009.10.00219913299
    [Google Scholar]
  68. Boşgelmezİ.İ. GüvendikG. N-acetyl-L-cysteine protects liver and kidney against chromium (VI)-induced oxidative stress in mice.Biol. Trace Elem. Res.20171781445310.1007/s12011‑016‑0901‑227888451
    [Google Scholar]
  69. PerederiyD.B. The influence of heat stress on the antioxidant protection glutathione link and the content of lipid peroxidation products in chicken liver.Anim. Biol. Leiden Neth.2023254515710.15407/animbiol25.04.051
    [Google Scholar]
  70. SalyhaN.O. The effect of L-glutamic acid and N-acetylcysteine administration on biochemical blood parameters in rats treated with CCl(4).Ukr. Biochem. J.2023952687410.15407/ubj95.02.068
    [Google Scholar]
  71. Mirończuk-ChodakowskaI. WitkowskaA.M. ZujkoM.E. Endogenous non-enzymatic antioxidants in the human body.Adv. Med. Sci.2018631687810.1016/j.advms.2017.05.00528822266
    [Google Scholar]
  72. IslamM.N. RaufA. FahadF.I. EmranT.B. MitraS. OlatundeA. ShariatiM.A. RebezovM. RengasamyK.R.R. MubarakM.S. Superoxide dismutase: An updated review on its health benefits and industrial applications.Crit. Rev. Food Sci. Nutr.202262267282730010.1080/10408398.2021.191340033905274
    [Google Scholar]
  73. Boşgelmezİ.İ. GüvendikG. Beneficial effects of N-acetyl-L-cysteine or taurine pre-or post-treatments in the heart, spleen, lung, and testis of hexavalent chromium-exposed mice.Biol. Trace Elem. Res.2019190243744510.1007/s12011‑018‑1571‑z30417263
    [Google Scholar]
  74. Cuevas-MagañaM.Y. Vega-GarcíaC.C. León-ContrerasJ.C. Hernández-PandoR. ZazuetaC. García-NiñoW.R. Ellagic acid ameliorates hexavalent chromium-induced renal toxicity by attenuating oxidative stress, suppressing TNF-α and protecting mitochondria.Toxicol. Appl. Pharmacol.202245411624210.1016/j.taap.2022.11624236108929
    [Google Scholar]
  75. MishraP. PaitalB. JenaS. SwainS.S. KumarS. YadavM.K. ChainyG.B.N. SamantaL. Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFĸB/AKT/mTOR/KEAP1 signalling in rat heart.Sci. Rep.201991740810.1038/s41598‑019‑43320‑531092832
    [Google Scholar]
  76. BojarskiB. BuchkoO. KonderaE. ŁugowskaK. OsikowskiA. TrelaM. WiteskaM. LisM.W. Effects of embryonic exposure to chromium (VI) on blood parameters and liver microstructure of 1-day-old chickens.Poult. Sci.2021100136637110.1016/j.psj.2020.10.01633357701
    [Google Scholar]
  77. RayR.R. Adverse hematological effects of hexavalent chromium: An overview.Interdiscip. Toxicol.201692556510.1515/intox‑2016‑000728652847
    [Google Scholar]
  78. KandpalV. KumarD. BishtR. Protective effect of vitamin E on haematological parameters in chronic toxicity of hexavalent chromium in laboratory chicks.J. Drug Deliv. Ther.20199338839210.22270/jddt.v9i3.2889
    [Google Scholar]
  79. ShatiA.A. Ameliorative effect of vitamin E on potassium dichromate-induced hepatotoxicity in rats.J. King Saud Univ. Sci.201426318118910.1016/j.jksus.2013.12.001
    [Google Scholar]
  80. ObasekiA.I. AlabiG.O. HlangothiB. Therapeutic role of leaf pulp of carpobrotus edulis on chromium VI induced toxicity in wistar rats.Lett. Appl. NanoBioSci.20211133887389610.33263/LIANBS113.38873896
    [Google Scholar]
  81. HusainN. MahmoodR. Hexavalent chromium induces reactive oxygen species and impairs the antioxidant power of human erythrocytes and lymphocytes: Decreased metal reducing and free radical quenching ability of the cells.Toxicol. Ind. Health201733862363510.1177/074823371770389228502229
    [Google Scholar]
  82. CaoX. WangS. BiR. TianS. HuoY. LiuJ. Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage.Chemosphere201922235536310.1016/j.chemosphere.2019.01.13730710761
    [Google Scholar]
  83. Akpoyowvare EjohS. Nonso IheagwamF. Olakunle OlusolaA. Potassium dichromate-induced hepato-and hematotoxicity in rats: Nutritive composition and ameliorative role of acacia nilotica L. leaf.Jundishapur J. Nat. Pharm. Prod.2021162e10434610.5812/jjnpp.104346
    [Google Scholar]
  84. LacerdaL.M. GarciaS.C. da SilvaL.B. de Ávila DornellesM. PresottoA.T. LourençoE.D. de FranceschiI.D. FernandesE. WannmacherC.M.D. BruckerN. SauerE. GiodaA. MachadoA.B. OliveiraE. TrombiniT.L. FeksaL.R. Evaluation of hematological, biochemical parameters and thiol enzyme activity in chrome plating workers.Environ. Sci. Pollut. Res. Int.20192621892190110.1007/s11356‑018‑3755‑730460648
    [Google Scholar]
  85. YangQ. HanB. XueJ. LvY. LiS. LiuY. WuP. WangX. ZhangZ. Hexavalent chromium induces mitochondrial dynamics disorder in rat liver by inhibiting AMPK/PGC-1α signaling pathway.Environ. Pollut.2020265Pt A11485510.1016/j.envpol.2020.11485532474337
    [Google Scholar]
  86. ZhengX. LiS. LiJ. LvY. WangX. WuP. YangQ. TangY. LiuY. ZhangZ. Hexavalent chromium induces renal apoptosis and autophagy via disordering the balance of mitochondrial dynamics in rats.Ecotoxicol. Environ. Saf.202020411106110.1016/j.ecoenv.2020.11106132750588
    [Google Scholar]
  87. MaY. LiS. YeS. TangS. HuD. WeiL. XiaoF. Hexavalent chromium inhibits the formation of neutrophil extracellular traps and promotes the apoptosis of neutrophils via AMPK signaling pathway.Ecotoxicol. Environ. Saf.202122311261410.1016/j.ecoenv.2021.11261434385063
    [Google Scholar]
  88. GuoX. YangQ. ZhangW. ChenY. RenJ. GaoA. Associations of blood levels of trace elements and heavy metals with metabolic syndrome in Chinese male adults with microRNA as mediators involved.Environ. Pollut.2019248667310.1016/j.envpol.2019.02.01530771749
    [Google Scholar]
  89. El-DemerdashF.M. YousefM.I. ElaswadF.A. Biochemical study on the protective role of folic acid in rabbits treated with chromium (VI).J. Environ. Sci. Health B200641573174610.1080/0360123060070428216785179
    [Google Scholar]
  90. ShimanoH. SatoR. SREBP-regulated lipid metabolism: Convergent physiology - Divergent pathophysiology.Nat. Rev. Endocrinol.2017131271073010.1038/nrendo.2017.9128849786
    [Google Scholar]
  91. XuS. ChenT. DongL. LiT. XueH. GaoB. DingX. WangH. LiH. LiH. Fatty acid synthase promotes breast cancer metastasis by mediating changes in fatty acid metabolism.Oncol. Lett.20212112710.3892/ol.2020.1228833240433
    [Google Scholar]
  92. AlijagicA. IslamagicE. FocakM. SuljevicD. Effects of trivalent and hexavalent dietary chromium on blood biochemical profile in Japanese quails.Bulg. J. Vet. Med.201821447047710.15547/bjvm.1095
    [Google Scholar]
  93. DeyS.K. RoyS. Role of GSH in the amelioration of chromium-induced membrane damage.Toxicol. Environ. Chem.201092226126910.1080/02772240902955669
    [Google Scholar]
  94. OkamotoK. MaruyamaT. KajiY. HaradaM. MawatariS. FujinoT. UyesakaN. Verapamil prevents impairment in filterability of human erythrocytes exposed to oxidative stress.Jpn. J. Physiol.2004541394610.2170/jjphysiol.54.3915040847
    [Google Scholar]
  95. LiuK. HuslerJ. YeJ. LeonardS.S. CutlerD. ChenF. WangS. ZhangZ. DingM. WangL. ShiX. On the mechanism of Cr (VI)-induced carcinogenesis: Dose dependence of uptake and cellular responses.Mol. Cell. Biochem.20012221-222122910.1023/A:101793891868611678606
    [Google Scholar]
  96. BiswasD. DuffleyL. PulinilkunnilT. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis.FASEB J.20193388711873110.1096/fj.201802842RR31084571
    [Google Scholar]
  97. LubenetsV.I. HavryliakV.V. PylypetsA.Z. NakonechnaA.V. Changes in the spectrum of proteins and phospholipids in tissues of rats exposed to thiosulfonates.Regul. Mech. Biosyst.20189449550010.15421/021874
    [Google Scholar]
  98. RennieM.J. TiptonK.D. Protein and amino acid metabolism during and after exercise and the effects of nutrition.Annu. Rev. Nutr.200020145748310.1146/annurev.nutr.20.1.45710940342
    [Google Scholar]
  99. ShiY.C. ZhaoY.R. ZhangA.Z. ZhaoL. YuZ. LiM.Y. Hexavalent chromium-induced toxic effects on the hematology, redox state, and apoptosis in Cyprinus carpio.Reg. Stud. Mar. Sci.20225610267610.1016/j.rsma.2022.102676
    [Google Scholar]
  100. El-DemerdashF.M. El-SayedR.A. Abdel-DaimM.M. Hepatoprotective potential of Rosmarinus officinalis essential oil against hexavalent chromium-induced hematotoxicity, biochemical, histological, and immunohistochemical changes in male rats.Environ. Sci. Pollut. Res. Int.20212814174451745610.1007/s11356‑020‑12126‑833394444
    [Google Scholar]
  101. SumindaG.G. MinY. KimM. HeoY. DoK. SonY.O. Hexavalent chromium induces cartilage degeneration and osteoarthritis pathogenesis.Expo. Health202211510.1007/s12403‑022‑00502‑3
    [Google Scholar]
  102. BuchkoO. HavryliakV. PylypetsA. BuchkoT. Effect of food supplement of humic origin on the hematological and biochemical parameters in the Cr(VI) exposed rats.J. Res. Pharm.202125327127610.29228/jrp.17
    [Google Scholar]
  103. ShahS. DamareS. Proteomic response of marine-derived Staphylococcus cohnii #NIOSBK35 to varying Cr(vi) concentrations.Metallomics20191191465147110.1039/c9mt00089e31237606
    [Google Scholar]
  104. GeH. LiZ. JiangL. LiQ. GengC. YaoX. ShiX. LiuY. CaoJ. Cr (VI) induces crosstalk between apoptosis and autophagy through endoplasmic reticulum stress in A549 cells.Chem. Biol. Interact.2019298354210.1016/j.cbi.2018.10.02430416085
    [Google Scholar]
  105. ZhaoY. YanJ. LiA.P. ZhangZ.L. LiZ.R. GuoK.J. ZhaoK.C. RuanQ. GuoL. GuoL. Bone marrow mesenchymal stem cells could reduce the toxic effects of hexavalent chromium on the liver by decreasing endoplasmic reticulum stress-mediated apoptosis via SIRT1/HIF-1α signaling pathway in rats.Toxicol. Lett.2019310313810.1016/j.toxlet.2019.04.00730974164
    [Google Scholar]
  106. FengH. FengQ. XiaoT. LiuT. GuanB. FirdousS.M. HuangJ. Ipomoea staphylina attenuates potassium dichromate-induced nephrotoxicity in wistar rats via antioxidant and antiapoptotic effects.Dokl. Biochem. Biophys.2021499128929510.1134/S160767292104007434426928
    [Google Scholar]
  107. XiaoY. ZengM. YinL. LiN. XiaoF. Clusterin increases mitochondrial respiratory chain complex I activity and protects against hexavalent chromium-induced cytotoxicity in L-02 hepatocytes.Toxicol. Res.201881152410.1039/C8TX00231B30713657
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968319843241207142638
Loading
/content/journals/ccb/10.2174/0122127968319843241207142638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test