Skip to content
2000
image of Influence of Chromium(VI) on the Environment and Metabolic Processes in the Body

Abstract

Cr(VI) is a heavy metal characterized by potent toxic, carcinogenic, mutagenic, and prooxidant properties. Cr(VI) is one of the eight metals that are among the most toxic compounds and are of great concern to scientists due to the global risk to human health. In recent years, Cr(VI) has attracted the attention of environmental researchers due to the increased level of ecosystem contamination by Cr compounds in many countries. The toxic and carcinogenic effects of Cr(VI) in cells of living organisms are realized through the activation of three main mechanisms: oxidative stress, direct damage to cellular DNA, and disruption of epigenetic mechanisms of genome regulation. The review brings together updated data on the main mechanisms of Cr(VI) toxicity and the protective role of antioxidants in cells of living organisms poisoned by the corresponding heavy metal. The review also summarizes the currently available information on the negative impact of Cr(VI) compounds on the environment and Cr(VI)-induced disorders of pro/antioxidant status, hematological profile, and lipid and protein metabolism.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968319843241207142638
2024-12-23
2025-01-19
Loading full text...

Full text loading...

References

  1. Saha R. Nandi R. Saha B. Sources and toxicity of hexavalent chromium. J. Coord. Chem. 2011 64 10 1782 1806 10.1080/00958972.2011.583646
    [Google Scholar]
  2. Mehany H.A. Abo-youssef A.M. Ahmed L.A. Arafa E.S.A. Abd El-Latif H.A. Protective effect of vitamin E and atorvastatin against potassium dichromate-induced nephrotoxicity in rats. Beni. Suef Univ. J. Basic Appl. Sci. 2013 2 2 96 102 10.1016/j.bjbas.2013.02.002
    [Google Scholar]
  3. He X. Li P. Surface water pollution in the middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr6+): Occurrence, sources and health risks. Expo. Health 2020 12 3 385 401 10.1007/s12403‑020‑00344‑x
    [Google Scholar]
  4. Orabi S.H. Shawky S.M. Ameliorative effects of grape seed oil on chromium-induced nephrotoxicity and oxidative stress in rats. Slov. Vet. Res. 2020 57 3 123 131 10.26873/SVR‑967‑2020
    [Google Scholar]
  5. Hassan M. Abd-Elwahab W. Megahed R. Mohammed A. An evaluation of hepatotoxicity, nephrotoxicity, and genotoxicity induced by acute toxicity of hexavalent chromium and comparison of the possible protective role of selenium and vitamin E on these effects. Ain Shams J. Forensic. Med. Clin. Toxicol. 2019 33 2 48 58 10.21608/ajfm.2019.36574
    [Google Scholar]
  6. Li X. He S. Zhou J. Yu X. Li L. Liu Y. Li W. Cr (VI) induces abnormalities in glucose and lipid metabolism through ROS/Nrf2 signaling. Ecotoxicol. Environ. Saf. 2021 219 112320 10.1016/j.ecoenv.2021.112320 33991932
    [Google Scholar]
  7. DesMarais T.L. Costa M. Mechanisms of chromium-induced toxicity. Curr. Opin. Toxicol. 2019 14 1 7 10.1016/j.cotox.2019.05.003 31511838
    [Google Scholar]
  8. Eman S. Farag A.I. Chromium-induced hepatotoxicity and potential protective effect of selenium in adult male albino rat: A histological, immuno-histochemical and molecular study. Med. J. Cairo Univ. 2020 88 3 187 196 10.21608/mjcu.2020.93977
    [Google Scholar]
  9. Fedala A. Adjroud O. Abid-Essefi S. Timoumi R. Protective effects of selenium and zinc against potassium dichromate-induced thyroid disruption, oxidative stress, and DNA damage in pregnant Wistar rats. Environ. Sci. Pollut. Res. Int. 2021 28 18 22563 22576 10.1007/s11356‑020‑12268‑9 33423197
    [Google Scholar]
  10. Fu S.C. Liu J.M. Lee K.I. Tang F.C. Fang K.M. Yang C.Y. Su C.C. Chen H.H. Hsu R.J. Chen Y.W. Cr(VI) induces ROS-mediated mitochondrial-dependent apoptosis in neuronal cells via the activation of Akt/ERK/AMPK signaling pathway. Toxicol. In Vitro 2020 65 104795 10.1016/j.tiv.2020.104795 32061800
    [Google Scholar]
  11. Slejko F.F. Petrini R. Lutman A. Forte C. Ghezzi L. Chromium isotopes tracking the resurgence of hexavalent chromium contamination in a past-contaminated area in the Friuli Venezia Giulia Region, northern Italy. Isotopes Environ. Health Stud. 2019 55 1 56 69 10.1080/10256016.2018.1560278 30621468
    [Google Scholar]
  12. Yang Q. Han B. Li S. Wang X. Wu P. Liu Y. Li J. Han B. Deng N. Zhang Z. The link between deacetylation and hepatotoxicity induced by exposure to hexavalent chromium. J. Adv. Res. 2021 35 129 140 10.1016/j.jare.2021.04.002 35024197
    [Google Scholar]
  13. Chakraborty R. Renu K. Eladl M.A. El-Sherbiny M. Elsherbini D.M.A. Mirza A.K. Vellingiri B. Iyer M. Dey A. Valsala Gopalakrishnan A. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biomed. Pharmacother. 2022 151 113119 10.1016/j.biopha.2022.113119 35613529
    [Google Scholar]
  14. Ghosh P. Dey T. Chattopadhyay A. Bandyopadhyay D. An insight into the ameliorative effects of melatonin against chromium induced oxidative stress and DNA damage: A review. Melatonin Research 2021 4 3 377 407 10.32794/mr112500101
    [Google Scholar]
  15. Oginawati K. Susetyo S.H. Rosalyn F.A. Kurniawan S.B. Abdullah S.R.S. Risk analysis of inhaled hexavalent chromium (Cr6+) exposure on blacksmiths from industrial area. Environ. Sci. Pollut. Res. Int. 2021 28 11 14000 14008 10.1007/s11356‑020‑11590‑6 33201502
    [Google Scholar]
  16. Hessel E.V.S. Staal Y.C.M. Piersma A.H. den Braver-Sewradj S.P. Ezendam J. Occupational exposure to hexavalent chromium. Part I. Hazard assessment of non-cancer health effects. Regul. Toxicol. Pharmacol. 2021 126 105048 10.1016/j.yrtph.2021.105048 34563613
    [Google Scholar]
  17. Muller C.D. Garcia S.C. Brucker N. Goethel G. Sauer E. Lacerda L.M. Oliveira E. Trombini T.L. Machado A.B. Pressotto A. Rech V.C. Klauck C.R. Basso da Silva L. Gioda A. Feksa L.R. Occupational risk assessment of exposure to metals in chrome plating workers. Drug Chem. Toxicol. 2022 45 2 560 567 10.1080/01480545.2020.1731527 32106715
    [Google Scholar]
  18. Feng H. Ha F. Hu G. Wu Y. Yu S. Ji Z. Feng W. Wang T. Jia G. Concentration of chromium in whole blood and erythrocytes showed different relationships with serum apolipoprotein levels in Cr(VI) exposed subjects. J. Trace Elem. Med. Biol. 2018 50 384 392 10.1016/j.jtemb.2018.08.003 30262309
    [Google Scholar]
  19. Pan C.H. Jeng H.A. Lai C.H. Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium. J. Expo. Sci. Environ. Epidemiol. 2018 28 1 76 83 10.1038/jes.2016.85 28120834
    [Google Scholar]
  20. Xu J. Zhao M. Pei L. Zhang R. Liu X. Wei L. Yang M. Xu Q. Oxidative stress and DNA damage in a long-term hexavalent chromium-exposed population in North China: A cross-sectional study. BMJ Open 2018 8 6 e021470 10.1136/bmjopen‑2017‑021470 29950470
    [Google Scholar]
  21. Mohanty S. Benya A. Hota S. Kumar M.S. Singh S. Eco-toxicity of hexavalent chromium and its adverse impact on environment and human health in Sukinda Valley of India: A review on pollution and prevention strategies. ECE 2023 5 46 54 10.1016/j.enceco.2023.01.002
    [Google Scholar]
  22. Mehmood K. Ahmad H.R. Saifullah Quantitative assessment of human health risk posed with chromium in waste, ground, and surface water in an industrial hub of Pakistan. Arab. J. Geosci. 2019 12 9 283 10.1007/s12517‑019‑4470‑5
    [Google Scholar]
  23. Di Giuseppe A. Review of anthropogenic Cr (VI) emissions in Spain and the EU; current situation and possible improvements. Doctoral dissertation, ETSI_Energia 2021 74
    [Google Scholar]
  24. Zhao Y. Zhang H. Hao D. Wang J. Zhang D. Sun Z. Liu C. Selenium alleviates chromium (VI)-induced ileum damage and cecal microbial disturbances in mice. Biol. Trace Elem. Res. 2022 200 11 4750 4761 10.1007/s12011‑021‑03061‑x 35031963
    [Google Scholar]
  25. Suljević D. Sulejmanović J. Fočak M. Halilović E. Pupalović D. Hasić A. Alijagic A. Assessing hexavalent chromium tissue-specific accumulation patterns and induced physiological responses to probe chromium toxicity in Coturnix japonica quail. Chemosphere 2021 266 129005 10.1016/j.chemosphere.2020.129005 33279236
    [Google Scholar]
  26. Wang M. Yan W. Chu M. Li T. Liu Z. Yu Y. Huang Y. Zhu T. Wan M. Mao C. Shi D. Erythrocyte membrane-wrapped magnetic nanotherapeutic agents for reduction and removal of blood Cr (VI). ACS Appl. Mater. Interfaces 2020 12 25 28014 28023 10.1021/acsami.0c06437 32525652
    [Google Scholar]
  27. DeLoughery Z. Luczak M.W. Ortega-Atienza S. Zhitkovich A. DNA double-strand breaks by Cr(VI) are targeted to euchromatin and cause ATR-dependent phosphorylation of histone H2AX and its ubiquitination. Toxicol. Sci. 2015 143 1 54 63 10.1093/toxsci/kfu207 25288669
    [Google Scholar]
  28. Quievryn G. Peterson E. Messer J. Zhitkovich A. Genotoxicity and mutagenicity of chromium(VI)/ascorbate-generated DNA adducts in human and bacterial cells. Biochemistry 2003 42 4 1062 1070 10.1021/bi0271547 12549927
    [Google Scholar]
  29. Wang Z. Wu J. Humphries B. Kondo K. Jiang Y. Shi X. Yang C. Upregulation of histone-lysine methyltransferases plays a causal role in hexavalent chromium-induced cancer stem cell-like property and cell transformation. Toxicol. Appl. Pharmacol. 2018 342 22 30 10.1016/j.taap.2018.01.022 29391238
    [Google Scholar]
  30. Feng H. Liu J. Hu G. Jia G. The role of epigenetics in the toxic effects induced by hexavalent chromium. Reactive Oxygen Species 2018 5 14 107 117 10.20455/ros.2018.821
    [Google Scholar]
  31. Mandal A.K. Chromium induced developments of diseases and their inhibitions by cargos. Asian J. Biochem. Genet. Mol. Biol. 2022 12 4 108 119 10.9734/ajbgmb/2022/v12i4274
    [Google Scholar]
  32. Zhao L. Islam R. Wang Y. Zhang X. Liu L.Z. Epigenetic regulation in chromium-, nickel- and cadmium-induced carcinogenesis. Cancers 2022 14 23 5768 10.3390/cancers14235768 36497250
    [Google Scholar]
  33. Chen Q.Y. Murphy A. Sun H. Costa M. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicol. Appl. Pharmacol. 2019 377 114636 10.1016/j.taap.2019.114636 31228494
    [Google Scholar]
  34. Pavesi T. Moreira J.C. Mechanisms and individuality in chromium toxicity in humans. J. Appl. Toxicol. 2020 40 9 1183 1197 10.1002/jat.3965 32166774
    [Google Scholar]
  35. Wakeman T.P. Yang A. Dalal N.S. Boohaker R.J. Zeng Q. Ding Q. Xu B. DNA mismatch repair protein Mlh1 is required for tetravalent chromium intermediate-induced DNA damage. Oncotarget 2017 8 48 83975 83985 10.18632/oncotarget.20150 29137397
    [Google Scholar]
  36. Chen D. Kluz T. Fang L. Zhang X. Sun H. Jin C. Costa M. Hexavalent chromium (Cr(VI)) down-regulates acetylation of histone H4 at lysine 16 through induction of stressor protein Nupr1. PLoS One 2016 11 6 e0157317 10.1371/journal.pone.0157317 27285315
    [Google Scholar]
  37. Xia H. Ying S. Feng L. Wang H. Yao C. Li T. Zhang Y. Fu S. Ding D. Guo X. Tong Y. Wang X. Chen Z. Jiang Z. Zhang X. Lemos B. Lou J. Decreased 8-oxoguanine DNA glycosylase 1 (hOGG1) expression and DNA oxidation damage induced by Cr (VI). Chem. Biol. Interact. 2019 299 44 51 10.1016/j.cbi.2018.11.019 30496737
    [Google Scholar]
  38. Wise J.P. Jr Young J.L. Cai J. Cai L. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. Environ. Int. 2022 158 106877 10.1016/j.envint.2021.106877 34547640
    [Google Scholar]
  39. Li H. Shi J. Gao H. Yang X. Fu Y. Peng Y. Xia Y. Zhou D. Hexavalent chromium causes apoptosis and autophagy by inducing mitochondrial dysfunction and oxidative stress in broiler cardiomyocytes. Biol. Trace Elem. Res. 2022 200 6 2866 2875 10.1007/s12011‑021‑02877‑x 34390448
    [Google Scholar]
  40. Singh V. Singh N. Verma M. Kamal R. Tiwari R. Sanjay Chivate M. Rai S.N. Kumar A. Singh A. Singh M.P. Vamanu E. Mishra V. Hexavalent-chromium-induced oxidative stress and the protective role of antioxidants against cellular toxicity. Antioxidants 2022 11 12 2375 10.3390/antiox11122375 36552581
    [Google Scholar]
  41. Pisoschi A.M. Pop A. Iordache F. Stanca L. Predoi G. Serban A.I. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021 209 112891 10.1016/j.ejmech.2020.112891 33032084
    [Google Scholar]
  42. Toboła-Wróbel K. Pietryga M. Dydowicz P. Napierała M. Brązert J. Florek E. Association of oxidative stress on pregnancy. Oxid. Med. Cell. Longev. 2020 2020 6398520 10.1155/2020/6398520 33014274
    [Google Scholar]
  43. Joardar N. Guevara-Flores A. Martínez-González J.J. Sinha Babu S.P. Thiol antioxidant thioredoxin reductase: A prospective biochemical crossroads between anticancer and antiparasitic treatments of the modern era. Int. J. Biol. Macromol. 2020 165 Pt A 249 267 10.1016/j.ijbiomac.2020.09.096 32961182
    [Google Scholar]
  44. Balali-Mood M. Naseri K. Tahergorabi Z. Khazdair M.R. Sadeghi M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021 12 643972 10.3389/fphar.2021.643972 33927623
    [Google Scholar]
  45. Mohamed A.A.R. El-Houseiny W. El-Murr A.E. Ebraheim L.L.M. Ahmed A.I. El-Hakim Y.M.A. Effect of hexavalent chromium exposure on the liver and kidney tissues related to the expression of CYP450 and GST genes of Oreochromis niloticus fish: Role of curcumin supplemented diet. Ecotoxicol. Environ. Saf. 2020 188 109890 10.1016/j.ecoenv.2019.109890 31704321
    [Google Scholar]
  46. Gavrilescu M. Enhancing phytoremediation of soils polluted with heavy metals. Curr. Opin. Biotechnol. 2022 74 21 31 10.1016/j.copbio.2021.10.024 34781102
    [Google Scholar]
  47. Singh V. Singh J. Mishra V. Development of a cost-effective, recyclable and viable metal ion doped adsorbent for simultaneous adsorption and reduction of toxic Cr (VI) ions. J. Environ. Chem. Eng. 2021 9 2 105124 10.1016/j.jece.2021.105124
    [Google Scholar]
  48. Wakeel A. Xu M. Gan Y. Chromium-induced reactive oxygen species accumulation by altering the enzymatic antioxidant system and associated cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants. Int. J. Mol. Sci. 2020 21 3 728 10.3390/ijms21030728 31979101
    [Google Scholar]
  49. Cohen M.D. Kargacin B. Klein C.B. Costa M. Mechanisms of chromium carcinogenicity and toxicity. Crit. Rev. Toxicol. 1993 23 3 255 281 10.3109/10408449309105012 8260068
    [Google Scholar]
  50. Abu Zeid E.H. Hussein M.M.A. Ali H. Ascorbic acid protects male rat brain from oral potassium dichromate-induced oxdative DNA damage and apoptotic changes: The expression patterns of caspase-3, P 53, Bax, and Bcl-2 genes. Environ. Sci. Pollut. Res. Int. 2018 25 13 13056 13066 10.1007/s11356‑018‑1546‑9 29484617
    [Google Scholar]
  51. Ganguly U. Kaur U. Chakrabarti S.S. Sharma P. Agrawal B.K. Saso L. Chakrabarti S. Oxidative stress, neuroinflammation, and NADPH oxidase: Implications in the pathogenesis and treatment of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2021 2021 1 7086512 10.1155/2021/7086512 33953837
    [Google Scholar]
  52. Husain N. Mahmood R. Taurine attenuates Cr(VI)-induced cellular and DNA damage: An in vitro study using human erythrocytes and lymphocytes. Amino Acids 2020 52 1 35 53 10.1007/s00726‑019‑02807‑1 31781908
    [Google Scholar]
  53. El-Demerdash F.M. Karhib M.M. Ghanem N.F. Abdel-Daim M.M. El-Sayed R.A. Echinacea purpurea root extract mitigates hepatotoxicity, genotoxicity, and ultrastructural changes induced by hexavalent chromium via oxidative stress suppression. Environ. Sci. Pollut. Res. Int. 2024 31 18 26760 26772 10.1007/s11356‑024‑32763‑7 38459283
    [Google Scholar]
  54. Kovač V. Bergant M. Ščančar J. Primožič J. Jamnik P. Poljšak B. Causation of oxidative stress and defense response of a yeast cell model after treatment with orthodontic alloys consisting of metal ions. Antioxidants 2021 11 1 63 10.3390/antiox11010063 35052565
    [Google Scholar]
  55. Zhang Y. Bian H. Ma Y. Xiao Y. Xiao F. Cr(VI)-induced overactive mitophagy contributes to mitochondrial loss and cytotoxicity in L02 hepatocytes. Biochem. J. 2020 477 14 2607 2619 10.1042/BCJ20200262 32597464
    [Google Scholar]
  56. Wang C. Shang H. Zhang S. Wang X. Liu D. Shen M. Li N. Jiang Y. Wei K. Zhu R. Hexavalent chromium disrupts the skin barrier by targeting ROS-mediated mitochondrial pathway apoptosis in keratinocytes. Chem. Biol. Interact. 2023 379 110523 10.1016/j.cbi.2023.110523 37146930
    [Google Scholar]
  57. Michalak M. Plant-derived antioxidants: Significance in skin health and the ageing process. Int. J. Mol. Sci. 2022 23 2 585 10.3390/ijms23020585 35054770
    [Google Scholar]
  58. Sun Y. Deng Z. Liu R. Zhang H. Zhu H. Jiang L. Tsao R. A comprehensive profiling of free, conjugated and bound phenolics and lipophilic antioxidants in red and green lentil processing by-products. Food Chem. 2020 325 126925 10.1016/j.foodchem.2020.126925 32387929
    [Google Scholar]
  59. Oliynyk I. Limits of application of initiated chemiluminescence in monitoring of oncological process of mucous membrane of mouth and larynx. Luminesc. : J. Biol. Chem. Luminesc. 2016 31 6 1213 1219 10.1002/bio.3093
    [Google Scholar]
  60. Oliynyk I. Criteria analysis for kinetics curves of initiated blood serum chemiluminescence. Acta Biochim. Pol. 2023 70 3 655 660 10.18388/abp.2020_6807 37677090
    [Google Scholar]
  61. Asantewaa G. Harris I.S. Glutathione and its precursors in cancer. Curr. Opin. Biotechnol. 2021 68 292 299 10.1016/j.copbio.2021.03.001 33819793
    [Google Scholar]
  62. Clarke M.W. Burnett J.R. Croft K.D. Vitamin E in human health and disease. Crit. Rev. Clin. Lab. Sci. 2008 45 5 417 450 10.1080/10408360802118625 18712629
    [Google Scholar]
  63. Katsuyama M. Matsuno K. Yabe-Nishimura C. Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. J. Clin. Biochem. Nutr. 2012 50 1 9 22 10.3164/jcbn.11‑06SR 22247596
    [Google Scholar]
  64. Saito Y. Diverse cytoprotective actions of vitamin E isoforms- Role as peroxyl radical scavengers and complementary functions with selenoproteins. Free Radic. Biol. Med. 2021 175 121 129 10.1016/j.freeradbiomed.2021.08.234 34481936
    [Google Scholar]
  65. Rosalovsky V.P. Grabovska S.V. Salyha Y.T. Changes in glutathione system and lipid peroxidation in rat blood during the first hour after chlorpyrifos exposure. Ukr. Biochem. J. 2015 87 5 124 132 10.15407/ubj87.05.124 26717603
    [Google Scholar]
  66. Seydi E. Mahzari F. Zarei M.H. Ramazani M. Pourahmad J. Hexavalent chromium induced oxidative stress and toxicity on isolated human lymphocytes. Int. Pharm. Acta 2020 3 1 e1 10.22037/ipa.v3i1.28616
    [Google Scholar]
  67. Soudani N. Sefi M. Ben Amara I. Boudawara T. Zeghal N. Protective effects of Selenium (Se) on Chromium (VI) induced nephrotoxicity in adult rats. Ecotoxicol. Environ. Saf. 2010 73 4 671 678 10.1016/j.ecoenv.2009.10.002 19913299
    [Google Scholar]
  68. Boşgelmez İ.İ. Güvendik G. N-acetyl-L-cysteine protects liver and kidney against chromium (VI)-induced oxidative stress in mice. Biol. Trace Elem. Res. 2017 178 1 44 53 10.1007/s12011‑016‑0901‑2 27888451
    [Google Scholar]
  69. Perederiy D.B. The influence of heat stress on the antioxidant protection glutathione link and the content of lipid peroxidation products in chicken liver. Anim. Biol. Leiden Neth. 2023 25 4 51 57 10.15407/animbiol25.04.051
    [Google Scholar]
  70. Salyha N.O. The effect of L-glutamic acid and N-acetylcysteine administration on biochemical blood parameters in rats treated with CCl(4). Ukr. Biochem. J. 2023 95 2 68 74 10.15407/ubj95.02.068
    [Google Scholar]
  71. Mirończuk-Chodakowska I. Witkowska A.M. Zujko M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci. 2018 63 1 68 78 10.1016/j.advms.2017.05.005 28822266
    [Google Scholar]
  72. Islam M.N. Rauf A. Fahad F.I. Emran T.B. Mitra S. Olatunde A. Shariati M.A. Rebezov M. Rengasamy K.R.R. Mubarak M.S. Superoxide dismutase: An updated review on its health benefits and industrial applications. Crit. Rev. Food Sci. Nutr. 2022 62 26 7282 7300 10.1080/10408398.2021.1913400 33905274
    [Google Scholar]
  73. Boşgelmez İ.İ. Güvendik G. Beneficial effects of N-acetyl-L-cysteine or taurine pre-or post-treatments in the heart, spleen, lung, and testis of hexavalent chromium-exposed mice. Biol. Trace Elem. Res. 2019 190 2 437 445 10.1007/s12011‑018‑1571‑z 30417263
    [Google Scholar]
  74. Cuevas-Magaña M.Y. Vega-García C.C. León-Contreras J.C. Hernández-Pando R. Zazueta C. García-Niño W.R. Ellagic acid ameliorates hexavalent chromium-induced renal toxicity by attenuating oxidative stress, suppressing TNF-α and protecting mitochondria. Toxicol. Appl. Pharmacol. 2022 454 116242 10.1016/j.taap.2022.116242 36108929
    [Google Scholar]
  75. Mishra P. Paital B. Jena S. Swain S.S. Kumar S. Yadav M.K. Chainy G.B.N. Samanta L. Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFĸB/AKT/mTOR/KEAP1 signalling in rat heart. Sci. Rep. 2019 9 1 7408 10.1038/s41598‑019‑43320‑5 31092832
    [Google Scholar]
  76. Bojarski B. Buchko O. Kondera E. Ługowska K. Osikowski A. Trela M. Witeska M. Lis M.W. Effects of embryonic exposure to chromium (VI) on blood parameters and liver microstructure of 1-day-old chickens. Poult. Sci. 2021 100 1 366 371 10.1016/j.psj.2020.10.016 33357701
    [Google Scholar]
  77. Ray R.R. Adverse hematological effects of hexavalent chromium: An overview. Interdiscip. Toxicol. 2016 9 2 55 65 10.1515/intox‑2016‑0007 28652847
    [Google Scholar]
  78. Kandpal V. Kumar D. Bisht R. Protective effect of vitamin E on haematological parameters in chronic toxicity of hexavalent chromium in laboratory chicks. J. Drug Deliv. Ther. 2019 9 3 388 392 10.22270/jddt.v9i3.2889
    [Google Scholar]
  79. Shati A.A. Ameliorative effect of vitamin E on potassium dichromate-induced hepatotoxicity in rats. J. King Saud Univ. Sci. 2014 26 3 181 189 10.1016/j.jksus.2013.12.001
    [Google Scholar]
  80. Obaseki A.I. Alabi G.O. Hlangothi B. Therapeutic role of leaf pulp of carpobrotus edulis on chromium VI induced toxicity in wistar rats. Lett. Appl. NanoBioSci. 2021 11 3 3887 3896 10.33263/LIANBS113.38873896
    [Google Scholar]
  81. Husain N. Mahmood R. Hexavalent chromium induces reactive oxygen species and impairs the antioxidant power of human erythrocytes and lymphocytes: Decreased metal reducing and free radical quenching ability of the cells. Toxicol. Ind. Health 2017 33 8 623 635 10.1177/0748233717703892 28502229
    [Google Scholar]
  82. Cao X. Wang S. Bi R. Tian S. Huo Y. Liu J. Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: Molecular interaction and cell damage. Chemosphere 2019 222 355 363 10.1016/j.chemosphere.2019.01.137 30710761
    [Google Scholar]
  83. Akpoyowvare Ejoh S. Nonso Iheagwam F. Olakunle Olusola A. Potassium dichromate-induced hepato-and hematotoxicity in rats: Nutritive composition and ameliorative role of acacia nilotica L. leaf. Jundishapur J. Nat. Pharm. Prod. 2021 16 2 e104346 10.5812/jjnpp.104346
    [Google Scholar]
  84. Lacerda L.M. Garcia S.C. da Silva L.B. de Ávila Dornelles M. Presotto A.T. Lourenço E.D. de Franceschi I.D. Fernandes E. Wannmacher C.M.D. Brucker N. Sauer E. Gioda A. Machado A.B. Oliveira E. Trombini T.L. Feksa L.R. Evaluation of hematological, biochemical parameters and thiol enzyme activity in chrome plating workers. Environ. Sci. Pollut. Res. Int. 2019 26 2 1892 1901 10.1007/s11356‑018‑3755‑7 30460648
    [Google Scholar]
  85. Yang Q. Han B. Xue J. Lv Y. Li S. Liu Y. Wu P. Wang X. Zhang Z. Hexavalent chromium induces mitochondrial dynamics disorder in rat liver by inhibiting AMPK/PGC-1α signaling pathway. Environ. Pollut. 2020 265 Pt A 114855 10.1016/j.envpol.2020.114855 32474337
    [Google Scholar]
  86. Zheng X. Li S. Li J. Lv Y. Wang X. Wu P. Yang Q. Tang Y. Liu Y. Zhang Z. Hexavalent chromium induces renal apoptosis and autophagy via disordering the balance of mitochondrial dynamics in rats. Ecotoxicol. Environ. Saf. 2020 204 111061 10.1016/j.ecoenv.2020.111061 32750588
    [Google Scholar]
  87. Ma Y. Li S. Ye S. Tang S. Hu D. Wei L. Xiao F. Hexavalent chromium inhibits the formation of neutrophil extracellular traps and promotes the apoptosis of neutrophils via AMPK signaling pathway. Ecotoxicol. Environ. Saf. 2021 223 112614 10.1016/j.ecoenv.2021.112614 34385063
    [Google Scholar]
  88. Guo X. Yang Q. Zhang W. Chen Y. Ren J. Gao A. Associations of blood levels of trace elements and heavy metals with metabolic syndrome in Chinese male adults with microRNA as mediators involved. Environ. Pollut. 2019 248 66 73 10.1016/j.envpol.2019.02.015 30771749
    [Google Scholar]
  89. El-Demerdash F.M. Yousef M.I. Elaswad F.A. Biochemical study on the protective role of folic acid in rabbits treated with chromium (VI). J. Environ. Sci. Health B 2006 41 5 731 746 10.1080/03601230600704282 16785179
    [Google Scholar]
  90. Shimano H. Sato R. SREBP-regulated lipid metabolism: Convergent physiology - Divergent pathophysiology. Nat. Rev. Endocrinol. 2017 13 12 710 730 10.1038/nrendo.2017.91 28849786
    [Google Scholar]
  91. Xu S. Chen T. Dong L. Li T. Xue H. Gao B. Ding X. Wang H. Li H. Li H. Fatty acid synthase promotes breast cancer metastasis by mediating changes in fatty acid metabolism. Oncol. Lett. 2021 21 1 27 10.3892/ol.2020.12288 33240433
    [Google Scholar]
  92. Alijagic A. Islamagic E. Focak M. Suljevic D. Effects of trivalent and hexavalent dietary chromium on blood biochemical profile in Japanese quails. Bulg. J. Vet. Med. 2018 21 4 470 477 10.15547/bjvm.1095
    [Google Scholar]
  93. Dey S.K. Roy S. Role of GSH in the amelioration of chromium-induced membrane damage. Toxicol. Environ. Chem. 2010 92 2 261 269 10.1080/02772240902955669
    [Google Scholar]
  94. Okamoto K. Maruyama T. Kaji Y. Harada M. Mawatari S. Fujino T. Uyesaka N. Verapamil prevents impairment in filterability of human erythrocytes exposed to oxidative stress. Jpn. J. Physiol. 2004 54 1 39 46 10.2170/jjphysiol.54.39 15040847
    [Google Scholar]
  95. Liu K. Husler J. Ye J. Leonard S.S. Cutler D. Chen F. Wang S. Zhang Z. Ding M. Wang L. Shi X. On the mechanism of Cr (VI)-induced carcinogenesis: Dose dependence of uptake and cellular responses. Mol. Cell. Biochem. 2001 222 1-2 221 229 10.1023/A:1017938918686 11678606
    [Google Scholar]
  96. Biswas D. Duffley L. Pulinilkunnil T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J. 2019 33 8 8711 8731 10.1096/fj.201802842RR 31084571
    [Google Scholar]
  97. Lubenets V.I. Havryliak V.V. Pylypets A.Z. Nakonechna A.V. Changes in the spectrum of proteins and phospholipids in tissues of rats exposed to thiosulfonates. Regul. Mech. Biosyst. 2018 9 4 495 500 10.15421/021874
    [Google Scholar]
  98. Rennie M.J. Tipton K.D. Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu. Rev. Nutr. 2000 20 1 457 483 10.1146/annurev.nutr.20.1.457 10940342
    [Google Scholar]
  99. Shi Y.C. Zhao Y.R. Zhang A.Z. Zhao L. Yu Z. Li M.Y. Hexavalent chromium-induced toxic effects on the hematology, redox state, and apoptosis in Cyprinus carpio. Reg. Stud. Mar. Sci. 2022 56 102676 10.1016/j.rsma.2022.102676
    [Google Scholar]
  100. El-Demerdash F.M. El-Sayed R.A. Abdel-Daim M.M. Hepatoprotective potential of Rosmarinus officinalis essential oil against hexavalent chromium-induced hematotoxicity, biochemical, histological, and immunohistochemical changes in male rats. Environ. Sci. Pollut. Res. Int. 2021 28 14 17445 17456 10.1007/s11356‑020‑12126‑8 33394444
    [Google Scholar]
  101. Suminda G.G. Min Y. Kim M. Heo Y. Do K. Son Y.O. Hexavalent chromium induces cartilage degeneration and osteoarthritis pathogenesis. Expo. Health 2022 1 15 10.1007/s12403‑022‑00502‑3
    [Google Scholar]
  102. Buchko O. Havryliak V. Pylypets A. Buchko T. Effect of food supplement of humic origin on the hematological and biochemical parameters in the Cr(VI) exposed rats. J. Res. Pharm. 2021 25 3 271 276 10.29228/jrp.17
    [Google Scholar]
  103. Shah S. Damare S. Proteomic response of marine-derived Staphylococcus cohnii #NIOSBK35 to varying Cr(vi) concentrations. Metallomics 2019 11 9 1465 1471 10.1039/c9mt00089e 31237606
    [Google Scholar]
  104. Ge H. Li Z. Jiang L. Li Q. Geng C. Yao X. Shi X. Liu Y. Cao J. Cr (VI) induces crosstalk between apoptosis and autophagy through endoplasmic reticulum stress in A549 cells. Chem. Biol. Interact. 2019 298 35 42 10.1016/j.cbi.2018.10.024 30416085
    [Google Scholar]
  105. Zhao Y. Yan J. Li A.P. Zhang Z.L. Li Z.R. Guo K.J. Zhao K.C. Ruan Q. Guo L. Guo L. Bone marrow mesenchymal stem cells could reduce the toxic effects of hexavalent chromium on the liver by decreasing endoplasmic reticulum stress-mediated apoptosis via SIRT1/HIF-1α signaling pathway in rats. Toxicol. Lett. 2019 310 31 38 10.1016/j.toxlet.2019.04.007 30974164
    [Google Scholar]
  106. Feng H. Feng Q. Xiao T. Liu T. Guan B. Firdous S.M. Huang J. Ipomoea staphylina attenuates potassium dichromate-induced nephrotoxicity in wistar rats via antioxidant and antiapoptotic effects. Dokl. Biochem. Biophys. 2021 499 1 289 295 10.1134/S1607672921040074 34426928
    [Google Scholar]
  107. Xiao Y. Zeng M. Yin L. Li N. Xiao F. Clusterin increases mitochondrial respiratory chain complex I activity and protects against hexavalent chromium-induced cytotoxicity in L-02 hepatocytes. Toxicol. Res. 2018 8 1 15 24 10.1039/C8TX00231B 30713657
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968319843241207142638
Loading
/content/journals/ccb/10.2174/0122127968319843241207142638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test