Skip to content
2000
image of Integrating Deep Learning and Molecular Dynamics to Identify GPR17 Ligands for Glioblastoma Therapy

Abstract

Background

Guanine Protein-coupled Receptor 17 (GPR17) plays pivotal roles in various physiological processes and diseases. However, the discovery of ligands binding to GPR17 remains an active area of research.

Methods

In this study, we utilized our recently published GPCR-specific deep learning approach, molecular docking, and molecular dynamics simulations. Specifically, the DeepGPCR model, employing graph convolutional networks, was used to screen the extensive ZINC database for potential ligands.

Results

This computational pipeline identified three highly promising lead compounds, ZINC000044404209, ZINC000229938097, and ZINC000005158963. Molecular dynamics simulations confirmed the stability of the protein-ligand complexes while binding free energy calculations highlighted the crucial molecular forces stabilizing these interactions. Notably, ZINC000229938097 exhibited particularly favorable binding energy values among the compounds assessed.

Conclusion

Our study underscores the efficacy of computational methodologies in identifying potential drug candidates targeting GPR17. Understanding the molecular mechanisms underlying GPR17 activation holds significant promise for developing tailored therapies for Glioblastoma Multiforme.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968351148241129071716
2024-12-17
2025-01-31
Loading full text...

Full text loading...

References

  1. Angom R.S. Nakka N.M.R. Bhattacharya S. Advances in glioblastoma therapy: An update on current approaches. Brain Sci. 2023 13 11 1536 10.3390/brainsci13111536 38002496
    [Google Scholar]
  2. Sadowski K. Jażdżewska A. Kozłowski J. Zacny A. Lorenc T. Olejarz W. Revolutionizing glioblastoma treatment: A comprehensive overview of modern therapeutic approaches. Int. J. Mol. Sci. 2024 25 11 5774 10.3390/ijms25115774 38891962
    [Google Scholar]
  3. Qi D. Li J. Quarles C.C. Fonkem E. Wu E. Assessment and prediction of glioblastoma therapy response: Challenges and opportunities. Brain 2023 146 4 1281 1298 10.1093/brain/awac450 36445396
    [Google Scholar]
  4. Guo C. Yu C. Gao W. Ren D. Zhang Y. Zheng P. A novel classifier combining G protein-coupled receptors and the tumor microenvironment is associated with survival status in glioblastoma. Front. Pharmacol. 2023 14 1093263 10.3389/fphar.2023.1093263 37560473
    [Google Scholar]
  5. White S.H. Wimley W.C. Membrane protein folding and stability: Physical principles. Annu. Rev. Biophys. Biomol. Struct. 1999 28 1 319 365 10.1146/annurev.biophys.28.1.319 10410805
    [Google Scholar]
  6. de Brevern A.G. 3D structural models of transmembrane proteins BT - Membrane protein structure determination: Methods and protocols. Humana Press. Lacapère J-J. Totowa, NJ 2010 387 401
    [Google Scholar]
  7. Khabibov M. Garifullin A. Boumber Y. Khaddour K. Fernandez M. Khamitov F. Khalikova L. Kuznetsova N. Kit O. Kharin L. Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). Int. J. Oncol. 2022 60 6 69 10.3892/ijo.2022.5359 35445737
    [Google Scholar]
  8. Liu H. Xing R. Ou Z. Zhao J. Hong G. Zhao T.J. Han Y. Chen Y. G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis. 2021 12 6 610 10.1038/s41419‑021‑03897‑0 34120140
    [Google Scholar]
  9. Dziedzic A. Miller E. Bijak S.J. Bijak M. The GPR17 receptor—A promising goal for therapy and a potential marker of the neurodegenerative process in multiple sclerosis. Int. J. Mol. Sci. 2020 21 5 1852 10.3390/ijms21051852 32182666
    [Google Scholar]
  10. Lecca D. Abbracchio M.P. Fumagalli M. Purinergic receptors on oligodendrocyte progenitors: Promising targets for myelin repair in multiple sclerosis? Front. Pharmacol. 2021 11 629618 10.3389/fphar.2020.629618 33584312
    [Google Scholar]
  11. Mani K.S. Thiyagarajan R. Harja Y.O. Kandhavelu M. Murugesan A. Structural analysis of human G‐protein‐coupled receptor 17 ligand binding sites. J. Cell. Biochem. 2023 124 4 533 544 10.1002/jcb.30388 36791278
    [Google Scholar]
  12. Chen Y. Wu H. Wang S. Koito H. Li J. Ye F. Hoang J. Escobar S.S. Gow A. Arnett H.A. Trapp B.D. Karandikar N.J. Hsieh J. Lu Q.R. The oligodendrocyte-specific G protein–coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat. Neurosci. 2009 12 11 1398 1406 10.1038/nn.2410 19838178
    [Google Scholar]
  13. Alavi M.S. Shamsizadeh A. Zarmehri A.H. Roohbakhsh A. Orphan G protein-coupled receptors: The role in CNS disorders. Biomed. Pharmacother. 2018 98 222 232 10.1016/j.biopha.2017.12.056 29268243
    [Google Scholar]
  14. Simon K Merten N Schröder R The orphan receptor GPR17 is unresponsive to uracil nucleotides and cysteinyl leukotrienes. Mol Pharmacol 2017 91 5 518 532 10.1124/mol.116.107904
    [Google Scholar]
  15. Nguyen P. Doan P. Rimpilainen T. Mani K.S. Murugesan A. Harja Y.O. Candeias N.R. Kandhavelu M. Synthesis and preclinical validation of novel indole derivatives as a GPR17 agonist for glioblastoma treatment. J. Med. Chem. 2021 64 15 10908 10918 10.1021/acs.jmedchem.1c00277 34304559
    [Google Scholar]
  16. Saravanan K.M. Palanivel S. Harja Y.O. Kandhavelu M. Identification of novel GPR17-agonists by structural bioinformatics and signaling activation. Int. J. Biol. Macromol. 2018 106 901 907 10.1016/j.ijbiomac.2017.08.088 28827203
    [Google Scholar]
  17. Parravicini C. Abbracchio M.P. Fantucci P. Ranghino G. Forced unbinding of GPR17 ligands from wild type and R255I mutant receptor models through a computational approach. BMC Struct. Biol. 2010 10 1 8 10.1186/1472‑6807‑10‑8 20233425
    [Google Scholar]
  18. Parravicini C. Ranghino G. Abbracchio M.P. Fantucci P. GPR17: Molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors. BMC Bioinformatics 2008 9 1 263 10.1186/1471‑2105‑9‑263 18533035
    [Google Scholar]
  19. Zhang H. Liao L. Saravanan K.M. Yin P. Wei Y. DeepBindRG: A deep learning based method for estimating effective protein–ligand affinity. PeerJ 2019 7 e7362 10.7717/peerj.7362 31380152
    [Google Scholar]
  20. Sreeraman S. Kannan M.P. Kushwah S.R.B. Sundaram V. Veluchamy A. Thirunavukarasou A. Saravanan K.M. Drug design and disease diagnosis: The potential of deep learning models in biology. Curr. Bioinform. 2023 18 3 208 220 10.2174/1574893618666230227105703
    [Google Scholar]
  21. Zhang H. Saravanan K.M. Advances in deep learning assisted drug discovery methods: A self-review. Curr. Bioinform. 2024 19 10 891 907 10.2174/0115748936285690240101041704
    [Google Scholar]
  22. Zhang H. Saravanan K.M. Zhang J.Z.H. DeepBindGCN: Integrating molecular vector representation with graph convolutional neural networks for protein–ligand interaction prediction. Molecules 2023 28 12 4691 10.3390/molecules28124691 37375246
    [Google Scholar]
  23. Zhang H. Fan H. Wang J. Hou T. Saravanan K.M. Xia W. Kan H.W. Li J. Zhang J.Z.H. Liang X. Chen Y. Revolutionizing GPCR–ligand predictions: DeepGPCR with experimental validation for high-precision drug discovery. Brief. Bioinform. 2024 25 4 bbae281 10.1093/bib/bbae281 38864340
    [Google Scholar]
  24. Feng Y. Cheng X. Wu S. Saravanan M.K. Liu W. Hybrid drug-screening strategy identifies potential SARS-CoV-2 cell-entry inhibitors targeting human transmembrane serine protease. Struct. Chem. 2022 33 5 1503 1515 10.1007/s11224‑022‑01960‑w 35571866
    [Google Scholar]
  25. Ye F. Wong T.S. Chen G. Zhang Z. Zhang B. Gan S. Gao W. Li J. Wu Z. Pan X. Du Y. Cryo‐EM structure of G‐protein‐coupled receptor GPR17 in complex with inhibitory G protein. MedComm 2022 3 4 e159 10.1002/mco2.159 36105372
    [Google Scholar]
  26. Ciana P. Fumagalli M. Trincavelli M.L. Verderio C. Rosa P. Lecca D. Ferrario S. Parravicini C. Capra V. Gelosa P. Guerrini U. Belcredito S. Cimino M. Sironi L. Tremoli E. Rovati G.E. Martini C. Abbracchio M.P. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J. 2006 25 19 4615 4627 10.1038/sj.emboj.7601341 16990797
    [Google Scholar]
  27. Lecca D. Trincavelli M.L. Gelosa P. Sironi L. Ciana P. Fumagalli M. Villa G. Verderio C. Grumelli C. Guerrini U. Tremoli E. Rosa P. Cuboni S. Martini C. Buffo A. Cimino M. Abbracchio M.P. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One 2008 3 10 e3579 10.1371/journal.pone.0003579 18974869
    [Google Scholar]
  28. Rivera A.D. Pieropan F. Rocha C.D.L.I. Lecca D. Abbracchio M.P. Azim K. Butt A.M. Functional genomic analyses highlight a shift in Gpr17 ‐regulated cellular processes in oligodendrocyte progenitor cells and underlying myelin dysregulation in the aged mouse cerebrum. Aging Cell 2021 20 4 e13335 10.1111/acel.13335 33675110
    [Google Scholar]
  29. Mutharasu G. Murugesan A. Mani K.S. Harja Y.O. Kandhavelu M. Transcriptomic analysis of glioblastoma multiforme providing new insights into GPR17 signaling communication. J. Biomol. Struct. Dyn. 2022 40 6 2586 2599 10.1080/07391102.2020.1841029 33140689
    [Google Scholar]
  30. Irwin J.J. Shoichet B.K. ZINC--A free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005 45 1 177 182 10.1021/ci049714+ 15667143
    [Google Scholar]
  31. Chan W.K.B. Zhang H. Yang J. Brender J.R. Hur J. Özgür A. Zhang Y. GLASS: A comprehensive database for experimentally validated GPCR-ligand associations. Bioinformatics 2015 31 18 3035 3042 10.1093/bioinformatics/btv302 25971743
    [Google Scholar]
  32. Jaeger S. Fulle S. Turk S. Mol2vec: Unsupervised machine learning approach with chemical intuition. J. Chem. Inf. Model. 2018 58 1 27 35 10.1021/acs.jcim.7b00616 29268609
    [Google Scholar]
  33. Zhang H. Saravanan K.M. Lin J. Liao L. Ng J.T.Y. Zhou J. Wei Y. DeepBindPoc: A deep learning method to rank ligand binding pockets using molecular vector representation. PeerJ 2020 8 e8864 10.7717/peerj.8864 32292649
    [Google Scholar]
  34. Bento A.P. Hersey A. Félix E. Landrum G. Gaulton A. Atkinson F. Bellis L.J. De Veij M. Leach A.R. An open source chemical structure curation pipeline using RDKit. J. Cheminform. 2020 12 1 51 10.1186/s13321‑020‑00456‑1 33431044
    [Google Scholar]
  35. Borkakoti N. Thornton J.M. AlphaFold2 protein structure prediction: Implications for drug discovery. Curr. Opin. Struct. Biol. 2023 78 102526 10.1016/j.sbi.2022.102526 36621153
    [Google Scholar]
  36. Roy A. Yang J. Zhang Y. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 2012 40 W1 W471 W477 10.1093/nar/gks372 22570420
    [Google Scholar]
  37. Goodsell D.S. Sanner M.F. Olson A.J. Forli S. The AutoDock suite at 30. Protein Sci. 2021 30 1 31 43 10.1002/pro.3934 32808340
    [Google Scholar]
  38. Kaminski G. Jorgensen W.L. Performance of the AMBER94, MMFF94, and OPLS-AA force fields for modeling organic liquids. J. Phys. Chem. 1996 100 46 18010 18013 10.1021/jp9624257
    [Google Scholar]
  39. Trott O. Olson A.J. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  40. Jo S. Lim J.B. Klauda J.B. Im W. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 2009 97 1 50 58 10.1016/j.bpj.2009.04.013 19580743
    [Google Scholar]
  41. Lomize M.A. Pogozheva I.D. Joo H. Mosberg H.I. Lomize A.L. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res. 2012 40 D1 D370 D376 10.1093/nar/gkr703 21890895
    [Google Scholar]
  42. Bruzzese A. Gil C. Dalton J.A.R. Giraldo J. Structural insights into positive and negative allosteric regulation of a G protein-coupled receptor through protein-lipid interactions. Sci. Rep. 2018 8 1 4456 10.1038/s41598‑018‑22735‑6 29535353
    [Google Scholar]
  43. Im W. Roux B. Ions and counterions in a biological channel: A molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. J. Mol. Biol. 2002 319 5 1177 1197 10.1016/S0022‑2836(02)00380‑7 12079356
    [Google Scholar]
  44. Hess B. Kutzner C. Spoel V.D.D. Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008 4 3 435 447 10.1021/ct700301q 26620784
    [Google Scholar]
  45. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  46. Bussi G. Timan Z.T. Parrinello M. Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J. Chem. Phys. 2009 130 7 074101 10.1063/1.3073889 19239278
    [Google Scholar]
  47. Berendsen H.J.C. Postma J.P.M. Gunsteren V.W.F. Hermans J. Interaction models for water in relation to protein hydration BT - intermolecular forces Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem Israel April 13–16, 1981 Pullman B Springer Netherlands Dordrecht 331 342 10.1007/978‑94‑015‑7658‑1_21
    [Google Scholar]
  48. Kumari R. Kumar R. Lynn A. G_MMPBSA--A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  49. Wang C. Greene D.A. Xiao L. Qi R. Luo R. Recent developments and applications of the MMPBSA method. Front. Mol. Biosci. 2018 4 87 10.3389/fmolb.2017.00087 29367919
    [Google Scholar]
  50. Saravanan K.M. Balasubramanian H. Nallusamy S. Samuel S. Sequence and structural analysis of two designed proteins with 88% identity adopting different folds. Protein Eng. Des. Sel. 2010 23 12 911 918 10.1093/protein/gzq070 20952437
    [Google Scholar]
  51. Saravanan K.M. Selvaraj S. Dihedral angle preferences of amino acid residues forming various non-local interactions in proteins. J. Biol. Phys. 2017 43 2 265 278 10.1007/s10867‑017‑9451‑x 28577238
    [Google Scholar]
  52. Obrador E. Murciano M.P. Caballo O.M. Blanch L.R. Pineda B. Arroyo G.J. Loras A. Bonet G.L. Cadenas M.C. Estrela J. Torrejón M.M. Glioblastoma therapy: Past, present and future. Int. J. Mol. Sci. 2024 25 5 2529 10.3390/ijms25052529 38473776
    [Google Scholar]
  53. Doan P. Nguyen P. Murugesan A. Subramanian K. Konda Mani S. Kalimuthu V. Abraham B.G. Stringer B.W. Balamuthu K. Yli-Harja O. Kandhavelu M. Targeting orphan G protein-coupled receptor 17 with T0 ligand impairs glioblastoma growth. Cancers 2021 13 15 3773 10.3390/cancers13153773 34359676
    [Google Scholar]
  54. Murugesan A. Nguyen P. Ramesh T. Harja Y.O. Kandhavelu M. Saravanan K.M. Molecular modeling and dynamics studies of the synthetic small molecule agonists with GPR17 and P2Y1 receptor. J. Biomol. Struct. Dyn. 2022 40 23 12908 12916 10.1080/07391102.2021.1977707 34542380
    [Google Scholar]
  55. Doan P. Nguyen P. Murugesan A. Candeias N.R. Harja Y.O. Kandhavelu M. Alkylaminophenol and GPR17 agonist for glioblastoma therapy: A combinational approach for enhanced cell death activity. Cells 2021 10 8 1975 10.3390/cells10081975 34440745
    [Google Scholar]
  56. Ceruti S. Villa G. Genovese T. Mazzon E. Longhi R. Rosa P. Bramanti P. Cuzzocrea S. Abbracchio M.P. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. Brain 2009 132 8 2206 2218 10.1093/brain/awp147 19528093
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968351148241129071716
Loading
/content/journals/ccb/10.2174/0122127968351148241129071716
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test