Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2212-7968
  • E-ISSN: 1872-3136

Abstract

Background

Arterial thrombosis represents the most commonly feared consequence of cardiovascular disease and a leading cause of death globally. Cardiovascular disease, liver, and kidney are closely linked conditions, and disease in one organ can lead to dysfunction in the other.

Objective

The current research aims to examine the therapeutic impact of Ech-A on arterial thrombosis induced by FeCl complications on liver and kidney function.

Methods

Twenty-four rats were assigned into four groups (n= 6), sham and thrombotic model groups were orally administered 2% DMSO, while the other groups were treated with two dosages of Ech-A (1 and 10 mg/kg, body weight). After seven days of administration, the left common carotid arteries of all groups were exposed to 50% ferric chloride for 10 min, except those of the sham group rats exposed to normal saline.

Results

The oral administration of Ech-A caused a significant increase in partial thromboplastin time, prothrombin time, glutathione, catalase, nitric oxide, and glutathione S-transferase. While aspartate aminotransferase, alkaline phosphatase, and alanine aminotransferase activities as well as creatinine, uric acid, urea, and malondialdehyde concentrations were significantly decreased (< 0.05). The histological examination revealed a definite improvement in the liver and kidney tissues in the Ech-A groups.

Conclusion

The current investigation revealed that arterial thrombosis induced by FeCl in rats causes complications in the kidneys and liver. Additionally, it demonstrates the beneficial impact of Ech-A on coagulation parameters and liver and kidney function. Despite this, the current study has few limitations. Firstly, the molecular mechanism regarding the protective effect of Ech-A on liver and kidney complications caused by arterial thrombosis has not been investigated. Secondly, no reference drug has been utilised to compare with Ech-A.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968334087241210053042
2024-12-24
2025-07-30
Loading full text...

Full text loading...

References

  1. FordR.M. BookW. SpiveyJ.R. Liver disease related to the heart.Transplant. Rev.2015291333710.1016/j.trre.2014.11.00325510577
    [Google Scholar]
  2. Peterson-NewmanJ.K. Mediating Effect of Cognitive Function on Health-Related Quality of Life Among Older Adults with Cardiovascular Disease in the United States.The University of Texas at Arlington2021
    [Google Scholar]
  3. KjeldsenS.E. Hypertension and cardiovascular risk: General aspects.Pharmacol. Res.2018129959910.1016/j.phrs.2017.11.00329127059
    [Google Scholar]
  4. ZhaoD. LiuJ. WangM. ZhangX. ZhouM. Epidemiology of cardiovascular disease in China: Current features and implications.Nat. Rev. Cardiol.201916420321210.1038/s41569‑018‑0119‑430467329
    [Google Scholar]
  5. GhaganeS.C. AkbarA.A. Use of honey in cardiovascular diseases.HoneyWiley202319720910.1002/9781119113324.ch14
    [Google Scholar]
  6. ManfrediniR. De GiorgiA. TiseoR. BoariB. CappadonaR. SalmiR. GalleraniM. SignaniF. ManfrediniF. MikhailidisD.P. FabbianF. Marital status, cardiovascular diseases, and cardiovascular risk factors: A review of the evidence.J. Womens Health201726662463210.1089/jwh.2016.610328128671
    [Google Scholar]
  7. CappuccioF.P. MillerM.A. Cardiovascular disease and hypertension in sub-Saharan Africa: Burden, risk and interventions.Intern. Emerg. Med.201611329930510.1007/s11739‑016‑1423‑927001886
    [Google Scholar]
  8. KavoliunieneA. VaitiekieneA. CesnaiteG. Congestive hepatopathy and hypoxic hepatitis in heart failure: A cardiologist’s point of view.Int. J. Cardiol.2013166355455810.1016/j.ijcard.2012.05.00322656043
    [Google Scholar]
  9. PoelzlG. AuerJ. Cardiohepatic syndrome.Curr. Heart Fail. Rep.2015121687810.1007/s11897‑014‑0238‑025391350
    [Google Scholar]
  10. TanaiE. FrantzS. Pathophysiology of heart failure.Compr. Physiol.20156118721410.1002/cphy.c14005526756631
    [Google Scholar]
  11. BjörkegrenJ.L.M. LusisA.J.J.C. Atherosclerosis: Recent developments.World J. Gastrointest. Surg.2022185101630164535504280
    [Google Scholar]
  12. CorrealeM. TarantinoN. PetrucciR. TricaricoL. LaonigroI. Di BiaseM. BrunettiN.D. Liver disease and heart failure: Back and forth.Eur. J. Intern. Med.201848253410.1016/j.ejim.2017.10.01629100896
    [Google Scholar]
  13. MøllerS. BernardiM. Interactions of the heart and the liver.Eur. Heart J.201334362804281110.1093/eurheartj/eht24623853073
    [Google Scholar]
  14. LiuM. LiX.C. LuL. CaoY. SunR.R. ChenS. ZhangP.Y. Cardiovascular disease and its relationship with chronic kidney disease.World J. Gastrointest. Surg.201418192918292625339487
    [Google Scholar]
  15. SegallL. NistorI. CovicA. Heart failure in patients with chronic kidney disease: A systematic integrative review.BioMed Res. Int.2014201412110.1155/2014/93739824959595
    [Google Scholar]
  16. PodkowińskaA. FormanowiczD. Chronic kidney disease as oxidative stress- and inflammatory-mediated cardiovascular disease.Antioxidants20209875210.3390/antiox908075232823917
    [Google Scholar]
  17. MillerA.J. ArnoldA.C. The renin–angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications.Clin. Auton. Res.201929223124310.1007/s10286‑018‑0572‑530413906
    [Google Scholar]
  18. MetraM. CotterG. GheorghiadeM. Dei CasL. VoorsA.A. The role of the kidney in heart failure.Eur. Heart J.201233172135214210.1093/eurheartj/ehs20522888113
    [Google Scholar]
  19. JoshiS. SmithA.N. PrakhyaK.S. AlfarH.R. LykinsJ. ZhangM. PokrovskayaI. AronovaM. LeapmanR.D. StorrieB. WhiteheartS.W. Ferric chloride-induced arterial thrombosis and sample collection for 3D electron microscopy analysis.J. Vis. Exp.2023193e6498510.3791/6498537010311
    [Google Scholar]
  20. BangJ. JeonW.K. Mumefural improves blood flow in a rat model of FeCl3-induced arterial thrombosis.Nutrients20201212379510.3390/nu1212379533322041
    [Google Scholar]
  21. GroverS.P. MackmanN. How useful are ferric chloride models of arterial thrombosis?Platelets202031443243810.1080/09537104.2019.167811931608756
    [Google Scholar]
  22. LiP. LinB. TangP. YeY. WuZ. GuiS. ZhanY. YangW. LinB. Aqueous extract of Whitmania pigra Whitman ameliorates ferric chloride-induced venous thrombosis in rats via antioxidation.J. Thromb. Thrombolysis2021521596810.1007/s11239‑020‑02337‑833201380
    [Google Scholar]
  23. ShimY. Characterization of ferric chloride-induced arterial thrombosis model of mice and the role of red blood cells in thrombosis acceleration.Yonsei Med. J.2021621110321041
    [Google Scholar]
  24. WeitzJ.I. ChanN.C. Advances in antithrombotic therapy.Arterioscler. Thromb. Vasc. Biol.201939171210.1161/ATVBAHA.118.31096030580558
    [Google Scholar]
  25. CryerB. MahaffeyK. Gastrointestinal ulcers, role of aspirin, and clinical outcomes: Pathobiology, diagnosis, and treatment.J. Multidiscip. Healthc.2014713714610.2147/JMDH.S5432424741318
    [Google Scholar]
  26. KazaalM.A. AbbasG.A. AL-KurdyM.J. BettiA.A. AL DulaimiZ.M.H. AmanahA.M. Clinical evaluation of side effects resulting from the use of aspirin cardio.AIP Conf. Proc.20243092103000410.1063/5.0199668
    [Google Scholar]
  27. Laner-PlambergerS. OellerM. RohdeE. SchallmoserK. StrunkD. Heparin and derivatives for advanced cell therapies.Int. J. Mol. Sci.202122211204110.3390/ijms22211204134769471
    [Google Scholar]
  28. ElangoK. JavaidA. KhetarpalB.K. RamalingamS. KolandaivelK.P. GunasekaranK. AhsanC. The effects of warfarin and direct oral anticoagulants on systemic vascular calcification: A review.Cells202110477310.3390/cells1004077333807457
    [Google Scholar]
  29. Félix-SilvaJ. SouzaT. CamaraR.B.B.G. CabralB. Silva-JúniorA.A. RebecchiI.M.M. ZucolottoS.M. RochaH.A.O. Fernandes-PedrosaM.F. In vitro anticoagulant and antioxidant activities of Jatropha gossypiifolia L. (Euphorbiaceae) leaves aiming therapeutical applications.BMC Complement. Altern. Med.201414140510.1186/1472‑6882‑14‑40525328027
    [Google Scholar]
  30. SadekS.A. HassaneinS.S. MohamedA.S. SolimanA.M. FahmyS.R. Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats.J. Food Biochem.2022463e1372910.1111/jfbc.1372933871886
    [Google Scholar]
  31. VasilevaE.A. MishchenkoN.P. TranV.T.T. VoH.M.N. FedoreyevS.A. Spinochrome identification and quantification in pacific sea urchin shells, coelomic fluid and eggs using HPLC-DAD-MS.Mar. Drugs20211912110.3390/md1901002133419049
    [Google Scholar]
  32. KikionisS. PapakyriakopoulouP. MavrogiorgisP. VasilevaE.A. MishchenkoN.P. FedoreyevS.A. ValsamiG. IoannouE. RoussisV. Development of novel pharmaceutical forms of the marine bioactive pigment echinochrome a enabling alternative routes of administration.Mar. Drugs202321425010.3390/md2104025037103389
    [Google Scholar]
  33. PopovA.M. OsipovA.N. KorepanovaE.A. KrivoshapkoO.N. ArtyukovA.A. KlimovichA.A. A study of the antioxidant and membranotropic activities of equinochrome a using different model systems.Biophysics201762340741410.1134/S0006350917030174
    [Google Scholar]
  34. LeeS. ProntoJ. SarankhuuB.E. KoK. RheeB. KimN. MishchenkoN. FedoreyevS. StonikV. HanJ. Acetylcholinesterase inhibitory activity of pigment echinochrome A from sea urchin Scaphechinus mirabilis.Mar. Drugs20141263560357310.3390/md1206356024918454
    [Google Scholar]
  35. SayedD.A. SolimanA.M. FahmyS.R. Echinochrome pigment as novel therapeutic agent against experimentally - Induced gastric ulcer in rats.Biomed. Pharmacother.2018107909510.1016/j.biopha.2018.07.17330081206
    [Google Scholar]
  36. MohamedS.A. Protective and curative mechanisms of echinochrome against 7, 12-Dimethylbenz [a] anthracene-induced renal toxicity in rats.GSC Adv. Res. Rev.2021614755
    [Google Scholar]
  37. MischenkoN.P. FedoreevS.A. ZaparaT.A. RatushnyakA.S. Effects of histochrom and emoxypin on biophysical properties of electroexitable cells.Bull. Exp. Biol. Med.2009147219620010.1007/s10517‑009‑0473‑719513420
    [Google Scholar]
  38. MohamedA.S. Echinochrome exhibits antitumor activity against ehrlich ascites carcinoma in swiss albino mice.Nutr. Cancer202173112413210.1080/01635581.2020.173715232151164
    [Google Scholar]
  39. JeongS. KimH. SongI.S. LeeS. KoK. RheeB. KimN. MishchenkoN. FedoryevS. StonikV. HanJ. Echinochrome A protects mitochondrial function in cardiomyocytes against cardiotoxic drugs.Mar. Drugs20141252922293610.3390/md1205292224828295
    [Google Scholar]
  40. SongB.W. KimS. KimR. JeongS. MoonH. KimH. VasilevaE. MishchenkoN. FedoreyevS. StonikV. LeeM. KimJ. KimH. HanJ. ChangW. Regulation of inflammation-mediated endothelial to mesenchymal transition with echinochrome a for improving myocardial dysfunction.Mar. Drugs2022201275610.3390/md2012075636547903
    [Google Scholar]
  41. BrasseurL. HennebertE. FievezL. CaulierG. BureauF. TafforeauL. FlammangP. GerbauxP. EeckhautI. The roles of spinochromes in four shallow water tropical sea urchins and their potential as bioactive pharmacological agents.Mar. Drugs201715617910.3390/md1506017928621734
    [Google Scholar]
  42. MishchenkoN.P. KrylovaN.V. IunikhinaO.V. VasilevaE.A. LikhatskayaG.N. PislyaginE.A. TarbeevaD.V. DmitrenokP.S. FedoreyevS.A. Antiviral potential of sea urchin aminated spinochromes against herpes simplex virus type 1.Mar. Drugs2020181155010.3390/md1811055033167501
    [Google Scholar]
  43. Rubilar PanasiukC.T. In silico analysis of sea urchin pigments as potential therapeutic agents against SARS-CoV-2: Main protease (Mpro) as a target.Preprints2020
    [Google Scholar]
  44. MohamedA.S. SolimanA.M. MarieM.A.S. Mechanisms of echinochrome potency in modulating diabetic complications in liver.Life Sci.2016151414910.1016/j.lfs.2016.03.00726947587
    [Google Scholar]
  45. MishchenkoN.P. VasilevaE.A. GerasimenkoA.V. GrigorchukV.P. DmitrenokP.S. FedoreyevS.A. Isolation and structure determination of echinochrome a oxidative degradation products.Molecules20202520477810.3390/molecules2520477833080948
    [Google Scholar]
  46. KalininV.I. Echinoderms metabolites: Structure, functions, and biomedical perspectives.Mar. Drugs202119312510.3390/md1903012533652699
    [Google Scholar]
  47. JoyM. ChakrabortyK. Biogenic antioxidative and anti-inflammatory aryl polyketides from the venerid bivalve clam Paphia malabarica.Food Chem.201723716918010.1016/j.foodchem.2017.05.08728763983
    [Google Scholar]
  48. SunQ. HuS. LouZ. GaoJ. The macrophage polarization in inflammatory dermatosis and its potential drug candidates.Biomed. Pharmacother.202316111446910.1016/j.biopha.2023.11446937002572
    [Google Scholar]
  49. Moreno-GarcíaD.M. Salas-RojasM. Fernández-MartínezE. López-CuellarM.R. Sosa-GutierrezC.G. Peláez-AceroA. Rivero-PerezN. Zaragoza-BastidaA. Ojeda-RamírezD. Sea urchins: An update on their pharmacological properties.PeerJ202210e1360610.7717/peerj.1360635811815
    [Google Scholar]
  50. El-ShehryM.S.E.F. AmrymiR.A. AtiaT. LotfyB.M.M. AhmedS.H.A. QutbS.A. AliS.B. MohamedA.S. MousaM.R. DamanhoryA.A. MetaweeM.E. SakrH.I. Hematopoietic effect of echinochrome on phenylhydrazine-induced hemolytic anemia in rats.PeerJ202311e1657610.7717/peerj.1657638089915
    [Google Scholar]
  51. SibiyaA. JeyavaniJ. SivakamavalliJ. RaviC. DivyaM. VaseeharanB. Bioactive compounds from various types of sea urchin and their therapeutic effects — A review.Reg. Stud. Mar. Sci.20214410176010.1016/j.rsma.2021.101760
    [Google Scholar]
  52. ClarkA. Monograph of shallow-water indo-west pacific echinoderms.Trust. Br. Mus. (Nat. Hist.). Publ.19716901238
    [Google Scholar]
  53. AmarowiczR. SynowieckiJ. ShahidiF. Sephadex LH-20 separation of pigments from shells of red sea urchin (Strongylocentrotus franciscanus).Food Chem.199451222722910.1016/0308‑8146(94)90262‑3
    [Google Scholar]
  54. KuwaharaR. HatateH. YukiT. MurataH. TanakaR. HamaY. Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina.Lebensm. Wiss. Technol.20094271296130010.1016/j.lwt.2009.02.020
    [Google Scholar]
  55. LinX. ZhaoP. LinZ. ChenJ. BingwaL.A. Siaw-DebrahF. ZhangP. JinK. YangS. ZhugeQ. Establishment of a Modified and Standardized Ferric Chloride-Induced Rat Carotid Artery Thrombosis Model.ACS Omega20227108919892710.1021/acsomega.1c0731635309441
    [Google Scholar]
  56. MohamedA.S. HosneyM. BassionyH. HassaneinS.S. SolimanA.M. FahmyS.R. GaafarK. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats.Sci. Rep.202010137810.1038/s41598‑019‑57252‑731942001
    [Google Scholar]
  57. YoungD.S. PestanerL.C. GibbermanV. Effects of drugs on clinical laboratory tests.Clin. Chem.19752151D432D1091375
    [Google Scholar]
  58. BreuerJ. Report on the symposium “Drug effects in Clinical Chemistry Methods”. European journal of clinical chemistry and clinical biochemistry: journal of the Forum of European Clinical Chemistry Societies.World J. Gastrointest. Surg.1996344385386
    [Google Scholar]
  59. TietzN.W. RinkerA.D. ShawL.M. International federation of clinical chemistry. IFCC methods for the measurement of catalytic concentration of enzymes. Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). IFCC Document Stage 2, Draft 1, 1983-03 with a view to an IFCC Recommendation.Clin. Chim. Acta19831353339F367F6661822
    [Google Scholar]
  60. TietzN.J.T.C.C. Specimen collection and processing; sources of biological variation.2nd EdWB SaundersPhiladelphia, PA1994
    [Google Scholar]
  61. TietzN.J.P. USA, Clinical guide to laboratory tests, WB Saunders Company. World J. Gastrointest. Surg.1990554556
    [Google Scholar]
  62. VellaF. Textbook of clinical chemistry: Edited by N W Tietz. Pp 1919. W B Saunders, Philadelphia. 1986 ISBN 0-7216-8886-1.Biochem Educ198643146
    [Google Scholar]
  63. a TietzN.J.A. Clinical Guide to Laboratory Tests2nd EdPhiladelphia2002
    [Google Scholar]
  64. b TovarD. Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae.Aquaculture20022041-2113123
    [Google Scholar]
  65. BeutlerE. DuronO. KellyB.M. Improved method for the determination of blood glutathione.J. Lab. Clin. Med.19636188288813967893
    [Google Scholar]
  66. AebiH. Catalase in vitro.Methods in Enzymology.Academic Press1984121126
    [Google Scholar]
  67. HabigW.H. PabstM.J. JakobyW.B. Glutathione S-transferases.J. Biol. Chem.1974249227130713910.1016/S0021‑9258(19)42083‑84436300
    [Google Scholar]
  68. MontogomeryH. DymockJ.J.A. The determination of nitrite in water: Colorimetric method of nitric oxide assay.World J. Gastrointest. Surg.196186414
    [Google Scholar]
  69. OhkawaH. OhishiN. YagiK. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.197995235135810.1016/0003‑2697(79)90738‑336810
    [Google Scholar]
  70. BancroftJ. StevensA.J.B. Theory And Practice Of Histological Techniques.Chapter 15New YorkChurchill Livingstone1996309339
    [Google Scholar]
  71. Mc NamaraK. AlzubaidiH. JacksonJ.K. Cardiovascular disease as a leading cause of death: How are pharmacists getting involved?Integr. Pharm. Res. Pract.20198null11110.2147/IPRP.S133088
    [Google Scholar]
  72. El HadiH. Di VincenzoA. VettorR. RossatoM. Relationship between heart disease and liver disease: A two-way street.Cells20209356710.3390/cells903056732121065
    [Google Scholar]
  73. StarkK. MassbergS. Interplay between inflammation and thrombosis in cardiovascular pathology.Nat. Rev. Cardiol.202118966668210.1038/s41569‑021‑00552‑133958774
    [Google Scholar]
  74. MikatyG. Atypical disseminated intravascular coagulopathy during bubonic plague.Microbes Infect.2022105063
    [Google Scholar]
  75. ZhaoY. ChuX. PangX.B. WangS.H. DuG.H. Antithrombotic effects of the effective components group of Xiaoshuantongluo formula in vivo and in vitro.Chin. J. Nat. Med.20151329910710.1016/S1875‑5364(15)60013‑925769892
    [Google Scholar]
  76. LipetsE.N. AtaullakhanovF.I. Global assays of hemostasis in the diagnostics of hypercoagulation and evaluation of thrombosis risk.Thromb. J.2015131410.1186/s12959‑015‑0038‑025635172
    [Google Scholar]
  77. NavoneS.E. GuarnacciaL. LocatelliM. RampiniP. CaroliM. La VerdeN. GaudinoC. BettinardiN. RiboniL. MarfiaG. CampanellaR. Significance and prognostic value of the coagulation profile in patients with glioblastoma: Implications for personalized therapy.World Neurosurg.2019121e621e62910.1016/j.wneu.2018.09.17730292037
    [Google Scholar]
  78. SongJ. DrobatzK.J. SilversteinD.C. Retrospective evaluation of shortened prothrombin time or activated partial thromboplastin time for the diagnosis of hypercoagulability in dogs: 25 cases (2006–2011).J. Vet. Emerg. Crit. Care201626339840510.1111/vec.1247827074596
    [Google Scholar]
  79. DengQ. LiuS-Q. GuoJ-Y. DuJ. HeZ.J. LinH.Y. LeiS.H. Anticoagulant effect of Huisheng oral solution in a rat model of thrombosis.Indian J. Pharmacol.201345435936410.4103/0253‑7613.11501824014911
    [Google Scholar]
  80. ChoiJ.H. KimD.W. ParkS.E. LeeH.J. KimK.M. KimK.J. KimM.K. KimS.J. KimS. Anti-thrombotic effect of rutin isolated from Dendropanax morbifera Leveille.J. Biosci. Bioeng.2015120218118610.1016/j.jbiosc.2014.12.01225777266
    [Google Scholar]
  81. DwivediR. PominV.H. Marine antithrombotics.Mar. Drugs2020181051410.3390/md1810051433066214
    [Google Scholar]
  82. LalaV. ZubairM. MinterD.J.S. Liver function tests.StatPearlsStatPearls PublishingTreasure Island (FL)2023
    [Google Scholar]
  83. TargherG. ByrneC.D. Circulating markers of liver function and cardiovascular disease risk.Arterioscler. Thromb. Vasc. Biol.201535112290229610.1161/ATVBAHA.115.30523525977566
    [Google Scholar]
  84. NdrepepaG.J.J.L. MedicineP. Aspartate aminotransferase and cardiovascular disease—a narrative review.World J. Gastrointest. Surg.202020206
    [Google Scholar]
  85. VishawanathT. Application of Enzymes in Disease Diagnosis.Creative Enzymes202325
    [Google Scholar]
  86. LimA.K.H. Abnormal liver function tests associated with severe rhabdomyolysis.World J. Gastroenterol.202026101020102810.3748/wjg.v26.i10.102032205993
    [Google Scholar]
  87. LoweD. Alkaline phosphatase.StatPearlsStatPearls PublishingTreasure Island (FL)2023
    [Google Scholar]
  88. DerbaliA. MnafguiK. AffesM. DerbaliF. HajjiR. GharsallahN. AlloucheN. El FekiA. Cardioprotective effect of linseed oil against isoproterenol-induced myocardial infarction in Wistar rats: A biochemical and electrocardiographic study.J. Physiol. Biochem.201571228128810.1007/s13105‑015‑0411‑225910460
    [Google Scholar]
  89. KumarM. KasalaE.R. BodduluruL.N. DahiyaV. LahkarM. Baicalein protects isoproterenol induced myocardial ischemic injury in male Wistar rats by mitigating oxidative stress and inflammation.Inflamm. Res.201665861362210.1007/s00011‑016‑0944‑z27071824
    [Google Scholar]
  90. LiuZ. QueS. XuJ. PengT. Alanine aminotransferase-old biomarker and new concept: A review.Int. J. Med. Sci.201411992593510.7150/ijms.895125013373
    [Google Scholar]
  91. SiddiquiM.S. SterlingR.K. LuketicV.A. PuriP. StravitzR.T. BounevaI. BoyettS. FuchsM. SargeantC. WarnickG.R. GramiS. SanyalA.J. Association between high-normal levels of alanine aminotransferase and risk factors for atherogenesis.Gastroenterology2013145612711279.e3, 310.1053/j.gastro.2013.08.03623973920
    [Google Scholar]
  92. MorilesK.E. AzerS.A. Alanine Amino Transferase.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  93. GaoM. ChengY. ZhengY. ZhangW. WangL. QinL. Association of serum transaminases with short- and long-term outcomes in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention.BMC Cardiovasc. Disord.20171714310.1186/s12872‑017‑0485‑628129742
    [Google Scholar]
  94. SoumyaR.S. RajK.B. AbrahamA. Passiflora edulis (var. Flavicarpa) juice supplementation mitigates isoproterenol‐induced myocardial infarction in rats.Plant Foods Hum. Nutr.202176218919510.1007/s11130‑021‑00891‑x33825089
    [Google Scholar]
  95. HaarhausM. BrandenburgV. Kalantar-ZadehK. StenvinkelP. MagnussonP. Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD.Nat. Rev. Nephrol.201713742944210.1038/nrneph.2017.6028502983
    [Google Scholar]
  96. WannametheeS.G. SattarN. PapcostaO. LennonL. WhincupP.H. Alkaline phosphatase, serum phosphate, and incident cardiovascular disease and total mortality in older men.Arterioscler. Thromb. Vasc. Biol.20133351070107610.1161/ATVBAHA.112.30082623430618
    [Google Scholar]
  97. FouadY.M. YehiaR. Hepato-cardiac disorders.World J. Hepatol.201461415410.4254/wjh.v6.i1.4124653793
    [Google Scholar]
  98. XanthopoulosA. StarlingR.C. KitaiT. TriposkiadisF. Heart failure and liver disease.JACC Heart Fail.201972879710.1016/j.jchf.2018.10.00730553904
    [Google Scholar]
  99. HanD.G. KwakJ. ChoiE. SeoS.W. VasilevaE.A. MishchenkoN.P. FedoreyevS.A. StonikV.A. KimH.K. HanJ. ByunJ.H. JungI.H. YunH. YoonI.S. Physicochemical characterization and phase II metabolic profiling of echinochrome A, a bioactive constituent from sea urchin, and its physiologically based pharmacokinetic modeling in rats and humans.Biomed. Pharmacother.202316211458910.1016/j.biopha.2023.11458937004327
    [Google Scholar]
  100. KimH.K. VasilevaE.A. MishchenkoN.P. FedoreyevS.A. HanJ. Multifaceted clinical effects of echinochrome.Mar. Drugs202119841210.3390/md1908041234436251
    [Google Scholar]
  101. FazioF. MarafiotiS. TorreA. SanfilippoM. PanzeraM. FaggioC. Haematological and serum protein profiles of Mugil cephalus: Effect of two different habitats.Ichthyol. Res.2013601364210.1007/s10228‑012‑0303‑1
    [Google Scholar]
  102. MomanR.N. GuptaN. VaracalloM. Physiology, Albumin.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  103. ZareenS. A new concept in relation to blood biochemical parameters with myocardial infarction in Bangladeshi population.World J. Gastrointest. Surg.201361
    [Google Scholar]
  104. TavernaM. MarieA.L. MiraJ.P. GuidetB. Specific antioxidant properties of human serum albumin.Ann. Intensive Care201331410.1186/2110‑5820‑3‑423414610
    [Google Scholar]
  105. BertholfR.L. Proteins and albumin.Lab. Med.2014451e25e4110.1309/LMKRNRGW5J03APZQ
    [Google Scholar]
  106. LiuH. LeeS.S. The liver–heart relationship: A history.Cardio-Hepatology.Chapter 1 TaniguchiT. LeeS.S. Academic Press20233910.1016/B978‑0‑12‑817394‑7.00020‑6
    [Google Scholar]
  107. MadanyN.M.K. ShehataM.R. MohamedA.S.J.B.R.A.C. Ovothiol-a isolated from sea urchin eggs suppress oxidative stress, inflammation, and dyslipidemia resulted in restoration of liver activity in cholestatic rats.World J. Gastrointest. Surg.20221281528162
    [Google Scholar]
  108. Al SalhenK.S. MahmoudA.Y.J.I.J.S.S. Determinants of abnormal kidney function tests in diabetes patient type 2 in Libya.World J. Gastrointest. Surg.20164699103
    [Google Scholar]
  109. KashaniK. RosnerM.H. OstermannM. Creatinine: From physiology to clinical application.Eur. J. Intern. Med.20207291410.1016/j.ejim.2019.10.02531708357
    [Google Scholar]
  110. AdeyomoyeO. AdewoyeE.J.A.J.R.M. SciencesP. Preliminary assessments and renoprotective effects of methanol extract of Parquetina nigrescens (African Parquetina) in diabetic wistar rats.World J. Gastrointest. Surg.201834110
    [Google Scholar]
  111. PundirC.S. JakharS. NarwalV. Determination of urea with special emphasis on biosensors: A review.Biosens. Bioelectron.2019123365010.1016/j.bios.2018.09.06730308420
    [Google Scholar]
  112. Fathallah-ShaykhS.A. CramerM.T. Uric acid and the kidney.Pediatr. Nephrol.2014296999100810.1007/s00467‑013‑2549‑x23824181
    [Google Scholar]
  113. BoarescuP.M. BoarescuI. BulboacăA.E. BocșanI.C. PopR.M. GhebanD. RâjnoveanuR-M. RâjnoveanuA. RoşianŞ.H. BuzoianuA.D. BolboacăS.D. Multi-organ protective effects of curcumin nanoparticles on drug-induced acute myocardial infarction in rats with type 1 diabetes mellitus.Appl. Sci.20211112549710.3390/app11125497
    [Google Scholar]
  114. EmranT. ChowdhuryN.I. SarkerM. BepariA.K. HossainM. RahmanG.M.S. RezaH.M. L-carnitine protects cardiac damage by reducing oxidative stress and inflammatory response via inhibition of tumor necrosis factor-alpha and interleukin-1beta against isoproterenol-induced myocardial infarction.Biomed. Pharmacother.202114311213910.1016/j.biopha.2021.11213934507121
    [Google Scholar]
  115. GowdaS. DesaiP.B. KulkarniS.S. HullV.V. MathA.A. VernekarS.N. Markers of renal function tests.N. Am. J. Med. Sci.20102417017322624135
    [Google Scholar]
  116. BärC. de JesusB.B. SerranoR. TejeraA. AyusoE. JimenezV. FormentiniI. BobadillaM. MizrahiJ. de MartinoA. GomezG. PisanoD. MuleroF. WollertK.C. BoschF. BlascoM.A. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction.Nat. Commun.201451586310.1038/ncomms686325519492
    [Google Scholar]
  117. KuwabaraM. BjornstadP. HisatomeI. NiwaK. Roncal-JimenezC.A. Andres-HernandoA. JensenT. MilagresT. SatoY. GarciaG. OhnoM. LanaspaM.A. JohnsonR.J. Elevated serum uric acid level predicts rapid decline in kidney function.Am. J. Nephrol.201745433033710.1159/00046426028285309
    [Google Scholar]
  118. ZhiL. YuzhangZ. TianliangH. HisatomeI. YamamotoT. JidongC. High uric acid induces insulin resistance in cardiomyocytes in vitro and in vivo.PLoS One2016112e014773710.1371/journal.pone.014773726836389
    [Google Scholar]
  119. Entin-MeerM. Ben-ShoshanJ. Maysel-AuslenderS. LevyR. GoryainovP. SchwartzI. BarshackI. AviviC. SharirR. KerenG. Accelerated renal fibrosis in cardiorenal syndrome is associated with long-term increase in urine neutrophil gelatinase-associated lipocalin levels.Am. J. Nephrol.201236219020010.1159/00034165122889806
    [Google Scholar]
  120. DammanK. TestaniJ.M. The kidney in heart failure: An update.Eur. Heart J.201536231437144410.1093/eurheartj/ehv01025838436
    [Google Scholar]
  121. EcklyA. HechlerB. FreundM. ZerrM. CazenaveJ.P. LanzaF. ManginP.H. GachetC. Mechanisms underlying FeCl3‐induced arterial thrombosis.J. Thromb. Haemost.20119477978910.1111/j.1538‑7836.2011.04218.x21261806
    [Google Scholar]
  122. DraperH. Malondialdehyde in biological systems.Cellular antioxidant defense mechanisms.CRC press20199710910.1201/9780429289309‑5
    [Google Scholar]
  123. ZorawarS. Use of malondialdehyde as a biomarker for assessing oxidative stress in different disease pathologies: A review.Iran. J. Public Health201543Supple 3
    [Google Scholar]
  124. TsikasD. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges.Anal. Biochem.2017524133010.1016/j.ab.2016.10.02127789233
    [Google Scholar]
  125. XiaomeiL. YunanJ. LingM. LiliD. Danshen (Radix Salviae Miltiorrhizae) reverses renal injury induced by myocardial infarction.J. Tradit. Chin. Med.201535330631110.1016/S0254‑6272(15)30102‑326237835
    [Google Scholar]
  126. RanjbarK. NazemF. SabrinezhadR. NazariA. Aerobic training and L-arginine supplement attenuates myocardial infarction-induced kidney and liver injury in rats via reduced oxidative stress.Indian Heart J.201870453854310.1016/j.ihj.2017.08.01130170650
    [Google Scholar]
  127. MengY. YinQ. MaQ. QinH. ZhangJ. ZhangB. PangH. TianH. FXII regulates the formation of deep vein thrombosis via the PI3K/AKT signaling pathway in mice.Int. J. Mol. Med.20214758710.3892/ijmm.2021.492033760144
    [Google Scholar]
  128. TokgozV.Y. SipahiM. KeskinO. GuvendiG.F. TakirS. Protective effects of vitamin D on ischemia-reperfusion injury of the ovary in a rat model.Iran. J. Basic Med. Sci.201821659359929942449
    [Google Scholar]
  129. RubilarT. BarbieriE.S. GazquezA. AvaroM. Sea urchin pigments: Echinochrome a and its potential implication in the cytokine storm syndrome.Mar. Drugs202119526710.3390/md1905026734064550
    [Google Scholar]
  130. AdwasA.A. Oxidative stress and antioxidant mechanisms in human body.World J. Gastrointest. Surg.2019614347
    [Google Scholar]
  131. GustiA.M.T. QustiS.Y. AlshammariE.M. ToraihE.A. FawzyM.S. Antioxidants-related superoxide dismutase (SOD), Catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A preliminary case-control study.Antioxidants202110459510.3390/antiox1004059533924357
    [Google Scholar]
  132. MohammedE.N. SolimanA.M. MohamedA.S. Modulatory effect of Ovothiol‐A on myocardial infarction induced by epinephrine in rats.J. Food Biochem.2022469e1429610.1111/jfbc.1429635791516
    [Google Scholar]
  133. SchoenwaelderS.M. JacksonS.P. Ferric chloride thrombosis model: Unraveling the vascular effects of a highly corrosive oxidant.Blood2015126242652265310.1182/blood‑2015‑09‑66838426504184
    [Google Scholar]
  134. WoollardK.J. SturgeonS. Chin-DustingJ.P.F. SalemH.H. JacksonS.P. Erythrocyte hemolysis and hemoglobin oxidation promote ferric chloride-induced vascular injury.J. Biol. Chem.200928419131101311810.1074/jbc.M80909520019276082
    [Google Scholar]
  135. ShiJ. SunB. ShiW. ZuoH. CuiD. NiL. ChenJ. Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation.Tumour Biol.201536265566210.1007/s13277‑014‑2644‑z25283382
    [Google Scholar]
  136. MohamedA.S. SadekS.A. HassaneinS.S. SolimanA.M. Hepatoprotective effect of echinochrome pigment in septic rats.J. Surg. Res.201923431732410.1016/j.jss.2018.10.00430527491
    [Google Scholar]
  137. GreseleP. MomiS. GuglielminiG. Nitric oxide-enhancing or -releasing agents as antithrombotic drugs.Biochem. Pharmacol.201916630031210.1016/j.bcp.2019.05.03031173724
    [Google Scholar]
  138. FörstermannU. MünzelT. Endothelial nitric oxide synthase in vascular disease: From marvel to menace.Circulation2006113131708171410.1161/CIRCULATIONAHA.105.60253216585403
    [Google Scholar]
  139. GuanL.Y. FuP.Y. LiP.D. LiZ.N. LiuH.Y. XinM.G. LiW. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide.World J. Gastrointest. Surg.20146712212810.4240/wjgs.v6.i7.12225068009
    [Google Scholar]
  140. QiuT. Effects of saccharides from Arctium lappa L. Root on FeCl3-induced arterial thrombosis via the ERK/NF-κB signaling pathway.Oxid. Med. Cell Longev.202020207691352
    [Google Scholar]
  141. FreedmanJ. LoscalzoJ.J.J.o.T. Loscalzo, and haemostasis, nitric oxide and its relationship to thrombotic disorders.World J. Gastrointest. Surg.20031611831188
    [Google Scholar]
  142. NapoliC. IgnarroL.J. Nitric oxide and atherosclerosis.Nitric Oxide200152889710.1006/niox.2001.033711292358
    [Google Scholar]
  143. LiH. HorkeS. FörstermannU. Vascular oxidative stress, nitric oxide and atherosclerosis.Atherosclerosis2014237120821910.1016/j.atherosclerosis.2014.09.00125244505
    [Google Scholar]
  144. QianJ. FultonD. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium.Front. Physiol.2013434710.3389/fphys.2013.0034724379783
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968334087241210053042
Loading
/content/journals/ccb/10.2174/0122127968334087241210053042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test