Skip to content
2000
image of Echinochrome-A Attenuates Arterial Thrombosis Complications in the Liver and Kidney in Rats

Abstract

Background

Arterial thrombosis represents the most commonly feared consequence of cardiovascular disease and a leading cause of death globally. Cardiovascular disease, liver, and kidney are closely linked conditions, and disease in one organ can lead to dysfunction in the other.

Objective

The current research aims to examine the therapeutic impact of Ech-A on arterial thrombosis induced by FeCl complications on liver and kidney function.

Materials and methods

Twenty-four rats were assigned into four sham groups (n= 6), and thrombotic model groups were orally administered 2% DMSO, while the other groups were treated with two dosages of Ech-A (1 and 10 mg/kg, body weight). After seven days of administration, the left common carotid arteries of all groups were exposed to 50% ferric chloride for 10 min, except those of the sham group rats exposed to normal saline.

Results

The oral administration of Ech-A caused a significant increase in partial thromboplastin time, prothrombin time, glutathione, catalase, nitric oxide, and glutathione S-transferase. While aspartate aminotransferase, alkaline phosphatase, and alanine aminotransferase activities as well as creatinine, uric acid, urea, and malondialdehyde concentrations were significantly decreased (< 0.05). The histological examination revealed a definite improvement in the liver and kidney tissues in the Ech-A groups.

Conclusion

The current investigation revealed that arterial thrombosis induced by FeCl in rats causes complications in the kidneys and liver. Additionally, it demonstrates the beneficial impact of Ech-A on coagulation parameters and liver and kidney function. Despite this, the current study has few limitations. Firstly, the molecular mechanism regarding the protective effect of Ech-A on liver and kidney complications caused by arterial thrombosis has not been investigated. Secondly, no reference drug has been utilised to compare with Ech-A.

Loading

Article metrics loading...

/content/journals/ccb/10.2174/0122127968334087241210053042
2024-12-24
2025-01-19
Loading full text...

Full text loading...

References

  1. Ford R.M. Book W. Spivey J.R. Liver disease related to the heart. Transplant. Rev. 2015 29 1 33 37 10.1016/j.trre.2014.11.003 25510577
    [Google Scholar]
  2. Peterson-Newman J.K. Mediating Effect of Cognitive Function on Health-Related Quality of Life Among Older Adults with Cardiovascular Disease in the United States. The University of Texas at Arlington 2021
    [Google Scholar]
  3. Kjeldsen S.E. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 2018 129 95 99 10.1016/j.phrs.2017.11.003 29127059
    [Google Scholar]
  4. Zhao D. Liu J. Wang M. Zhang X. Zhou M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat. Rev. Cardiol. 2019 16 4 203 212 10.1038/s41569‑018‑0119‑4 30467329
    [Google Scholar]
  5. Ghagane S.C. Akbar A.A. Use of honey in cardiovascular diseases. Honey Wiley 2023 197 209 10.1002/9781119113324.ch14
    [Google Scholar]
  6. Manfredini R. De Giorgi A. Tiseo R. Boari B. Cappadona R. Salmi R. Gallerani M. Signani F. Manfredini F. Mikhailidis D.P. Fabbian F. Marital status, cardiovascular diseases, and cardiovascular risk factors: A review of the evidence. J. Womens Health 2017 26 6 624 632 10.1089/jwh.2016.6103 28128671
    [Google Scholar]
  7. Cappuccio F.P. Miller M.A. Cardiovascular disease and hypertension in sub-Saharan Africa: Burden, risk and interventions. Intern. Emerg. Med. 2016 11 3 299 305 10.1007/s11739‑016‑1423‑9 27001886
    [Google Scholar]
  8. Kavoliuniene A. Vaitiekiene A. Cesnaite G. Congestive hepatopathy and hypoxic hepatitis in heart failure: A cardiologist’s point of view. Int. J. Cardiol. 2013 166 3 554 558 10.1016/j.ijcard.2012.05.003 22656043
    [Google Scholar]
  9. Poelzl G. Auer J. Cardiohepatic syndrome. Curr. Heart Fail. Rep. 2015 12 1 68 78 10.1007/s11897‑014‑0238‑0 25391350
    [Google Scholar]
  10. Tanai E. Frantz S. Pathophysiology of heart failure. Compr. Physiol. 2015 6 1 187 214 10.1002/cphy.c140055 26756631
    [Google Scholar]
  11. Björkegren J.L.M. Lusis A.J.J.C. Atherosclerosis: Recent developments. World J. Gastrointest. Surg. 2022 185 10 1630 1645 35504280
    [Google Scholar]
  12. Correale M. Tarantino N. Petrucci R. Tricarico L. Laonigro I. Di Biase M. Brunetti N.D. Liver disease and heart failure: Back and forth. Eur. J. Intern. Med. 2018 48 25 34 10.1016/j.ejim.2017.10.016 29100896
    [Google Scholar]
  13. Møller S. Bernardi M. Interactions of the heart and the liver. Eur. Heart J. 2013 34 36 2804 2811 10.1093/eurheartj/eht246 23853073
    [Google Scholar]
  14. Liu M. Li X.C. Lu L. Cao Y. Sun R.R. Chen S. Zhang P.Y. Cardiovascular disease and its relationship with chronic kidney disease. World J. Gastrointest. Surg. 2014 18 19 2918 2926 25339487
    [Google Scholar]
  15. Segall L. Nistor I. Covic A. Heart failure in patients with chronic kidney disease: A systematic integrative review. BioMed Res. Int. 2014 2014 1 21 10.1155/2014/937398 24959595
    [Google Scholar]
  16. Podkowińska A. Formanowicz D. Chronic kidney disease as oxidative stress- and inflammatory-mediated cardiovascular disease. Antioxidants 2020 9 8 752 10.3390/antiox9080752 32823917
    [Google Scholar]
  17. Miller A.J. Arnold A.C. The renin–angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications. Clin. Auton. Res. 2019 29 2 231 243 10.1007/s10286‑018‑0572‑5 30413906
    [Google Scholar]
  18. Metra M. Cotter G. Gheorghiade M. Dei Cas L. Voors A.A. The role of the kidney in heart failure. Eur. Heart J. 2012 33 17 2135 2142 10.1093/eurheartj/ehs205 22888113
    [Google Scholar]
  19. Joshi S. Smith A.N. Prakhya K.S. Alfar H.R. Lykins J. Zhang M. Pokrovskaya I. Aronova M. Leapman R.D. Storrie B. Whiteheart S.W. Ferric chloride-induced arterial thrombosis and sample collection for 3D electron microscopy analysis. J. Vis. Exp. 2023 193 e64985 10.3791/64985 37010311
    [Google Scholar]
  20. Bang J. Jeon W.K. Mumefural improves blood flow in a rat model of FeCl3-induced arterial thrombosis. Nutrients 2020 12 12 3795 10.3390/nu12123795 33322041
    [Google Scholar]
  21. Grover S.P. Mackman N. How useful are ferric chloride models of arterial thrombosis? Platelets 2020 31 4 432 438 10.1080/09537104.2019.1678119 31608756
    [Google Scholar]
  22. Li P. Lin B. Tang P. Ye Y. Wu Z. Gui S. Zhan Y. Yang W. Lin B. Aqueous extract of Whitmania pigra Whitman ameliorates ferric chloride-induced venous thrombosis in rats via antioxidation. J. Thromb. Thrombolysis 2021 52 1 59 68 10.1007/s11239‑020‑02337‑8 33201380
    [Google Scholar]
  23. Shim Y. Characterization of ferric chloride-induced arterial thrombosis model of mice and the role of red blood cells in thrombosis acceleration. Yonsei Med. J. 2021 62 11 1032 1041
    [Google Scholar]
  24. Weitz J.I. Chan N.C. Advances in antithrombotic therapy. Arterioscler. Thromb. Vasc. Biol. 2019 39 1 7 12 10.1161/ATVBAHA.118.310960 30580558
    [Google Scholar]
  25. Cryer B. Mahaffey K. Gastrointestinal ulcers, role of aspirin, and clinical outcomes: Pathobiology, diagnosis, and treatment. J. Multidiscip. Healthc. 2014 7 137 146 10.2147/JMDH.S54324 24741318
    [Google Scholar]
  26. Kazaal M.A. Abbas G.A. AL-Kurdy M.J. Betti A.A. AL Dulaimi Z.M.H. Amanah A.M. Clinical evaluation of side effects resulting from the use of aspirin cardio. AIP Conf. Proc. 2024 3092 1 030004 10.1063/5.0199668
    [Google Scholar]
  27. Laner-Plamberger S. Oeller M. Rohde E. Schallmoser K. Strunk D. Heparin and derivatives for advanced cell therapies. Int. J. Mol. Sci. 2021 22 21 12041 10.3390/ijms222112041 34769471
    [Google Scholar]
  28. Elango K. Javaid A. Khetarpal B.K. Ramalingam S. Kolandaivel K.P. Gunasekaran K. Ahsan C. The effects of warfarin and direct oral anticoagulants on systemic vascular calcification: A review. Cells 2021 10 4 773 10.3390/cells10040773 33807457
    [Google Scholar]
  29. Félix-Silva J. Souza T. Camara R.B.B.G. Cabral B. Silva-Júnior A.A. Rebecchi I.M.M. Zucolotto S.M. Rocha H.A.O. Fernandes-Pedrosa M.F. In vitro anticoagulant and antioxidant activities of Jatropha gossypiifolia L. (Euphorbiaceae) leaves aiming therapeutical applications. BMC Complement. Altern. Med. 2014 14 1 405 10.1186/1472‑6882‑14‑405 25328027
    [Google Scholar]
  30. Sadek S.A. Hassanein S.S. Mohamed A.S. Soliman A.M. Fahmy S.R. Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats. J. Food Biochem. 2022 46 3 e13729 10.1111/jfbc.13729 33871886
    [Google Scholar]
  31. Vasileva E.A. Mishchenko N.P. Tran V.T.T. Vo H.M.N. Fedoreyev S.A. Spinochrome identification and quantification in pacific sea urchin shells, coelomic fluid and eggs using HPLC-DAD-MS. Mar. Drugs 2021 19 1 21 10.3390/md19010021 33419049
    [Google Scholar]
  32. Kikionis S. Papakyriakopoulou P. Mavrogiorgis P. Vasileva E.A. Mishchenko N.P. Fedoreyev S.A. Valsami G. Ioannou E. Roussis V. Development of novel pharmaceutical forms of the marine bioactive pigment echinochrome a enabling alternative routes of administration. Mar. Drugs 2023 21 4 250 10.3390/md21040250 37103389
    [Google Scholar]
  33. Popov A.M. Osipov A.N. Korepanova E.A. Krivoshapko O.N. Artyukov A.A. Klimovich A.A. A study of the antioxidant and membranotropic activities of equinochrome a using different model systems. Biophysics 2017 62 3 407 414 10.1134/S0006350917030174
    [Google Scholar]
  34. Lee S. Pronto J. Sarankhuu B.E. Ko K. Rhee B. Kim N. Mishchenko N. Fedoreyev S. Stonik V. Han J. Acetylcholinesterase inhibitory activity of pigment echinochrome A from sea urchin Scaphechinus mirabilis. Mar. Drugs 2014 12 6 3560 3573 10.3390/md12063560 24918454
    [Google Scholar]
  35. Sayed D.A. Soliman A.M. Fahmy S.R. Echinochrome pigment as novel therapeutic agent against experimentally - Induced gastric ulcer in rats. Biomed. Pharmacother. 2018 107 90 95 10.1016/j.biopha.2018.07.173 30081206
    [Google Scholar]
  36. Mohamed S.A. Protective and curative mechanisms of echinochrome against 7, 12-Dimethylbenz [a] anthracene-induced renal toxicity in rats. GSC Adv. Res. Rev. 2021 6 1 47 55
    [Google Scholar]
  37. Mischenko N.P. Fedoreev S.A. Zapara T.A. Ratushnyak A.S. Effects of histochrom and emoxypin on biophysical properties of electroexitable cells. Bull. Exp. Biol. Med. 2009 147 2 196 200 10.1007/s10517‑009‑0473‑7 19513420
    [Google Scholar]
  38. Mohamed A.S. Echinochrome exhibits antitumor activity against ehrlich ascites carcinoma in swiss albino mice. Nutr. Cancer 2021 73 1 124 132 10.1080/01635581.2020.1737152 32151164
    [Google Scholar]
  39. Jeong S. Kim H. Song I.S. Lee S. Ko K. Rhee B. Kim N. Mishchenko N. Fedoryev S. Stonik V. Han J. Echinochrome A protects mitochondrial function in cardiomyocytes against cardiotoxic drugs. Mar. Drugs 2014 12 5 2922 2936 10.3390/md12052922 24828295
    [Google Scholar]
  40. Song B.W. Kim S. Kim R. Jeong S. Moon H. Kim H. Vasileva E. Mishchenko N. Fedoreyev S. Stonik V. Lee M. Kim J. Kim H. Han J. Chang W. Regulation of inflammation-mediated endothelial to mesenchymal transition with echinochrome a for improving myocardial dysfunction. Mar. Drugs 2022 20 12 756 10.3390/md20120756 36547903
    [Google Scholar]
  41. Brasseur L. Hennebert E. Fievez L. Caulier G. Bureau F. Tafforeau L. Flammang P. Gerbaux P. Eeckhaut I. The roles of spinochromes in four shallow water tropical sea urchins and their potential as bioactive pharmacological agents. Mar. Drugs 2017 15 6 179 10.3390/md15060179 28621734
    [Google Scholar]
  42. Mishchenko N.P. Krylova N.V. Iunikhina O.V. Vasileva E.A. Likhatskaya G.N. Pislyagin E.A. Tarbeeva D.V. Dmitrenok P.S. Fedoreyev S.A. Antiviral potential of sea urchin aminated spinochromes against herpes simplex virus type 1. Mar. Drugs 2020 18 11 550 10.3390/md18110550 33167501
    [Google Scholar]
  43. Rubilar Panasiuk C.T. In silico analysis of sea urchin pigments as potential therapeutic agents against SARS-CoV-2: Main protease (Mpro) as a target. Preprints 2020
    [Google Scholar]
  44. Mohamed A.S. Soliman A.M. Marie M.A.S. Mechanisms of echinochrome potency in modulating diabetic complications in liver. Life Sci. 2016 151 41 49 10.1016/j.lfs.2016.03.007 26947587
    [Google Scholar]
  45. Mishchenko N.P. Vasileva E.A. Gerasimenko A.V. Grigorchuk V.P. Dmitrenok P.S. Fedoreyev S.A. Isolation and structure determination of echinochrome a oxidative degradation products. Molecules 2020 25 20 4778 10.3390/molecules25204778 33080948
    [Google Scholar]
  46. Kalinin V.I. Echinoderms metabolites: Structure, functions, and biomedical perspectives. Mar. Drugs 2021 19 3 125 10.3390/md19030125 33652699
    [Google Scholar]
  47. Joy M. Chakraborty K. Biogenic antioxidative and anti-inflammatory aryl polyketides from the venerid bivalve clam Paphia malabarica. Food Chem. 2017 237 169 180 10.1016/j.foodchem.2017.05.087 28763983
    [Google Scholar]
  48. Sun Q. Hu S. Lou Z. Gao J. The macrophage polarization in inflammatory dermatosis and its potential drug candidates. Biomed. Pharmacother. 2023 161 114469 10.1016/j.biopha.2023.114469 37002572
    [Google Scholar]
  49. Moreno-García D.M. Salas-Rojas M. Fernández-Martínez E. López-Cuellar M.R. Sosa-Gutierrez C.G. Peláez-Acero A. Rivero-Perez N. Zaragoza-Bastida A. Ojeda-Ramírez D. Sea urchins: An update on their pharmacological properties. PeerJ 2022 10 e13606 10.7717/peerj.13606 35811815
    [Google Scholar]
  50. El-Shehry M.S.E.F. Amrymi R.A. Atia T. Lotfy B.M.M. Ahmed S.H.A. Qutb S.A. Ali S.B. Mohamed A.S. Mousa M.R. Damanhory A.A. Metawee M.E. Sakr H.I. Hematopoietic effect of echinochrome on phenylhydrazine-induced hemolytic anemia in rats. PeerJ 2023 11 e16576 10.7717/peerj.16576 38089915
    [Google Scholar]
  51. Sibiya A. Jeyavani J. Sivakamavalli J. Ravi C. Divya M. Vaseeharan B. Bioactive compounds from various types of sea urchin and their therapeutic effects — A review. Reg. Stud. Mar. Sci. 2021 44 101760 10.1016/j.rsma.2021.101760
    [Google Scholar]
  52. Clark A. Monograph of shallow-water indo-west pacific echinoderms. Trust. Br. Mus. (Nat. Hist.). Publ. 1971 690 1 238
    [Google Scholar]
  53. Amarowicz R. Synowiecki J. Shahidi F. Sephadex LH-20 separation of pigments from shells of red sea urchin (Strongylocentrotus franciscanus). Food Chem. 1994 51 2 227 229 10.1016/0308‑8146(94)90262‑3
    [Google Scholar]
  54. Kuwahara R. Hatate H. Yuki T. Murata H. Tanaka R. Hama Y. Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina. Lebensm. Wiss. Technol. 2009 42 7 1296 1300 10.1016/j.lwt.2009.02.020
    [Google Scholar]
  55. Lin X. Zhao P. Lin Z. Chen J. Bingwa L.A. Siaw-Debrah F. Zhang P. Jin K. Yang S. Zhuge Q. Establishment of a Modified and Standardized Ferric Chloride-Induced Rat Carotid Artery Thrombosis Model. ACS Omega 2022 7 10 8919 8927 10.1021/acsomega.1c07316 35309441
    [Google Scholar]
  56. Mohamed A.S. Hosney M. Bassiony H. Hassanein S.S. Soliman A.M. Fahmy S.R. Gaafar K. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats. Sci. Rep. 2020 10 1 378 10.1038/s41598‑019‑57252‑7 31942001
    [Google Scholar]
  57. Young D.S. Pestaner L.C. Gibberman V. Effects of drugs on clinical laboratory tests. Clin. Chem. 1975 21 5 1D 432D 1091375
    [Google Scholar]
  58. Breuer J. Report on the symposium “Drug effects in Clinical Chemistry Methods”. European journal of clinical chemistry and clinical biochemistry: journal of the Forum of European Clinical Chemistry Societies. World J. Gastrointest. Surg. 1996 34 4 385 386
    [Google Scholar]
  59. Tietz N.W. Rinker A.D. Shaw L.M. International federation of clinical chemistry. IFCC methods for the measurement of catalytic concentration of enzymes. Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1). IFCC Document Stage 2, Draft 1, 1983-03 with a view to an IFCC Recommendation. Clin. Chim. Acta 1983 135 3 339F 367F 6661822
    [Google Scholar]
  60. Tietz N.J.T.C.C. Specimen collection and processing; sources of biological variation. 2nd Ed WB Saunders Philadelphia, PA 1994
    [Google Scholar]
  61. Tietz N.J.P. USA, Clinical guide to laboratory tests, WB Saunders Company. World J. Gastrointest. Surg. 1990 554 556
    [Google Scholar]
  62. Vella F. Textbook of clinical chemistry: Edited by N W Tietz. Pp 1919. W B Saunders, Philadelphia. 1986 ISBN 0-7216-8886-1. Biochem Educ 1986 4 3 146
    [Google Scholar]
  63. a Tietz N.J.A. Clinical Guide to Laboratory Tests 2nd Ed Philadelphia 2002
    [Google Scholar]
  64. b Tovar D. Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture 2002 204 1-2 113 123
    [Google Scholar]
  65. Beutler E. Duron O. Kelly B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963 61 882 888 13967893
    [Google Scholar]
  66. Aebi H. Catalase in vitro. Methods in Enzymology. Academic Press 1984 121 126
    [Google Scholar]
  67. Habig W.H. Pabst M.J. Jakoby W.B. Glutathione S-transferases. J. Biol. Chem. 1974 249 22 7130 7139 10.1016/S0021‑9258(19)42083‑8 4436300
    [Google Scholar]
  68. Montogomery H. Dymock J.J.A. The determination of nitrite in water: Colorimetric method of nitric oxide assay. World J. Gastrointest. Surg. 1961 86 414
    [Google Scholar]
  69. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  70. Bancroft J. Stevens A.J.B. Theory And Practice Of Histological Techniques. New York Churchill Livingstone 1996 309 339
    [Google Scholar]
  71. Mc Namara K. Alzubaidi H. Jackson J.K. Cardiovascular disease as a leading cause of death: How are pharmacists getting involved? Integr. Pharm. Res. Pract. 2019 8 null 1 11 10.2147/IPRP.S133088
    [Google Scholar]
  72. El Hadi H. Di Vincenzo A. Vettor R. Rossato M. Relationship between heart disease and liver disease: A two-way street. Cells 2020 9 3 567 10.3390/cells9030567 32121065
    [Google Scholar]
  73. Stark K. Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 2021 18 9 666 682 10.1038/s41569‑021‑00552‑1 33958774
    [Google Scholar]
  74. Mikaty G. Atypical disseminated intravascular coagulopathy during bubonic plague. Microbes Infect. 2022 105063
    [Google Scholar]
  75. Zhao Y. Chu X. Pang X.B. Wang S.H. Du G.H. Antithrombotic effects of the effective components group of Xiaoshuantongluo formula in vivo and in vitro. Chin. J. Nat. Med. 2015 13 2 99 107 10.1016/S1875‑5364(15)60013‑9 25769892
    [Google Scholar]
  76. Lipets E.N. Ataullakhanov F.I. Global assays of hemostasis in the diagnostics of hypercoagulation and evaluation of thrombosis risk. Thromb. J. 2015 13 1 4 10.1186/s12959‑015‑0038‑0 25635172
    [Google Scholar]
  77. Navone S.E. Guarnaccia L. Locatelli M. Rampini P. Caroli M. La Verde N. Gaudino C. Bettinardi N. Riboni L. Marfia G. Campanella R. Significance and prognostic value of the coagulation profile in patients with glioblastoma: Implications for personalized therapy. World Neurosurg. 2019 121 e621 e629 10.1016/j.wneu.2018.09.177 30292037
    [Google Scholar]
  78. Song J. Drobatz K.J. Silverstein D.C. Retrospective evaluation of shortened prothrombin time or activated partial thromboplastin time for the diagnosis of hypercoagulability in dogs: 25 cases (2006–2011). J. Vet. Emerg. Crit. Care 2016 26 3 398 405 10.1111/vec.12478 27074596
    [Google Scholar]
  79. Deng Q. Liu S-Q. Guo J-Y. Du J. He Z.J. Lin H.Y. Lei S.H. Anticoagulant effect of Huisheng oral solution in a rat model of thrombosis. Indian J. Pharmacol. 2013 45 4 359 364 10.4103/0253‑7613.115018 24014911
    [Google Scholar]
  80. Choi J.H. Kim D.W. Park S.E. Lee H.J. Kim K.M. Kim K.J. Kim M.K. Kim S.J. Kim S. Anti-thrombotic effect of rutin isolated from Dendropanax morbifera Leveille. J. Biosci. Bioeng. 2015 120 2 181 186 10.1016/j.jbiosc.2014.12.012 25777266
    [Google Scholar]
  81. Dwivedi R. Pomin V.H. Marine antithrombotics. Mar. Drugs 2020 18 10 514 10.3390/md18100514 33066214
    [Google Scholar]
  82. Lala V. Zubair M. Minter D.J.S. Liver function tests. StatPearls StatPearls Publishing Treasure Island (FL) 2023
    [Google Scholar]
  83. Targher G. Byrne C.D. Circulating markers of liver function and cardiovascular disease risk. Arterioscler. Thromb. Vasc. Biol. 2015 35 11 2290 2296 10.1161/ATVBAHA.115.305235 25977566
    [Google Scholar]
  84. Ndrepepa G.J.J.L. Medicine P. Aspartate aminotransferase and cardiovascular disease—a narrative review. World J. Gastrointest. Surg. 2020 2020 6
    [Google Scholar]
  85. Vishawanath T. Application of Enzymes in Disease Diagnosis. Creative Enzymes 2023 25
    [Google Scholar]
  86. Lim A.K.H. Abnormal liver function tests associated with severe rhabdomyolysis. World J. Gastroenterol. 2020 26 10 1020 1028 10.3748/wjg.v26.i10.1020 32205993
    [Google Scholar]
  87. Lowe D. Alkaline phosphatase. StatPearls StatPearls Publishing Treasure Island (FL) 2023
    [Google Scholar]
  88. Derbali A. Mnafgui K. Affes M. Derbali F. Hajji R. Gharsallah N. Allouche N. El Feki A. Cardioprotective effect of linseed oil against isoproterenol-induced myocardial infarction in Wistar rats: A biochemical and electrocardiographic study. J. Physiol. Biochem. 2015 71 2 281 288 10.1007/s13105‑015‑0411‑2 25910460
    [Google Scholar]
  89. Kumar M. Kasala E.R. Bodduluru L.N. Dahiya V. Lahkar M. Baicalein protects isoproterenol induced myocardial ischemic injury in male Wistar rats by mitigating oxidative stress and inflammation. Inflamm. Res. 2016 65 8 613 622 10.1007/s00011‑016‑0944‑z 27071824
    [Google Scholar]
  90. Liu Z. Que S. Xu J. Peng T. Alanine aminotransferase-old biomarker and new concept: A review. Int. J. Med. Sci. 2014 11 9 925 935 10.7150/ijms.8951 25013373
    [Google Scholar]
  91. Siddiqui M.S. Sterling R.K. Luketic V.A. Puri P. Stravitz R.T. Bouneva I. Boyett S. Fuchs M. Sargeant C. Warnick G.R. Grami S. Sanyal A.J. Association between high-normal levels of alanine aminotransferase and risk factors for atherogenesis. Gastroenterology 2013 145 6 1271 1279.e3, 3 10.1053/j.gastro.2013.08.036 23973920
    [Google Scholar]
  92. Moriles K.E. Azer S.A. Alanine Amino Transferase. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  93. Gao M. Cheng Y. Zheng Y. Zhang W. Wang L. Qin L. Association of serum transaminases with short- and long-term outcomes in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. BMC Cardiovasc. Disord. 2017 17 1 43 10.1186/s12872‑017‑0485‑6 28129742
    [Google Scholar]
  94. Soumya R.S. Raj K.B. Abraham A. Passiflora edulis (var. Flavicarpa) juice supplementation mitigates isoproterenol‐induced myocardial infarction in rats. Plant Foods Hum. Nutr. 2021 76 2 189 195 10.1007/s11130‑021‑00891‑x 33825089
    [Google Scholar]
  95. Haarhaus M. Brandenburg V. Kalantar-Zadeh K. Stenvinkel P. Magnusson P. Alkaline phosphatase: A novel treatment target for cardiovascular disease in CKD. Nat. Rev. Nephrol. 2017 13 7 429 442 10.1038/nrneph.2017.60 28502983
    [Google Scholar]
  96. Wannamethee S.G. Sattar N. Papcosta O. Lennon L. Whincup P.H. Alkaline phosphatase, serum phosphate, and incident cardiovascular disease and total mortality in older men. Arterioscler. Thromb. Vasc. Biol. 2013 33 5 1070 1076 10.1161/ATVBAHA.112.300826 23430618
    [Google Scholar]
  97. Fouad Y.M. Yehia R. Hepato-cardiac disorders. World J. Hepatol. 2014 6 1 41 54 10.4254/wjh.v6.i1.41 24653793
    [Google Scholar]
  98. Xanthopoulos A. Starling R.C. Kitai T. Triposkiadis F. Heart failure and liver disease. JACC Heart Fail. 2019 7 2 87 97 10.1016/j.jchf.2018.10.007 30553904
    [Google Scholar]
  99. Han D.G. Kwak J. Choi E. Seo S.W. Vasileva E.A. Mishchenko N.P. Fedoreyev S.A. Stonik V.A. Kim H.K. Han J. Byun J.H. Jung I.H. Yun H. Yoon I.S. Physicochemical characterization and phase II metabolic profiling of echinochrome A, a bioactive constituent from sea urchin, and its physiologically based pharmacokinetic modeling in rats and humans. Biomed. Pharmacother. 2023 162 114589 10.1016/j.biopha.2023.114589 37004327
    [Google Scholar]
  100. Kim H.K. Vasileva E.A. Mishchenko N.P. Fedoreyev S.A. Han J. Multifaceted clinical effects of echinochrome. Mar. Drugs 2021 19 8 412 10.3390/md19080412 34436251
    [Google Scholar]
  101. Fazio F. Marafioti S. Torre A. Sanfilippo M. Panzera M. Faggio C. Haematological and serum protein profiles of Mugil cephalus: Effect of two different habitats. Ichthyol. Res. 2013 60 1 36 42 10.1007/s10228‑012‑0303‑1
    [Google Scholar]
  102. Moman R.N. Gupta N. Varacallo M. Physiology, Albumin. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  103. Zareen S. A new concept in relation to blood biochemical parameters with myocardial infarction in Bangladeshi population. World J. Gastrointest. Surg. 2013 6 1
    [Google Scholar]
  104. Taverna M. Marie A.L. Mira J.P. Guidet B. Specific antioxidant properties of human serum albumin. Ann. Intensive Care 2013 3 1 4 10.1186/2110‑5820‑3‑4 23414610
    [Google Scholar]
  105. Bertholf R.L. Proteins and albumin. Lab. Med. 2014 45 1 e25 e41 10.1309/LMKRNRGW5J03APZQ
    [Google Scholar]
  106. Liu H. Lee S.S. The liver–heart relationship: A history. Cardio-Hepatology. Chapter 1 Taniguchi T. Lee S.S. Academic Press 2023 3 9 10.1016/B978‑0‑12‑817394‑7.00020‑6
    [Google Scholar]
  107. Madany N.M.K. Shehata M.R. Mohamed A.S.J.B.R.A.C. Ovothiol-a isolated from sea urchin eggs suppress oxidative stress, inflammation, and dyslipidemia resulted in restoration of liver activity in cholestatic rats. World J. Gastrointest. Surg. 2022 12 8152 8162
    [Google Scholar]
  108. Al Salhen K.S. Mahmoud A.Y.J.I.J.S.S. Determinants of abnormal kidney function tests in diabetes patient type 2 in Libya. World J. Gastrointest. Surg. 2016 4 6 99 103
    [Google Scholar]
  109. Kashani K. Rosner M.H. Ostermann M. Creatinine: From physiology to clinical application. Eur. J. Intern. Med. 2020 72 9 14 10.1016/j.ejim.2019.10.025 31708357
    [Google Scholar]
  110. Adeyomoye O. Adewoye E.J.A.J.R.M. Sciences P. Preliminary assessments and renoprotective effects of methanol extract of Parquetina nigrescens (African Parquetina) in diabetic wistar rats. World J. Gastrointest. Surg. 2018 3 4 1 10
    [Google Scholar]
  111. Pundir C.S. Jakhar S. Narwal V. Determination of urea with special emphasis on biosensors: A review. Biosens. Bioelectron. 2019 123 36 50 10.1016/j.bios.2018.09.067 30308420
    [Google Scholar]
  112. Fathallah-Shaykh S.A. Cramer M.T. Uric acid and the kidney. Pediatr. Nephrol. 2014 29 6 999 1008 10.1007/s00467‑013‑2549‑x 23824181
    [Google Scholar]
  113. Boarescu P.M. Boarescu I. Bulboacă A.E. Bocșan I.C. Pop R.M. Gheban D. Râjnoveanu R-M. Râjnoveanu A. Roşian Ş.H. Buzoianu A.D. Bolboacă S.D. Multi-organ protective effects of curcumin nanoparticles on drug-induced acute myocardial infarction in rats with type 1 diabetes mellitus. Appl. Sci. 2021 11 12 5497 10.3390/app11125497
    [Google Scholar]
  114. Emran T. Chowdhury N.I. Sarker M. Bepari A.K. Hossain M. Rahman G.M.S. Reza H.M. L-carnitine protects cardiac damage by reducing oxidative stress and inflammatory response via inhibition of tumor necrosis factor-alpha and interleukin-1beta against isoproterenol-induced myocardial infarction. Biomed. Pharmacother. 2021 143 112139 10.1016/j.biopha.2021.112139 34507121
    [Google Scholar]
  115. Gowda S. Desai P.B. Kulkarni S.S. Hull V.V. Math A.A. Vernekar S.N. Markers of renal function tests. N. Am. J. Med. Sci. 2010 2 4 170 173 22624135
    [Google Scholar]
  116. Bär C. de Jesus B.B. Serrano R. Tejera A. Ayuso E. Jimenez V. Formentini I. Bobadilla M. Mizrahi J. de Martino A. Gomez G. Pisano D. Mulero F. Wollert K.C. Bosch F. Blasco M.A. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat. Commun. 2014 5 1 5863 10.1038/ncomms6863 25519492
    [Google Scholar]
  117. Kuwabara M. Bjornstad P. Hisatome I. Niwa K. Roncal-Jimenez C.A. Andres-Hernando A. Jensen T. Milagres T. Sato Y. Garcia G. Ohno M. Lanaspa M.A. Johnson R.J. Elevated serum uric acid level predicts rapid decline in kidney function. Am. J. Nephrol. 2017 45 4 330 337 10.1159/000464260 28285309
    [Google Scholar]
  118. Zhi L. Yuzhang Z. Tianliang H. Hisatome I. Yamamoto T. Jidong C. High uric acid induces insulin resistance in cardiomyocytes in vitro and in vivo. PLoS One 2016 11 2 e0147737 10.1371/journal.pone.0147737 26836389
    [Google Scholar]
  119. Entin-Meer M. Ben-Shoshan J. Maysel-Auslender S. Levy R. Goryainov P. Schwartz I. Barshack I. Avivi C. Sharir R. Keren G. Accelerated renal fibrosis in cardiorenal syndrome is associated with long-term increase in urine neutrophil gelatinase-associated lipocalin levels. Am. J. Nephrol. 2012 36 2 190 200 10.1159/000341651 22889806
    [Google Scholar]
  120. Damman K. Testani J.M. The kidney in heart failure: An update. Eur. Heart J. 2015 36 23 1437 1444 10.1093/eurheartj/ehv010 25838436
    [Google Scholar]
  121. Eckly A. Hechler B. Freund M. Zerr M. Cazenave J.P. Lanza F. Mangin P.H. Gachet C. Mechanisms underlying FeCl3‐induced arterial thrombosis. J. Thromb. Haemost. 2011 9 4 779 789 10.1111/j.1538‑7836.2011.04218.x 21261806
    [Google Scholar]
  122. Draper H. Malondialdehyde in biological systems. Cellular antioxidant defense mechanisms. CRC press 2019 97 109 10.1201/9780429289309‑5
    [Google Scholar]
  123. Zorawar S. Use of malondialdehyde as a biomarker for assessing oxidative stress in different disease pathologies: A review. Iran. J. Public Health 2015 43 Supple 3
    [Google Scholar]
  124. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017 524 13 30 10.1016/j.ab.2016.10.021 27789233
    [Google Scholar]
  125. Xiaomei L. Yunan J. Ling M. Lili D. Danshen (Radix Salviae Miltiorrhizae) reverses renal injury induced by myocardial infarction. J. Tradit. Chin. Med. 2015 35 3 306 311 10.1016/S0254‑6272(15)30102‑3 26237835
    [Google Scholar]
  126. Ranjbar K. Nazem F. Sabrinezhad R. Nazari A. Aerobic training and L-arginine supplement attenuates myocardial infarction-induced kidney and liver injury in rats via reduced oxidative stress. Indian Heart J. 2018 70 4 538 543 10.1016/j.ihj.2017.08.011 30170650
    [Google Scholar]
  127. Meng Y. Yin Q. Ma Q. Qin H. Zhang J. Zhang B. Pang H. Tian H. FXII regulates the formation of deep vein thrombosis via the PI3K/AKT signaling pathway in mice. Int. J. Mol. Med. 2021 47 5 87 10.3892/ijmm.2021.4920 33760144
    [Google Scholar]
  128. Tokgoz V.Y. Sipahi M. Keskin O. Guvendi G.F. Takir S. Protective effects of vitamin D on ischemia-reperfusion injury of the ovary in a rat model. Iran. J. Basic Med. Sci. 2018 21 6 593 599 29942449
    [Google Scholar]
  129. Rubilar T. Barbieri E.S. Gazquez A. Avaro M. Sea urchin pigments: Echinochrome a and its potential implication in the cytokine storm syndrome. Mar. Drugs 2021 19 5 267 10.3390/md19050267 34064550
    [Google Scholar]
  130. Adwas A.A. Oxidative stress and antioxidant mechanisms in human body. World J. Gastrointest. Surg. 2019 6 1 43 47
    [Google Scholar]
  131. Gusti A.M.T. Qusti S.Y. Alshammari E.M. Toraih E.A. Fawzy M.S. Antioxidants-related superoxide dismutase (SOD), Catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A preliminary case-control study. Antioxidants 2021 10 4 595 10.3390/antiox10040595 33924357
    [Google Scholar]
  132. Mohammed E.N. Soliman A.M. Mohamed A.S. Modulatory effect of Ovothiol‐A on myocardial infarction induced by epinephrine in rats. J. Food Biochem. 2022 46 9 e14296 10.1111/jfbc.14296 35791516
    [Google Scholar]
  133. Schoenwaelder S.M. Jackson S.P. Ferric chloride thrombosis model: Unraveling the vascular effects of a highly corrosive oxidant. Blood 2015 126 24 2652 2653 10.1182/blood‑2015‑09‑668384 26504184
    [Google Scholar]
  134. Woollard K.J. Sturgeon S. Chin-Dusting J.P.F. Salem H.H. Jackson S.P. Erythrocyte hemolysis and hemoglobin oxidation promote ferric chloride-induced vascular injury. J. Biol. Chem. 2009 284 19 13110 13118 10.1074/jbc.M809095200 19276082
    [Google Scholar]
  135. Shi J. Sun B. Shi W. Zuo H. Cui D. Ni L. Chen J. Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumour Biol. 2015 36 2 655 662 10.1007/s13277‑014‑2644‑z 25283382
    [Google Scholar]
  136. Mohamed A.S. Sadek S.A. Hassanein S.S. Soliman A.M. Hepatoprotective effect of echinochrome pigment in septic rats. J. Surg. Res. 2019 234 317 324 10.1016/j.jss.2018.10.004 30527491
    [Google Scholar]
  137. Gresele P. Momi S. Guglielmini G. Nitric oxide-enhancing or -releasing agents as antithrombotic drugs. Biochem. Pharmacol. 2019 166 300 312 10.1016/j.bcp.2019.05.030 31173724
    [Google Scholar]
  138. Förstermann U. Münzel T. Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation 2006 113 13 1708 1714 10.1161/CIRCULATIONAHA.105.602532 16585403
    [Google Scholar]
  139. Guan L.Y. Fu P.Y. Li P.D. Li Z.N. Liu H.Y. Xin M.G. Li W. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide. World J. Gastrointest. Surg. 2014 6 7 122 128 10.4240/wjgs.v6.i7.122 25068009
    [Google Scholar]
  140. Qiu T. Effects of saccharides from Arctium lappa L. Root on FeCl3-induced arterial thrombosis via the ERK/NF-κB signaling pathway. Oxid. Med. Cell Longev. 2020 2020 7691352
    [Google Scholar]
  141. Freedman J. Loscalzo J.J.J.o.T. Loscalzo, and haemostasis, nitric oxide and its relationship to thrombotic disorders. World J. Gastrointest. Surg. 2003 1 6 1183 1188
    [Google Scholar]
  142. Napoli C. Ignarro L.J. Nitric oxide and atherosclerosis. Nitric Oxide 2001 5 2 88 97 10.1006/niox.2001.0337 11292358
    [Google Scholar]
  143. Li H. Horke S. Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 2014 237 1 208 219 10.1016/j.atherosclerosis.2014.09.001 25244505
    [Google Scholar]
  144. Qian J. Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front. Physiol. 2013 4 347 10.3389/fphys.2013.00347 24379783
    [Google Scholar]
/content/journals/ccb/10.2174/0122127968334087241210053042
Loading
/content/journals/ccb/10.2174/0122127968334087241210053042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test