Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Biocatalysis is an approach to green chemistry. A crucial step in the synthesis of organic compounds is the reduction of aldehydes and ketones to secondary alcohols. The use of a biocatalyst, such as enzymes or entire cells, has not affected this process. It offers great selectivity, high specificity, and an environmentally friendly approach to synthesis. mediates the conversion of optically active alcohols from aromatic aldehydes and ketones. This work highlights applications of in synthesizing pharmaceutical intermediates and chiral building blocks, demonstrating its practical relevance. Sustainable technology is based on the ideas and measurements of sustainable development and green for good enantioselectivity across several organic solvents.

Loading

Article metrics loading...

/content/journals/ccat/10.2174/0122115447342438241028112701
2024-11-01
2025-04-06
Loading full text...

Full text loading...

References

  1. LettersC. SocietyT. C. PreparationR. OpticallyM. ActiveK. FermentingU. BakerM. YeastK. Shinji synthetic akira of TAKEDA chemistry , okayama okayama the by the reducing use of the of Baker’ s C = O bond the a carbonyl never been yeast of C = C bond as has chiral of also reducing ketones best yeast been to the the agent.1987971972
    [Google Scholar]
  2. BreuerM. DitrichK. HabicherT. HauerB. KeßelerM. StürmerR. ZelinskiT. Industrial methods for the production of optically active intermediates.Angew. Chem. Int. Ed. Engl.200443778882410.1002/anie.200300599
    [Google Scholar]
  3. MahmoodiN.O. NavroodM.N. Enantio-, regio-, and chemoselective reduction of aromatic a-diketones by baker’s yeast in diverse organic-water solvent.ARKIVOC200620073374510.3998/ark.5550190.0008.305
    [Google Scholar]
  4. Chin-joeI. NelisseP.M. StraathofA.J.J. JongejanJ.A. PronkJ.T. HeijnenJ.J. Hydrolytic activity in baker's yeast limits the yield of asymmetric 3‐oxo ester reduction.Biotechnol. Bioeng.694370376200010862675
    [Google Scholar]
  5. PatelR.N. Biocatalysis in the Pharmaceutical and Biotechnology IndustriesCRC PressBoca Raton20061st ed10.1201/9781420019377
    [Google Scholar]
  6. StuermerR. HauerB. HallM. FaberK. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family.Curr. Opin. Chem. Biol.200711220321310.1016/j.cbpa.2007.02.02517353140
    [Google Scholar]
  7. IqbalN. RudroffF. BrigéA. Van BeeumenJ. MihovilovicM.D. Asymmetric bioreduction of activated carbon–carbon double bonds using Shewanella yellow enzyme (SYE-4) as novel enoate reductase.Tetrahedron201268377619762310.1016/j.tet.2012.05.09222991485
    [Google Scholar]
  8. SheldonR.A. Enzyme immobilization: The quest for optimum performance.Adv. Synth. Catal.20073498-91289130710.1002/adsc.200700082
    [Google Scholar]
  9. SchmidA. HollmannF. ParkJ.B. BühlerB. The use of enzymes in the chemical industry in Europe.Curr. Opin. Biotechnol.200213435936610.1016/S0958‑1669(02)00336‑1
    [Google Scholar]
  10. SchiraldiC. CarcarinoI.L. AlfanoA. RestainoO.F. PanarielloA. De RosaM. Purification of chondroitin precursor from Escherichia coli K4 fermentation broth using membrane processing.Biotechnol. J.20116441041910.1002/biot.20100026621381202
    [Google Scholar]
  11. WangZ. LyM. ZhangF. ZhongW. SuenA. HickeyA. M. DordickJ.S. LinhardtR.J.A E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor.Biotechnol. Bioeng.1076964973201010.1002/bit.22898
    [Google Scholar]
  12. SharmaS.K. SharmaA. Bio-transformation of prochiral ketones to pharmaceutically used chiral alcohols by baker’s yeast.Int. J. Innov. Res. Sci. Eng. Technol.2016512206602066310.15680/IJIRSET.2016.0512095
    [Google Scholar]
  13. CareyJ.S. LaffanD. WilliamsM.T. CareyJ.S. WilliamsM.T. Analysis of the reactions used for the preparation of drug candidate molecules.Org. Biomol. Chem.141220062337234710.1039/b602413k
    [Google Scholar]
  14. ShahN. PasteurU.L. 1970
  15. PohlN. ClagueA. SchwarzK. Chiral compounds and green chemistry in undergraduate organic laboratories: Reduction of a ketone by sodium borohydride and baker’s yeast.J. Chem. Educ.200279672772810.1021/ed079p727
    [Google Scholar]
  16. SeebachD. SutterM.A. WeberR.H. ZügeM.F. Yeast reduction of ethyl acetoacetate: (S)-( + )-ethyl 3-hydroxybutanoate.Org. Synth.631201410.15227/orgsyn.063.0001
    [Google Scholar]
  17. MoriK. TakigawaT. MatsuoT. Synthesis of optically active forms of ipsdienol and ipsenol.Tetrahedron197935893394010.1016/S0040‑4020(01)93705‑6
    [Google Scholar]
  18. WolfsonA. DlugyC. TavorD. Baker’s yeast catalyzed asymmetric reduction of prochiral ketones in different reaction mediums.Org. Commun.201361111
    [Google Scholar]
  19. PonceletD. LenckiR. BeaulieuC. HalleJ.P. NeufeidR.J. FournierA. Production of alginate beads by emulsification / internal gelation. I. methodology.Appl. Microbiol. Biotechnol.199238394510.1007/BF00169416
    [Google Scholar]
  20. SahooB.M. BanikB.K. Baker’s yeast-based organocatalysis: Applications in organic synthesis.Curr. Organocatal.20196215816410.2174/2213337206666181211105304
    [Google Scholar]
  21. NielsenJ. Yeast systems biology: Model organism and cell factory.Biotechnol. J.2019149180042110.1002/biot.20180042130925027
    [Google Scholar]
  22. HohmannS. Nobel yeast research.FEMS Yeast Research1682016fow09410.1093/femsyr/fow094
    [Google Scholar]
  23. Peralta-YahyaP.P. ZhangF. del CardayreS.B. KeaslingJ.D. Microbial engineering for the production of advanced biofuels.Nature2012488741132032810.1038/nature1147822895337
    [Google Scholar]
  24. SorillhaA.E.P.M. MarquesM. JoekesI. JoséP. MoranS. AugustoJ. RodriguesR. Reduction of phenylketones by immobilized baker’s yeast.Bioorg. Med. Chem. Lett.19922219119610.1016/S0960‑894X(01)80448‑0
    [Google Scholar]
  25. LaszloPierre Preparative Chemistry Using Supported ReagentsElsevier1st ed1987
    [Google Scholar]
  26. LiuH.H. JiX.J. HuangH. Biotechnological applications of Yarrowia lipolytica: Past, present and future.Biotechnol. Adv.20153381522154610.1016/j.biotechadv.2015.07.01026248319
    [Google Scholar]
  27. Randez-GilF. Córcoles-SáezI. PrietoJ.A. Genetic and phenotypic characteristics of baker’s yeast: relevance to baking.Annu. Rev. Food Sci. Technol.20134119121410.1146/annurev‑food‑030212‑18260923464571
    [Google Scholar]
  28. KcS. UpadhyayaJ. JoshiD.R. LekhakB. Kumar ChaudharyD. Raj PantB. Raj BajgaiT. DhitalR. KhanalS. KoiralaN. RaghavanV. Production, characterization, and industrial application of pectinase enzyme isolated from fungal strains.Fermentation (Basel)2020625910.3390/fermentation6020059
    [Google Scholar]
  29. TapreA.R. JainR.K. Pectinases: Enzymes for fruit processing industry.Int. Food Res. J.2014212447453
    [Google Scholar]
  30. BelmaresR. Contreras-EsquivelJ.C. Rodríguez-HerreraR. CoronelA.R. AguilarC.N. Microbial production of tannase: an enzyme with potential use in food industry.Lebensm. Wiss. Technol.200437885786410.1016/j.lwt.2004.04.002
    [Google Scholar]
  31. LiuX. KokareC. Microbial enzymes of use in industry.Biotechnology of Microbial EnzymesElsevier201740544410.1016/B978‑0‑12‑803725‑6.00011‑X
    [Google Scholar]
  32. TaketaniS. NishinoT. KatsukiH. Purification from and properties of sterol-ester hydrolase Saccharomyces.J. Biochem.198189616671673
    [Google Scholar]
  33. SchousboeI. Properties of triacylglycerol lipase in a mitochondrial fraction from baker’s yeast (Saccharomyces cerevisiae).Biochim. Biophys. Acta, Lipids Lipid Metab.197645016517410.1016/0005‑2760(76)90088‑6
    [Google Scholar]
  34. SinghR.S. SinghR.P. Inulinases.Current Developments in Biotechnology and Bioengineering423446Elsevier201610.1016/B978‑0‑444‑63662‑1.00018‑X
    [Google Scholar]
  35. OniludeA.A. FadaunsiI.F. GarubaE.O. Inulinase production by Saccharomyces sp. in solid state fermentation using wheat bran as substrate.Ann. Microbiol.201262284384810.1007/s13213‑011‑0325‑3
    [Google Scholar]
  36. Al-Sa’adyA. ArumugamA. SadiqA.M. NagalingamM. PanneerselvamA. PawarH.A. SivakumarT. RavikumarM. PrakashM. ShanmugarajuV. Production of extracelluar invertase from Saccharomyces cerevisiae strain isolated from grapes.Curr. Res. Microbiol.201423373377
    [Google Scholar]
  37. KaushalJ. MehandiaS. SinghG. RainaA. AryaS.K. Catalase enzyme: Application in bioremediation and food industry.Biocatal. Agric. Biotechnol.20181619219910.1016/j.bcab.2018.07.035
    [Google Scholar]
  38. VieiraE.F. Delerue-MatosC. Exploitation of Saccharomyces cerevisiae enzymes in food processing and preparation of nutraceuticals and pharmaceuticals.Microorg. Sustain.202011416210.1007/978‑981‑15‑1710‑5_2
    [Google Scholar]
  39. TanD. YinJ. ChenG.Q. Production of polyhydroxyalkanoates.Current Developments in Biotechnology and BioengineeringElsevier B.V.201665569210.1016/B978‑0‑444‑63662‑1.00029‑4
    [Google Scholar]
  40. RevathiD. RamalingamS. A study on critical associations of media components on enhanced cellulase production from wild Trichoderma viride and cellulase immobilization on iron-oxide magnetic nanoparticles.J. Environ. Biol.2023441273310.22438/jeb/44/1/MRN‑5048
    [Google Scholar]
  41. BiałasW. SzymanowskaD. GrajekW. Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling.Bioresour. Technol.201010193126313110.1016/j.biortech.2009.12.09020064710
    [Google Scholar]
  42. MartínC. GalbeM. WahlbomC.F. Hahn-HägerdalB. JönssonL.J. Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae.Enzyme Microb. Technol.200231327428210.1016/S0141‑0229(02)00112‑6
    [Google Scholar]
  43. OmarS.Z. HasanA.H. LalovI. 1999Potato peels and mixed grasses as raw materials for biofuel production.ARO - Sci. J. Koya Univ.81313710.14500/aro.10568
    [Google Scholar]
  44. GianfredaL. XuF. BollagJ.M. Laccases: A useful group of oxidoreductive enzymes.Bioremediat. J.19993112610.1080/10889869991219163
    [Google Scholar]
  45. BlancoP. Production and partial characterization of an endopolygalacturonase from Saccharomyces cerevisiae.Can. J. Microbiol.199440410.1139/m94‑155
    [Google Scholar]
  46. YounesB. CilindreC. VillaumeS. ParmentierM. JeandetP. VasserotY. Evidence for an extracellular acid proteolytic activity secreted by living cells of Saccharomyces cerevisiae PlR1: Impact on grape proteins.J. Agric. Food Chem.623962465911201110.1021/jf200348n
    [Google Scholar]
  47. RathoreA.S. GuptaR.D. Chitinases from bacteria to human: Properties, applications, and future perspectives.Enzyme Res.201520151810.1155/2015/79190726664744
    [Google Scholar]
  48. AkardereE. ÖzerB. ÇelemE.B. ÖnalS. Three-phase partitioning of invertase from Baker’s yeast.Separ. Purif. Tech.201072333533910.1016/j.seppur.2010.02.025
    [Google Scholar]
  49. KulshresthaS. TyagiP. SindhiV. YadavilliK.S. Invertase and its applications – A brief review.J. Pharm. Res.20137979279710.1016/j.jopr.2013.07.014
    [Google Scholar]
  50. SeipJ.E. Di CosimoR. Optimization of accessible catalase activity in polyacr ylamide gel-immobilized.1992200040638642
    [Google Scholar]
  51. TrawczyńskaI. WójcikM. Application of response surface methodology for optimization of permeabilization process of baker’s yeast.Pol. J. Chem. Technol.2014162313510.2478/pjct‑2014‑0026
    [Google Scholar]
  52. YaoJ. GuoG.S. RenG.H. LiuY.H. Production, characterization and applications of tannase.J. Mol. Catal., B Enzym.201410113714710.1016/j.molcatb.2013.11.018
    [Google Scholar]
  53. AmmoucheS.A.A. Optimization of ethanol, citric acid, and α-amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii.J. Ind. Microbiol. Biotechnol.20125175976610.1007/s10295‑011‑1070‑0
    [Google Scholar]
  54. SouzaP.M. MagalhãesP.O. Application of microbial α-amylase in industry - A review.Braz. J. Microbiol.201041485086110.1590/S1517‑8382201000040000424031565
    [Google Scholar]
  55. AgrawalP.B. PanditA.B. Isolation of α-glucosidase from Saccharomyces cerevisiae: Cell disruption and adsorption.Biochem. Eng. J.200315374510.1016/S1369‑703X(02)00178‑X
    [Google Scholar]
  56. AssefaS.T. YangE.Y. ChaeS.Y. SongM. LeeJ. ChoM.C. JangS. Alpha glucosidase inhibitory activities of plants with focus on common vegetables.Plants201991210.3390/plants901000231861279
    [Google Scholar]
  57. KimB. KimH. NamS. 1997Continuous production of fructose-syrups from inulin by immobilized inulinase from recombinant Saccharomyces cerevisiae.Biotechnol. Bioprocess Eng.2909310.1007/BF02932331
    [Google Scholar]
  58. PattanayakS. PriyadarsiniP. SinghY.D. Cellulose and nanocellulose productions from lignocellulosic biomass for biofuel production.Curr. Altern. Energy20204463110.2174/2405463104999201231195628
    [Google Scholar]
  59. ImranM. BanoS. NazirS. JavidA. AsadM.J. YaseenA. Cellulases production and application of cellulases and accessory enzymes in pulp and paper industry: A review.Biol. Res.201941293931084615
    [Google Scholar]
  60. HowarthJ. JamesP. DaiJ. Immobilized baker’s yeast reduction of ketones in an ionic liquid, [bmim]PF6 and water mix.Tetrahedron Lett.200142427517751910.1016/S0040‑4039(01)01601‑X
    [Google Scholar]
  61. CullS.G. HolbreyJ.D. Vargas-MoraV. SeddonK.R. LyeG.J. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations.Biotechnol. Bioeng.200069222723310.1002/(SICI)1097‑0290(20000720)69:2<227::AID‑BIT12>3.0.CO;2‑010861402
    [Google Scholar]
  62. Enzymatic reduction: A chiral alcohol from a ketone.Available from: https://instruct.uwo.ca/chemistry/283g/labs/Experiment%207/Expt135.pdf
  63. AcettiD. BrennaE. FugantiC. GattiF.G. SerraS. Baker’s yeast reduction of β‐hydroxy ketones.Eur. J. Org. Chem.20102010114215110.1002/ejoc.200901006
    [Google Scholar]
  64. LavalU. (+)-3-hydroxy-1-phenyl-1-butanone.1986
    [Google Scholar]
  65. DeasyR.E. MaguireA.R. Baker’s‐yeast‐mediated reduction of sulfur‐containing compounds.Eur. J. Org. Chem.20142014183737375610.1002/ejoc.201301729
    [Google Scholar]
  66. WolfsonA. HaddadN. DlugyC. TavorD. ShotlandY. Baker’s yeast catalyzed asymmetric reduction of methyl acetoacetate in glycerol containing systems.Org. Commun.200812916
    [Google Scholar]
  67. AhmadK. KoulS. TanejaS.C. SinghA.P. KapoorM. VermaV. QaziG.N. 2004Enzyme directed diastereoselectivity in chemical reductions: Studies towards the preparation of all four isomers of 1-phenyl-1, 3-butanediol.Tetrahedron Lett.15111685169210.1016/j.tetasy.2004.04.022
    [Google Scholar]
  68. LiuX. ZhuT.S. SunP.D. XuJ.H. Asymmetric reduction of aromatic ketones by the baker’s yeast in organic solvent systems.Synth. Commun.200131101521152610.1081/SCC‑100104064
    [Google Scholar]
  69. BanerjeeB. Per-6-amino-B-cyclodextrin (per-6-ABCD).J. Org. Biomol. Chem.328332015
    [Google Scholar]
  70. KumbharA. KulkarniV. PandeM. KarandeK. LaddhaS. Reductive biotransformation of ethyl acetoacetate: A comparative studies using free and immobilized whole yeast cells.Nat. Prec.201910.3390/ecsoc‑11‑01337
    [Google Scholar]
  71. FerraboschiP. GrisentiP. ManzocchiA. SantanielloE. Baker’s Yeast-Mediated Reduction of α-Hydroxy Ketones and Derivatives: The Steric Cour1. Ferraboschi P, Grisenti P, Manzocchi A, Santaniello E. Baker’s Yeast-Mediated Reduction of α-Hydroxy Ketones and Derivatives: The Steric Course of the Biotransformati.Tetrahedron19945035105391054810.1016/S0040‑4020(01)89594‑6
    [Google Scholar]
  72. PoignantG. Asymmetric reduction of ketones using bakers’ yeast.Catal. Fine Chem. Synth.2002113714210.1002/0470855800.ch10
    [Google Scholar]
  73. DeasyR. O’RiordanN. MaguireA. Baker’s yeast mediated reduction of 2-acetyl-3-methyl sulfolane.Catalysts20144218619510.3390/catal4020186
    [Google Scholar]
  74. RichterH.G.F. AngehrnP. HubschwerlenC. KaniaM. PageM.G.P. SpecklinJ. WinklerF.K. Design, synthesis, and evaluation of 2β-alkenyl penam sulfone acids as inhibitors of β-lactamases.J. Med. Chem.391937123722199610.1021/jm9601967
    [Google Scholar]
  75. KatoK. NakamuraH. NakanishiK. Asymmetric bioreduction of acetophenones by Baker’s yeast and its cell-free extract encapsulated in sol–gel silica materials.Appl. Surf. Sci.201429331231710.1016/j.apsusc.2013.12.160
    [Google Scholar]
  76. KometaniT. YoshiiH. MatsunoR. Large-scale production of chiral alcohols with bakers’ yeast.J. Mol. Catal., B Enzym.199612455210.1016/1381‑1177(95)00014‑3
    [Google Scholar]
  77. KometaniT. KitatsujiE. MatsunoR. 2016Bioreduction of ketones mediated by baker's yeast with acetate as ultimate reducing agent.Agric. Bioi. Chem.55386786810.1080/00021369.1991.10870651
    [Google Scholar]
  78. TaylorP. NielsenJ. NielsenJ. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering.Bioeng.20152013February374110.4161/bioe.22856
    [Google Scholar]
  79. OjhaP. SharmaA. VermaP.S. SharmaI.K. Baker's yeast catalyzed asymmetric reduction of ethyl 3-oxo hexanoate in glycerol containing systems.Int. J. Appl. Biol. Pharm. Technol.20113462467
    [Google Scholar]
  80. RodríguezS. KayserM. StewartJ.D. Improving the stereoselectivity of bakers’ yeast reductions by genetic engineering.Org. Lett.1999181153115510.1021/ol990152310825967
    [Google Scholar]
  81. SharmaS.K. Baker’s yeast: A green chemical method for the enantioselective reduction of carbonyl compounds.Indian J. Appl. res.201661
    [Google Scholar]
  82. PunyapreddiwarN.D. WankhadeA.V. ZodapeS.P. PratapU.R. Saccharomyces cerevisiae Catalyzed Cyclocondensation Reaction: Synthesis of Pyrazoline.J. Appl. Chem. (Cairo)201620161410.1155/2016/7425913
    [Google Scholar]
  83. KumarA. MauryaR.A. An efficient bakers’ yeast catalyzed synthesis of 3,4-dihydropyrimidin-2-(1H)-ones.Tetrahedron Lett.200748264569457110.1016/j.tetlet.2007.04.130
    [Google Scholar]
  84. NaoshimaY. MaedaJ. MunakataY. NishiyamaT. KamezawaM. TachibanaH. Bioreduction with immobilized bakers’ yeast in hexane using alcohols as an energy source.J. Chem. Soc. Chem. Commun.19901496496510.1039/c39900000964
    [Google Scholar]
/content/journals/ccat/10.2174/0122115447342438241028112701
Loading
/content/journals/ccat/10.2174/0122115447342438241028112701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test