Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Zinc oxide (ZnO) is an inorganic compound with unique physicochemical characteristics that make it versatile and suitable for various applications, especially in the form of nanoparticles (NPs). ZnO nanoparticles (ZnO NPs) exhibit distinct properties and are produced through diverse techniques, making them valuable for applications ranging from consumer goods to medical and catalytic uses. The increasing popularity of ZnO NPs is driven by novel synthesis methods that allow for modification of chemical composition and control over size and shape, thereby enhancing their properties and expanding their applications. The catalytic activity of ZnO NPs is influenced by parameters such as oxophilicity, large surface area, amphoteric nature, and the zinc cation's ability to approach activated starting material supports, making them viable heterogeneous catalysts for a variety of applications. Various analytical techniques, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) analysis, atomic force microscopy (AFM), and many more, are used to characterize the nanoparticles. This article explores various synthesis methods and characterization techniques and focuses on the catalytic activities of ZnO NPs

Loading

Article metrics loading...

/content/journals/ccat/10.2174/0122115447323237241016100917
2024-10-22
2025-04-09
Loading full text...

Full text loading...

References

  1. BokhariH. Exploitation of microbial forensics and nanotechnology for the monitoring of emerging pathogens.Crit. Rev. Microbiol.201844450452110.1080/1040841X.2018.1444013 29513060
    [Google Scholar]
  2. KarkiG.B. ParajuliK. AdhikariS. KhatiwadaS.P. AdhikariR. Facile synthesis of zinc carbonate and zinc oxide nanoparticles and their antimicrobial properties.J. Nepal Biotechnol. Assoc.202341374310.3126/jnba.v4i1.53444
    [Google Scholar]
  3. BhushanB. Springer Handbook of Nanotechnology. BhushanB. Berlin, HeidelbergSpringer201710.1007/978‑3‑662‑54357‑3
    [Google Scholar]
  4. MohanrajV.J. ChenY. Nanoparticles - A review.Trop. J. Pharm. Res.20075110.4314/tjpr.v5i1.14634
    [Google Scholar]
  5. WeldegebriealG.K. Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review.Inorg. Chem. Commun.202012010814010.1016/j.inoche.2020.108140
    [Google Scholar]
  6. AgarwalH. Venkat KumarS. RajeshkumarS. A review on green synthesis of zinc oxide nanoparticles - An eco-friendly approach.Res. Effic. Technol.20173440641310.1016/j.reffit.2017.03.002
    [Google Scholar]
  7. Kołodziejczak-RadzimskaA. JesionowskiT. Zinc oxide-from synthesis to application: A review.Materials (Basel)2014742833288110.3390/ma7042833 28788596
    [Google Scholar]
  8. SirelkhatimA. MahmudS. SeeniA. KausN.H.M. AnnL.C. BakhoriS.K.M. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters.Springer2015Vol. 7219242
    [Google Scholar]
  9. ShabaE.Y. JacobJ.O. TijaniJ.O. SuleimanM.A.T. A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment.Appl. Water Sci.20211124810.1007/s13201‑021‑01370‑z
    [Google Scholar]
  10. DrummerS. MadzimbamutoT. ChowdhuryM. Green synthesis of transition-metal nanoparticles and their oxides: A review.Materials (Basel)20211411270010.3390/ma14112700 34063800
    [Google Scholar]
  11. AkinteluS.A. FolorunsoA.S. A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications.Bionanoscience202010484886310.1007/s12668‑020‑00774‑6
    [Google Scholar]
  12. ElwahyA.H.M. ShaabanM.R. Synthesis of heterocycles and fused heterocycles catalyzed by nanomaterials.RSC Advances2015592756597571010.1039/C5RA11421G
    [Google Scholar]
  13. ShiriL. Ghorbani-ChoghamaraniA. KazemiM. S-S bond formation: nanocatalysts in the oxidative coupling of thiols.Aust. J. Chem.2017701910.1071/CH16318
    [Google Scholar]
  14. XuH.J. WanX. GengY. XuX.L. The catalytic application of recoverable magnetic nanoparicles-supported organic compounds.Curr. Org. Chem.201317101034105010.2174/1385272811317100006
    [Google Scholar]
  15. LimC.W. LeeI.S. Magnetically recyclable nanocatalyst systems for the organic reactions.Nano Today20105541243410.1016/j.nantod.2010.08.008
    [Google Scholar]
  16. SadeghzadehS.M. MogharabiM. Metal Complexes Immobilized on Magnetic Nanoparticles. Green Nanotechnology - Overview and Further Prospects.InTech201610.5772/61585
    [Google Scholar]
  17. SahaM. DasA.R. Nanocrystalline ZnO: A competent and reusable catalyst for the preparation of pharmacology relevant heterocycles in the aqueous medium.Curr. Green Chem.2020715310410.2174/2213346107666200218122718
    [Google Scholar]
  18. SachdevaH. SarojR. ZnO nanoparticles as an efficient, heterogeneous, reusable, and ecofriendly catalyst for four-component one-pot green synthesis of pyranopyrazole derivatives in water.ScientificWorldJournal20132013168067110.1155/2013/680671 24282386
    [Google Scholar]
  19. WangZ.L. Zinc oxide nanostructures: growth, properties and applications.J. Phys. Condens. Matter20041625R829R85810.1088/0953‑8984/16/25/R01
    [Google Scholar]
  20. BaruwatiB. KumarD.K. ManoramaS.V. Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH.Sens. Actuators B Chem.2006119267668210.1016/j.snb.2006.01.028
    [Google Scholar]
  21. HassanpourA. KhanmiriR.H. AbolhasaniJ. ZnO nanoparticles as an efficient, heterogeneous, reusable, and ecofriendly catalyst for one-pot, three-component synthesis of 3,4-dihydropyrimidin-2(1 H)-(thio)one derivatives in water.Synth. Commun.201545672773310.1080/00397911.2014.987350
    [Google Scholar]
  22. Hosseini-SarvariM. EtemadS. Nanosized zinc oxide as a catalyst for the rapid and green synthesis of β-phosphono malonates.Tetrahedron200864235519552310.1016/j.tet.2008.03.095
    [Google Scholar]
  23. Hosseini-SarvariM. SharghiH. EtemadS. Nanocrystalline ZnO for Knoevenagel condensation and reduction of the carbon,carbon double bond in conjugated alkenes.Helv. Chim. Acta200891471572410.1002/hlca.200890072
    [Google Scholar]
  24. Lakshmi KantamM. KumarK.B.S. SridharC. Nanocrystalline ZnO as an efficient heterogeneous catalyst for the synthesis of 5‐substituted 1 H ‐tetrazoles.Adv. Synth. Catal.200534791212121410.1002/adsc.200505011
    [Google Scholar]
  25. Hosseini-SarvariM. TavakolianM. Preparation, characterization, and catalysis application of nano-rods zinc oxide in the synthesis of 3-indolyl-3-hydroxy oxindoles in water.Appl. Catal. A Gen.2012441-442657110.1016/j.apcata.2012.07.009
    [Google Scholar]
  26. AbaszadehM. SeifiM. AsadipourA. Ultrasound promotes one-pot synthesis of 1,4-dihydropyridine and imidazo[1,2-a]quinoline derivatives, catalyzed by ZnO nanoparticles.Res. Chem. Intermed.20154185229523810.1007/s11164‑014‑1624‑7
    [Google Scholar]
  27. AzarifarA. Nejat-YamiR. AzarifarD. Nano-ZnO: an efficient and reusable catalyst for one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones and pyrazolo[1,2-a][1,2,4]triazole-1,3-diones.J. Indian Chem. Soc.2013102297306
    [Google Scholar]
  28. GoswamiP. Dually Activated Organo- and Nano-cocatalyzed Synthesis of Coumarin Derivatives.Synth. Commun.200939132271227810.1080/00397910802654708
    [Google Scholar]
  29. Hosseini-SarvariM. An efficient and eco-friendly nanocrystalline zinc oxide catalyst for one-pot, three component synthesis of new ferrocenyl aminophosphonic esters under solvent-free condition.Catal. Lett.2011141234735510.1007/s10562‑010‑0489‑7
    [Google Scholar]
  30. PaulS. BhattacharyyaP. DasA.R. One-pot synthesis of dihydropyrano[2,3-c]chromenes via a three component coupling of aromatic aldehydes, malononitrile, and 3-hydroxycoumarin catalyzed by nano-structured ZnO in water: a green protocol.Tetrahedron Lett.201152364636464110.1016/j.tetlet.2011.06.101
    [Google Scholar]
  31. SadjadiS. EskandariM. Ultrasonic assisted synthesis of imidazo[1,2-a]azine catalyzed by ZnO nanorods.Ultrason. Sonochem.201320264064310.1016/j.ultsonch.2012.09.006 23089165
    [Google Scholar]
  32. SureshD. NethravathiP.C. Udayabhanu RajanaikaH. NagabhushanaH. SharmaS.C. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities.Mater. Sci. Semicond. Process.20153144645410.1016/j.mssp.2014.12.023
    [Google Scholar]
  33. AhmadW. KalraD. Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract.J. King Saud Univ. Sci.20203242358236410.1016/j.jksus.2020.03.014
    [Google Scholar]
  34. RajA. LawerenceR. Green synthesis and charcterization of zno nanoparticles from leafs extracts of rosa indica and its antibacterial activity.Rasayan J. Chem.20181131339134810.31788/RJC.2018.1132009
    [Google Scholar]
  35. KrólA. PomastowskiP. RafińskaK. Railean-PlugaruV. BuszewskiB. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism.Adv. Colloid Interface Sci.2017249375210.1016/j.cis.2017.07.033 28923702
    [Google Scholar]
  36. SinghT.A. SharmaA. TejwanN. GhoshN. DasJ. SilP.C. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles.Adv. Colloid Interface Sci.202129510249510.1016/j.cis.2021.102495 34375877
    [Google Scholar]
  37. MalfattiL. PinnaA. EnzoS. FalcaroP. MarmiroliB. InnocenziP. Tuning the phase transition of ZnO thin films through lithography: an integrated bottom-up and top-down processing.J. Synchrotron Radiat.201522116517110.1107/S1600577514024047 25537604
    [Google Scholar]
  38. KrupińskiP. KornowiczA. SokołowskiK. CieślakA.M. LewińskiJ. Applying mechanochemistry for bottom‐up synthesis and host-guest surface modification of semiconducting nanocrystals: a case of water‐soluble β‐cyclodextrin‐coated zinc oxide.Chemistry201622237817782310.1002/chem.201600182 27114269
    [Google Scholar]
  39. HussainI. SinghN.B. SinghA. SinghH. SinghS.C. Green synthesis of nanoparticles and its potential application.Biotechnol. Lett.201638454556010.1007/s10529‑015‑2026‑7 26721237
    [Google Scholar]
  40. AhmadR. TripathyN. ParkJ.H. HahnY.B. A comprehensive biosensor integrated with a ZnO nanorod FET array for selective detection of glucose, cholesterol and urea.Chem. Commun. (Camb.)20155160119681197110.1039/C5CC03656A 26111656
    [Google Scholar]
  41. KhanW. AjmalH.M.S. KhanF. HudaN.U. KimS.D. Induced Photonic Response of ZnO Nanorods Grown on Oxygen Plasma-Treated Seed Crystallites.Nanomaterials (Basel)20188637110.3390/nano8060371 29861429
    [Google Scholar]
  42. SharifalhoseiniZ. EntezariM.H. ShahidiM. Synergistic effect of low and high intensity ultrasonic irradiation on the direct growth of ZnO nanostructures on the galvanized steel surface: investigation of the corrosion behavior.Ultrason. Sonochem.20184438038910.1016/j.ultsonch.2018.02.046 29680624
    [Google Scholar]
  43. ZengH. CaiW. LiY. HuJ. LiuP. Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media.J. Phys. Chem. B200510939182601826610.1021/jp052258n 16853349
    [Google Scholar]
  44. ChangI. Plasma synthesis of metal nanopowders. Advances in Powder Metallurgy.Elsevier2013698510.1533/9780857098900.1.69
    [Google Scholar]
  45. PengH. FangliY. LiuyangB. JinlinL. YunfaC. Plasma Synthesis of Large Quantities of Zinc Oxide Nanorods.J. Phys. Chem. C2007111119420010.1021/jp065390b
    [Google Scholar]
  46. ISMAIL A, ZAKI Z, MOHAMED R. Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity.Appl. Catal. B2006621-2144149
    [Google Scholar]
  47. ZhangY. WangL. LiuX. YanY. ChenC. ZhuJ. Synthesis of nano/micro zinc oxide rods and arrays by thermal evaporation approach on cylindrical shape substrate.J. Phys. Chem. B200510927130911309310.1021/jp050851z 16852628
    [Google Scholar]
  48. LyuS.C. ZhangY. LeeC.J. RuhH. LeeH.J. Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method.Chem. Mater.200315173294329910.1021/cm020465j
    [Google Scholar]
  49. YadavR.S. MishraP. PandeyA.C. Tuning the band gap of ZnO nanoparticles by ultrasonic irradiation.Inorg. Mater.201046216316710.1134/S0020168510020135
    [Google Scholar]
  50. TharejaR.K. ShuklaS. Synthesis and characterization of zinc oxide nanoparticles by laser ablation of zinc in liquid.Appl. Surf. Sci.2007253228889889510.1016/j.apsusc.2007.04.088
    [Google Scholar]
  51. WangX. AhmadM. SunH. Three-dimensional ZnO hierarchical nanostructures: Solution phase synthesis and applications.Materials (Basel)20171011130410.3390/ma10111304 29137195
    [Google Scholar]
  52. Naveed Ul HaqA. NadhmanA. UllahI. MustafaG. YasinzaiM. KhanI. Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity.J. Nanomater.2017201711410.1155/2017/8510342
    [Google Scholar]
  53. FrickeM. VoigtA. VeitP. SundmacherK. Miniemulsion-based process for controlling the size and shape of zinc oxide nanoparticles.Ind. Eng. Chem. Res.20155442102931030010.1021/acs.iecr.5b01149
    [Google Scholar]
  54. ValdezC.N. SchimpfA.M. GamelinD.R. MayerJ.M. Low capping group surface density on zinc oxide nanocrystals.ACS Nano2014899463947010.1021/nn503603e 25131410
    [Google Scholar]
  55. OliveiraA.P.A. HochepiedJ.F. GrillonF. BergerM.H. Controlled precipitation of zinc oxide particles at room temperature.Chem. Mater.200315163202320710.1021/cm0213725
    [Google Scholar]
  56. DemirM.M. Muñoz-EspíR. LieberwirthI. WegnerG. Precipitation of monodisperse ZnO nanocrystals via acid-catalyzed esterification of zinc acetate.J. Mater. Chem.200616282940294710.1039/B601451H
    [Google Scholar]
  57. WangJ. SongY. Microfluidic synthesis of nanohybrids.Small20171318160408410.1002/smll.201604084 28256806
    [Google Scholar]
  58. AneeshP.M. VanajaK.A. JayarajM.K. Synthesis of ZnO nanoparticles by hydrothermal method. Nanophotonic Materials. GaburroZ. CabriniS. SPIE200766390J10.1117/12.730364
    [Google Scholar]
  59. SantosL. NunesD. CalmeiroT. BranquinhoR. SalgueiroD. BarquinhaP. PereiraL. MartinsR. FortunatoE. Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors.ACS Appl. Mater. Interfaces20157163864610.1021/am506814t 25517251
    [Google Scholar]
  60. NoothongkaewS. PukirdS. SukkabotW. AnK.S. Zinc oxide nano walls synthesized by chemical vapor deposition.Key Eng. Mater.201460812713110.4028/www.scientific.net/KEM.608.127
    [Google Scholar]
  61. Happy Agarwal Soumya Menon Venkat KumarS. RajeshkumarS. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route.Chem. Biol. Interact.2018286607010.1016/j.cbi.2018.03.008 29551637
    [Google Scholar]
  62. IshwaryaR. VaseeharanB. KalyaniS. BanumathiB. GovindarajanM. AlharbiN.S. KadaikunnanS. Al-anbrM.N. KhaledJ.M. BenelliG. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity.J. Photochem. Photobiol. B201817824925810.1016/j.jphotobiol.2017.11.006 29169140
    [Google Scholar]
  63. RajabairaviN. RajuC.S. KarthikeyanC. VarutharajuK. NethajiS. HameedA.S.H. Biosynthesis of novel zinc oxide nanoparticles (zno nps) using endophytic bacteria Sphingobacterium thalpophilum. Recent trends in materials science and applications.Springer2017
    [Google Scholar]
  64. KalpanaV.N. KataruB.A.S. SravaniN. VigneshwariT. PanneerselvamA. Devi RajeswariV. Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies.OpenNano20183485510.1016/j.onano.2018.06.001
    [Google Scholar]
  65. MoghaddamA.B. MoniriM. AziziS. RahimR.A. AriffA.B. SaadW.Z. NamvarF. NavaderiM. MohamadR. Biosynthesis of ZnO Nanoparticles by a New Pichia kudriavzevii Yeast Strain and Evaluation of Their Antimicrobial and Antioxidant Activities.Molecules201722687210.3390/molecules22060872 28538674
    [Google Scholar]
  66. ShamsuzzamanM.A. MashraiA. KhanamH. AljawfiR.N. Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines.Arab. J. Chem.201710S1530S153610.1016/j.arabjc.2013.05.004
    [Google Scholar]
  67. RajaA. AshokkumarS. Pavithra MarthandamR. JayachandiranJ. KhatiwadaC.P. KaviyarasuK. Ganapathi RamanR. SwaminathanM. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity.J. Photochem. Photobiol. B2018181535810.1016/j.jphotobiol.2018.02.011 29501725
    [Google Scholar]
  68. RaufM.A. OwaisM. RajpootR. AhmadF. KhanN. ZubairS. Biomimetically synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible S. aureus skin infection in experimental animals.RSC Advances2017758363613637310.1039/C7RA05040B
    [Google Scholar]
  69. ChauhanR. ReddyA. AbrahamJ. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property.Appl. Nanosci.201551637110.1007/s13204‑014‑0292‑7
    [Google Scholar]
  70. RaoM.D. GautamP. Synthesis and characterization of ZnO nanoflowers usingChlamydomonas reinhardtii: A green approach.Environ. Prog. Sustain. Energy20163541020102610.1002/ep.12315
    [Google Scholar]
  71. AziziS. AhmadM.B. NamvarF. MohamadR. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract.Mater. Lett.201411627527710.1016/j.matlet.2013.11.038
    [Google Scholar]
  72. ŻelechowskaK. Karczewska-GolecJ. KarczewskiJ. ŁośM. KłonkowskiA.M. WęgrzynG. GolecP. Phage-directed synthesis of photoluminescent zinc oxide nanoparticles under benign conditions.Bioconjug. Chem.20162791999200610.1021/acs.bioconjchem.6b00196 27479604
    [Google Scholar]
  73. LiN. GaoY. HouL. GaoF. DNA-based toolkit for directed synthesis of zinc oxide nanoparticle chains and understanding the quantum size effects in ZnO nanocrystals.J. Phys. Chem. C201111551252662527210.1021/jp2094033
    [Google Scholar]
  74. GharagozlouM. BaradaranZ. BayatiR. A green chemical method for synthesis of ZnO nanoparticles from solid-state decomposition of Schiff-bases derived from amino acid alanine complexes.Ceram. Int.20154178382838710.1016/j.ceramint.2015.03.029
    [Google Scholar]
  75. DivyaM. VaseeharanB. AbinayaM. VijayakumarS. GovindarajanM. AlharbiN.S. KadaikunnanS. KhaledJ.M. BenelliG. Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity.J. Photochem. Photobiol. B201817821121810.1016/j.jphotobiol.2017.11.008 29156349
    [Google Scholar]
  76. AmbikaS. SundrarajanM. Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: Spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin.J. Photochem. Photobiol. B201514914314810.1016/j.jphotobiol.2015.05.004 26065816
    [Google Scholar]
  77. BhuniaA. KamilyaT. SahaS. Optical and structural properties of protein capped ZnO nanoparticles and its antimicrobial activity.J. Adv. Biol. Biotechnol.20161011910.9734/JABB/2016/29626
    [Google Scholar]
  78. GawadeV.V. GavadeN.L. ShindeH.M. BabarS.B. KadamA.N. GaradkarK.M. Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange.J. Mater. Sci. Mater. Electron.20172818140331403910.1007/s10854‑017‑7254‑2
    [Google Scholar]
  79. OgunyemiS.O. AbdallahY. ZhangM. FouadH. HongX. IbrahimE. MasumM.M.I. HossainA. MoJ. LiB. Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae.Artif. Cells Nanomed. Biotechnol.201947134135210.1080/21691401.2018.1557671 30691311
    [Google Scholar]
  80. Al-JumailiA. MulveyP. KumarA. PrasadK. BazakaK. WarnerJ. JacobM.V. Eco-friendly nanocomposites derived from geranium oil and zinc oxide in one step approach.Sci. Rep.201991597310.1038/s41598‑019‑42211‑z 30979934
    [Google Scholar]
  81. IslamM.M. YoshidaT. FujitaY. Effects of ambience on thermal-diffusion type ga-doping process for ZnO nanoparticles.Coatings20221215710.3390/coatings12010057
    [Google Scholar]
  82. LvH. SangD.D. LiH.D. DuX.B. LiD.M. ZouG.T. Thermal evaporation synthesis and properties of ZnO nano/microstructures using carbon group elements as the reducing agents.Nanoscale Res. Lett.20105362062410.1007/s11671‑010‑9524‑2 20672143
    [Google Scholar]
  83. HajnorouziA. AfzalzadehR. GhanatiF. Ultrasonic irradiation effects on electrochemical synthesis of ZnO nanostructures.Ultrason. Sonochem.20142141435144010.1016/j.ultsonch.2014.01.013 24524976
    [Google Scholar]
  84. XuJ.F. JiW. LinJ.Y. TangS.H. DuY.W. Preparation of ZnS nanoparticles by ultrasonic radiation method.Appl. Phys., A Mater. Sci. Process.199866663964110.1007/s003390050725
    [Google Scholar]
  85. DaryaborM. AhmadiA. ZiloueiH. Solvent extraction of cadmium and zinc from sulphate solutions: Comparison of mechanical agitation and ultrasonic irradiation.Ultrason. Sonochem.20173493193710.1016/j.ultsonch.2016.07.014 27773323
    [Google Scholar]
  86. BaidukovaO. SkorbE.V. Ultrasound-assisted synthesis of magnesium hydroxide nanoparticles from magnesium.Ultrason. Sonochem.20163142342810.1016/j.ultsonch.2016.01.034 26964968
    [Google Scholar]
  87. Panahi-KalamueiM. Mousavi-KamazaniM. Salavati-NiasariM. Hosseinpour-MashkaniS.M. A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application.Ultrason. Sonochem.20152324625610.1016/j.ultsonch.2014.09.006 25248917
    [Google Scholar]
  88. ZhangL. HuY. WangX. ZhangA. GaoX. YagoubA.E.G.A. MaH. ZhouC. Ultrasound-assisted synthesis of potentially food-grade nano-zinc oxide in ionic liquids: A safe, green, efficient approach and its acoustics mechanism.Foods20221111165610.3390/foods11111656 35681406
    [Google Scholar]
  89. MutukwaD. TaziwaR. KhotsengL.E. A review of the green synthesis of ZnO nanoparticles utilising southern african indigenous medicinal plants.Nanomaterials (Basel)20221219345610.3390/nano12193456 36234584
    [Google Scholar]
  90. KimK.K. KimD. KimS.K. ParkS.M. SongJ.K. Formation of ZnO nanoparticles by laser ablation in neat water.Chem. Phys. Lett.20115111-311612010.1016/j.cplett.2011.06.017
    [Google Scholar]
  91. MafunéF. KohnoJ. TakedaY. KondowT. SawabeH. Formation and size control of silver nanoparticles by laser ablation in aqueous solution.J. Phys. Chem. B2000104399111911710.1021/jp001336y
    [Google Scholar]
  92. UsuiH. ShimizuY. SasakiT. KoshizakiN. Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions.J. Phys. Chem. B2005109112012410.1021/jp046747j 16850993
    [Google Scholar]
  93. NiuK.Y. YangJ. KulinichS.A. SunJ. DuX.W. Hollow nanoparticles of metal oxides and sulfides: fast preparation via laser ablation in liquid.Langmuir20102622166521665710.1021/la1033146 20942423
    [Google Scholar]
  94. SimakinA.V. VoronovV.V. KirichenkoN.A. ShafeevG.A. Nanoparticles produced by laser ablation of solids in liquid environment.Appl. Phys., A Mater. Sci. Process.2004794-61127113210.1007/s00339‑004‑2660‑8
    [Google Scholar]
  95. KruisF.E. FissanH. PeledA. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications-a review.J. Aerosol Sci.1998295-651153510.1016/S0021‑8502(97)10032‑5
    [Google Scholar]
  96. Abou El-NourK.M.M. EftaihaA. Al-WarthanA. AmmarR.A.A. Synthesis and applications of silver nanoparticles.Arab. J. Chem.20103313514010.1016/j.arabjc.2010.04.008
    [Google Scholar]
  97. YıldırımÖ.A. DurucanC. Synthesis of zinc oxide nanoparticles elaborated by microemulsion method.J. Alloys Compd.2010506294494910.1016/j.jallcom.2010.07.125
    [Google Scholar]
  98. LavandA.B. MalgheY.S. Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres.Journal of Asian Ceramic Societies20153330531010.1016/j.jascer.2015.06.002
    [Google Scholar]
  99. KhanM.F. AnsariA.H. HameedullahM. AhmadE. HusainF.M. ZiaQ. BaigU. ZaheerM.R. AlamM.M. KhanA.M. AlOthmanZ.A. AhmadI. AshrafG.M. AlievG. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics.Sci. Rep.2016612768910.1038/srep27689 27349836
    [Google Scholar]
  100. LuY. DongW. DingJ. WangW. WangA. Hydroxyapatite nanomaterials: Synthesis, properties, and functional applications. Nanomaterials from Clay Minerals.Elsevier201948553610.1016/B978‑0‑12‑814533‑3.00010‑7
    [Google Scholar]
  101. MahatoT.H. PrasadG.K. SinghB. AcharyaJ. SrivastavaA.R. VijayaraghavanR. Nanocrystalline zinc oxide for the decontamination of sarin.J. Hazard. Mater.20091651-392893210.1016/j.jhazmat.2008.10.126 19121895
    [Google Scholar]
  102. TsengY.K. ChuangM.H. ChenY.C. WuC.H. Synthesis of 1D, 2D, and 3D ZnO Polycrystalline Nanostructures Using the Sol-Gel Method.J. Nanotechnol.201220121810.1155/2012/712850
    [Google Scholar]
  103. ZhouX.Q. HayatZ. ZhangD.D. LiM.Y. HuS. WuQ. CaoY-F. YuanY. Zinc oxide nanoparticles: synthesis, characterization, modification, and applications in food and agriculture.Processes (Basel)2023114119310.3390/pr11041193
    [Google Scholar]
  104. HuZ. OskamG. SearsonP.C. Influence of solvent on the growth of ZnO nanoparticles.J. Colloid Interface Sci.2003263245446010.1016/S0021‑9797(03)00205‑4 12909035
    [Google Scholar]
  105. Rodríguez-PaézJ.E. CaballeroA.C. VillegasM. MoureC. DuránP. FernándezJ.F. Controlled precipitation methods: formation mechanism of ZnO nanoparticles.J. Eur. Ceram. Soc.200121792593010.1016/S0955‑2219(00)00283‑1
    [Google Scholar]
  106. LanjeA.S. SharmaS.J. NingthoujamR.S. AhnJ.S. PodeR.B. Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method.Adv. Powder Technol.201324133133510.1016/j.apt.2012.08.005
    [Google Scholar]
  107. KimJ.Y. ChoJ.W. KimS.H. The characteristic of the ZnO nanowire morphology grown by the hydrothermal method on various surface-treated seed layers.Mater. Lett.20116581161116410.1016/j.matlet.2010.10.092
    [Google Scholar]
  108. SongJ. BaekS. LeeH. LimS. Selective growth of vertical ZnO nanowires with the control of hydrothermal synthesis and nano-imprint technology.J. Nanosci. Nanotechnol.2009963909391310.1166/jnn.2009.NS88 19504940
    [Google Scholar]
  109. DemazeauG. Solvothermal reactions: an original route for the synthesis of novel materials.J. Mater. Sci.20084372104211410.1007/s10853‑007‑2024‑9
    [Google Scholar]
  110. DemazeauG. Review. Solvothermal processes: definition, key factors governing the involved chemical reactions and new trends.Z. Naturforsch. B. J. Chem. Sci.2010658999100610.1515/znb‑2010‑0805
    [Google Scholar]
  111. FengS. XuR. New materials in hydrothermal synthesis.Acc. Chem. Res.200134323924710.1021/ar0000105 11263882
    [Google Scholar]
  112. OngC.B. NgL.Y. MohammadA.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications.Renew. Sustain. Energy Rev.20188153655110.1016/j.rser.2017.08.020
    [Google Scholar]
  113. ShiW. SongS. ZhangH. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.Chem. Soc. Rev.201342135714574310.1039/c3cs60012b 23563082
    [Google Scholar]
  114. HayashiH. HakutaY. Hydrothermal Synthesis of metal oxide nanoparticles in supercritical water.Materials (Basel)2010373794381710.3390/ma3073794 28883312
    [Google Scholar]
  115. JamkhandeP.G. GhuleN.W. BamerA.H. KalaskarM.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications.J. Drug Deliv. Sci. Technol.20195310117410.1016/j.jddst.2019.101174
    [Google Scholar]
  116. ThakralF. BhatiaG.K. TuliH.S. SharmaA.K. SoodS. Zinc oxide nanoparticles: from biosynthesis, characterization, and optimization to synergistic antibacterial potential.Curr. Pharmacol. Rep.202171152510.1007/s40495‑021‑00248‑7
    [Google Scholar]
  117. QuJ. YuanX. WangX. ShaoP. Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L.Environ. Pollut.201115971783178810.1016/j.envpol.2011.04.016 21549461
    [Google Scholar]
  118. HeinlaanM. IvaskA. BlinovaI. DubourguierH.C. KahruA. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus.Chemosphere20087171308131610.1016/j.chemosphere.2007.11.047 18194809
    [Google Scholar]
  119. SureshJ. PradheeshG. AlexramaniV. SundrarajanM. HongS.I. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities.Advances in Natural Sciences: Nanoscience and Nanotechnology20189101500810.1088/2043‑6254/aaa6f1
    [Google Scholar]
  120. RameshM. AnbuvannanM. ViruthagiriG. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity.Spectrochim. Acta A Mol. Biomol. Spectrosc.2015136Pt B86487010.1016/j.saa.2014.09.10525459609
    [Google Scholar]
  121. QuJ. LuoC. HouJ. Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants.Micro & Nano Lett.20116317410.1049/mnl.2011.0004
    [Google Scholar]
  122. DobruckaR. DługaszewskaJ. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract.Saudi J. Biol. Sci.201623451752310.1016/j.sjbs.2015.05.016 27298586
    [Google Scholar]
  123. SundrarajanM. AmbikaS. BharathiK. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria.Adv. Powder Technol.20152651294129910.1016/j.apt.2015.07.001
    [Google Scholar]
  124. Index of/.Available from: www.indiasciencetech.com(accessed on 28-9-2024)2014
  125. FuL. FuZ. Plectranthus amboinicus leaf extract-assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity.Ceram. Int.20154122492249610.1016/j.ceramint.2014.10.069
    [Google Scholar]
  126. UpadhyayP.K. JainV.K. SharmaS. ShrivastavA.K. SharmaR. Green and chemically synthesized ZnO nanoparticles: A comparative study.IOP Conf Ser Mater Sci Eng202010.1088/1757‑899X/798/1/012025
    [Google Scholar]
  127. GunalanS. SivarajR. RajendranV. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens.Prog. Nat. Sci.201222669370010.1016/j.pnsc.2012.11.015
    [Google Scholar]
  128. KalathilS. LeeJ. ChoM.H. Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water.Green Chem.2011136148210.1039/c1gc15309a
    [Google Scholar]
  129. ZhangX. YanS. TyagiR.D. SurampalliR.Y. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates.Chemosphere201182448949410.1016/j.chemosphere.2010.10.023 21055786
    [Google Scholar]
  130. SubaS. VijayakumarS. VidhyaE. PunithaV.N. NilavukkarasiM. Microbial mediated synthesis of ZnO nanoparticles derived from Lactobacillus spp: Characterizations, antimicrobial and biocompatibility efficiencies.Sens. Int.2021210010410.1016/j.sintl.2021.100104
    [Google Scholar]
  131. PrasadK. K. Jha A. ZnO Nanoparticles: Synthesis and adsorption study.Nat Sci (Irvine)20090102129135
    [Google Scholar]
  132. JayaseelanC. RahumanA.A. KirthiA.V. MarimuthuS. SanthoshkumarT. BagavanA. GauravK. KarthikL. RaoK.V.B. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi.Spectrochim. Acta A Mol. Biomol. Spectrosc.201290788410.1016/j.saa.2012.01.006 22321514
    [Google Scholar]
  133. PatiR. MehtaR.K. MohantyS. PadhiA. SenguptaM. VaseeharanB. GoswamiC. SonawaneA. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.Nanomedicine20141061195120810.1016/j.nano.2014.02.012 24607937
    [Google Scholar]
  134. MuhammadW. UllahN. HaroonM. AbbasiB.H. Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L.RSC Advances2019951295412954810.1039/C9RA04424H 35531532
    [Google Scholar]
  135. PantidosN. Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants.J. Nanomed. Nanotechnol.20145510.4172/2157‑7439.1000233
    [Google Scholar]
  136. PavaniK.V. KumarN.S. SangameswaranB.B. Synthesis of lead nanoparticles by Aspergillus species.Pol. J. Microbiol.2012611616310.33073/pjm‑2012‑008 22708348
    [Google Scholar]
  137. AlaviM. NokhodchiA. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria.Drug Discov. Today20212681953196210.1016/j.drudis.2021.03.030 33845219
    [Google Scholar]
  138. BirdS.M. El-ZubirO. RawlingsA.E. LeggettG.J. StanilandS.S. A novel design strategy for nanoparticles on nanopatterns: interferometric lithographic patterning of Mms6 biotemplated magnetic nanoparticles.J. Mater. Chem. C Mater. Opt. Electron. Devices20164183948395510.1039/C5TC03895B 27358738
    [Google Scholar]
  139. RajivP. RajeshwariS. VenckateshR. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens.Spectrochim. Acta A Mol. Biomol. Spectrosc.201311238438710.1016/j.saa.2013.04.072 23686093
    [Google Scholar]
  140. HoffmannM.R. MartinS.T. ChoiW. BahnemannD.W. Environmental Applications of Semiconductor Photocatalysis.Chem. Rev.1995951699610.1021/cr00033a004
    [Google Scholar]
  141. Lopez-CarrizalesM. Pérez-DíazM.A. Mendoza-MendozaE. Peralta-RodríguezR.D. Ojeda-GalvánH.J. Portales-PérezD. Magaña-AquinoM. Sánchez-SánchezR. Martinez-GutierrezF. Green, novel, and one-step synthesis of silver oxide nanoparticles: antimicrobial activity, synergism with antibiotics, and cytotoxic studies.New J. Chem.20224637178411785310.1039/D2NJ02902B
    [Google Scholar]
  142. JinS.E. JinH.E. Synthesis, Characterization, and three-dimensional structure generation of zinc oxide-based nanomedicine for biomedical applications.Pharmaceutics2019111157510.3390/pharmaceutics11110575 31689932
    [Google Scholar]
  143. Mable PintoG. DevadigaA. Development of silane functionalized ZnO nanoparticles for enhancing anticorrosion application.Mapana J. Sci.2023212375810.12723/mjs.61.4
    [Google Scholar]
  144. MohanA.C. RenjanadeviB. Preparation of zinc oxide nanoparticles and its characterization using scanning electron microscopy (SEM) and X-Ray diffraction(XRD).Procedia Technol.20162476176610.1016/j.protcy.2016.05.078
    [Google Scholar]
  145. AldalbahiA. AlteraryS. Ali Abdullrahman AlmoghimR. AwadM.A. AldosariN.S. Fahad AlghannamS. Nasser AlabdanA. AlharbiS. Ali Mohammed AlateeqB. Abdulrahman Al MohsenA. AlkathiriM.A. Abdulrahman AlrashedR. Greener synthesis of zinc oxide nanoparticles: characterization and multifaceted applications.Molecules20202518419810.3390/molecules25184198 32937751
    [Google Scholar]
  146. PoovizhiJ. KrishnaveniB. Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles synthesized from calotropis procera.Int. J. Pharmaceut. Sci. Drug Res.20157542543110.25004/IJPSDR.2015.070523
    [Google Scholar]
  147. AlahmdiM.I. KhasimS. VanarajS. PanneerselvamC. MahmoudM.A.A. MukhtarS. AlsharifM.A. ZidanN.S. Abo-DyaN.E. AldosariO.F. Green Nanoarchitectonics of ZnO Nanoparticles from Clitoria ternatea Flower Extract for In vitro Anticancer and Antibacterial Activity: Inhibits MCF-7 Cell Proliferation via Intrinsic Apoptotic Pathway.J. Inorg. Organomet. Polym. Mater.20223262146215910.1007/s10904‑022‑02263‑7
    [Google Scholar]
  148. SomuP. KhanalH.D. GomezL.A. Multifunctional biogenic Al-doped zinc oxide nanostructures synthesized using bioreductantchaetomorpha linum extricate exhibit excellent photocatalytic and bactericidal ability in industrial effluent treatment.Biomass Convers. Biorefin.2022
    [Google Scholar]
  149. JinS.E. JinJ.E. HwangW. HongS.W. Photocatalytic antibacterial application of zinc oxide nanoparticles and self-assembled networks under dual UV irradiation for enhanced disinfection.Int. J. Nanomedicine2019141737175110.2147/IJN.S192277 30880977
    [Google Scholar]
  150. NieL. GaoL. FengP. ZhangJ. FuX. LiuY. YanX. WangT. Three-dimensional functionalized tetrapod-like ZnO nanostructures for plasmid DNA delivery.Small20062562162510.1002/smll.200500193 17193097
    [Google Scholar]
  151. JinS.E. HwangW. LeeH.J. JinH.E. Dual UV irradiation-based metal oxide nanoparticles for enhanced antimicrobial activity in Escherichia coli and M13 bacteriophage.Int. J. Nanomedicine2017128057807010.2147/IJN.S144236 29138562
    [Google Scholar]
  152. ZhaoZ. LeiW. ZhangX. WangB. JiangH. ZnO-based amperometric enzyme biosensors.Sensors (Basel)20101021216123110.3390/s100201216 22205864
    [Google Scholar]
  153. ChikkannaM.M. NeelagundS.E. RajashekarappaK.K. Green synthesis of Zinc oxide nanoparticles (ZnO NPs) and their biological activity.SN Appl. Sci.20191111710.1007/s42452‑018‑0095‑7
    [Google Scholar]
  154. LiX. ChengS. DengS. WeiX. ZhuJ. ChenQ. Direct observation of the layer-by-layer growth of ZnO nanopillar by in situ high resolution transmission electron microscopy.Sci. Rep.2017714091110.1038/srep40911 28098261
    [Google Scholar]
  155. LudiB. NiederbergerM. Zinc oxide nanoparticles: Chemical mechanisms and classical and non-classical crystallization.Dalton Trans.20134235125541256810.1039/c3dt50610j 23652237
    [Google Scholar]
  156. SarıtaşS. ÇakıcıT. MuğluG.M. YıldırımM. Investigation of optical, structural, and electrical properties of heterostructure Fe2O3 deposited by RF magnetron sputtering on ZnO layer by spray pyrolysis.J. Mater. Sci. Mater. Electron.20223314112461125610.1007/s10854‑022‑08100‑4
    [Google Scholar]
  157. AmakaliT. DanielL.S. UahengoV. DzadeN.Y. de LeeuwN.H. Structural and optical properties of ZnO thin films prepared by molecular precursor and sol-gel methods.Crystals202010213210.3390/cryst10020132
    [Google Scholar]
  158. BeinikI. KratzerM. WachauerA. WangL. LechnerR.T. TeichertC. MotzC. AnwandW. BrauerG. ChenX.Y. HsuX.Y. DjurišićA.B. Electrical properties of ZnO nanorods studied by conductive atomic force microscopy.J. Appl. Phys.2011110505200510.1063/1.3623764
    [Google Scholar]
  159. MendesC.R. DilarriG. ForsanC.F. SapataV.M.R. LopesP.R.M. de MoraesP.B. MontagnolliR.N. FerreiraH. BidoiaE.D. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens.Sci. Rep.2022121265810.1038/s41598‑022‑06657‑y 35173244
    [Google Scholar]
  160. MishraP.K. MishraH. EkielskiA. TalegaonkarS. VaidyaB. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications.Drug Discov. Today201722121825183410.1016/j.drudis.2017.08.006 28847758
    [Google Scholar]
  161. AnjumS. HashimM. MalikS.A. KhanM. LorenzoJ.M. AbbasiB.H. HanoC. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment.Cancers (Basel)20211318457010.3390/cancers13184570 34572797
    [Google Scholar]
  162. BandeiraM. GiovanelaM. Roesch-ElyM. DevineD.M. da Silva CrespoJ. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation.Sustain. Chem. Pharm.20201510022310.1016/j.scp.2020.100223
    [Google Scholar]
  163. BharatT.C. Synthesis of doped zinc oxide nanoparticles: A review.Mater. Today Proc.20191176777510.1016/j.matpr.2019.03.041
    [Google Scholar]
/content/journals/ccat/10.2174/0122115447323237241016100917
Loading
/content/journals/ccat/10.2174/0122115447323237241016100917
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test