Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2211-5447
  • E-ISSN: 2211-5455

Abstract

Being a greenhouse gas, methane is a threat to biodiversity. Hence, the utilization of methane by converting it into a valuable chemical like methanol is one of the most promising reactions. To solve that problem, a large number of studies have been performed on methane-to-methanol conversion (MTM process). Still, to date, the production of methanol from methane on an industry scale is a crucial challenge. After a thorough study, in this review article, only those reported methods, which produce a satisfactory yield of methanol using a large variety of catalysts like natural, heterogeneous, non-thermal plasma, nanoparticles fixed in solid bed, ., have been briefly discussed. To investigate minutely, the reason behind the inefficiency of each type of catalyst in producing methanol on a large scale has been analyzed, and a comparison among the activities of different catalysts has been made. Herein, catalysts with comparatively better efficiency under ambient temperature and pressure have also been highlighted. With the hope of producing methanol on a large scale, some basic concepts of future planning strategies for designing more suitable reaction systems are also proposed in this study

Loading

Article metrics loading...

/content/journals/ccat/10.2174/0122115447305839240430151004
2024-05-20
2025-04-21
Loading full text...

Full text loading...

References

  1. CloughS. Encyclopedia of toxicology3rd ed.ElsevierSanDiego2014
    [Google Scholar]
  2. SolomonS. QinD. ManningM. ChenZ. MarquisM. AverytK.B. TignorM. MillerH.L. IPCC fourth assessment report.Cambridge, United Kingdom and New YorkCambridge University Press2007212
    [Google Scholar]
  3. SchwachP. PanX. BaoX. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects.Chem. Rev.2017117138497852010.1021/acs.chemrev.6b00715 28475304
    [Google Scholar]
  4. TianJ. TanJ. ZhangZ. HanP. YinM. WanS. LinJ. WangS. WangY. Direct conversion of methane to formaldehyde and CO on B2O3 catalysts.Nat. Commun.2020111569310.1038/s41467‑020‑19517‑y 33173054
    [Google Scholar]
  5. JanuarioE.R. SilvainoP.F. MachadoA.P. Moreira VazJ. SpinaceE.V. Methane conversion under mild conditions using semiconductors and metal-semiconductors as heterogeneous photocatalysts: state of the art and challenges.Front Chem.2021968507310.3389/fchem.2021.685073 34277569
    [Google Scholar]
  6. ParkM.B. ParkE.D. AhnW.S. Recent progress in direct conversion of methane to methanol over copper-exchanged zeolites.Front Chem.2019751410.3389/fchem.2019.00514 31380355
    [Google Scholar]
  7. BrunettiA. MiglioriM. CozzaD. CatizzoneE. GiordanoG. BarbieriG. Methanol conversion to dimethyl ether in catalytic zeolite membrane reactors.ACS Sustain. Chem.& Eng.2020828104711047910.1021/acssuschemeng.0c02557
    [Google Scholar]
  8. MalikM.I. AbatzoglouN. AchouriI.E. Methanol to Formaldehyde: An overview of surface studies and performance of an iron molybdate catalyst.Catalysts202111889310.3390/catal11080893
    [Google Scholar]
  9. ChakrabortyJ.P. SinghS. MaityS.K. Advances in the conversion of methanol to gasoline.Hydrocarbon Biorefinery202217720010.1016/B978‑0‑12‑823306‑1.00008‑X
    [Google Scholar]
  10. SharmaR. PoelmanH. MarinG.B. GalvitaV.V. Approaches for selective oxidation of methane to methanol.Catalysts202010219410.3390/catal10020194
    [Google Scholar]
  11. PerianaR.A. TaubeD.J. GambleS. TaubeH. SatohT. FujiiH. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative.Science1998280536356056410.1126/science.280.5363.560 9554841
    [Google Scholar]
  12. HoyanoJ.K. McMasterA.D. GrahamW.A.G. Activation of methane by iridium complexes.J. Am. Chem. Soc.1983105247190719110.1021/ja00362a039
    [Google Scholar]
  13. NurgitaB.G. NuraniD.A. KrisnandiY.K. Partial oxidation of methane to methanol over MxOy/ZSM-5 (Mn, Fe, Co, and Ni) hierarchical transition metal oxide catalysts.Mater. Sci. Eng.2019496012032
    [Google Scholar]
  14. BiW. TangY. LiX. DaiC. SongC. GuoX. MaX. One-step direct conversion of methane to methanol with water in non-thermal plasma.Commun. Chem.20225112410.1038/s42004‑022‑00735‑y 36698023
    [Google Scholar]
  15. DummerN.F. WillockD.J. HeQ. HowardM.J. LewisR.J. QiG. TaylorS.H. XuJ. BethellD. KielyC.J. HutchingsG.J. Methane oxidation to methanol.Chem. Rev.202312396359641110.1021/acs.chemrev.2c00439 36459432
    [Google Scholar]
  16. AnggoroD.D. ChamdaniF.T. BuchoriL. One step catalytic oxidation process of methane to methanol at low reaction temperature: A Brief Review.IOP Conf Ser: Mater Sci EngSemarang, Indonesia20211053012056
    [Google Scholar]
  17. RaviM. RanocchiariM. van BokhovenJ.A. The direct catalytic oxidation of methane to methanol-A critical assessment.Angew. Chem. Int. Ed.20175652164641648310.1002/anie.201702550 28643885
    [Google Scholar]
  18. LunsfordJ.H. Catalytic conversion of methane to more useful chemicals and fuels: A challenge for the 21st century.Catal. Today2000632-416517410.1016/S0920‑5861(00)00456‑9
    [Google Scholar]
  19. PenaM.A. GomezJ.P. FierroJ.L.G. Review on innovative catalytic reforming of natural gas to syngas.Appl Catal A1996144757
    [Google Scholar]
  20. HwangI.Y. LeeS.H. ChoiY.S. ParkS.J. NaJ.G. ChangI.S. KimC. KimH.C. KimY.H. LeeJ.W. LeeE.Y. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries.J. Microbiol. Biotechnol.201424121597160510.4014/jmb.1407.07070 25223329
    [Google Scholar]
  21. FriedleS. ReisnerE. LippardS.J. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes.Chem. Soc. Rev.20103982768277910.1039/c003079c 20485834
    [Google Scholar]
  22. RossM.O. MacMillanF. WangJ. NisthalA. LawtonT.J. OlafsonB.D. MayoS.L. RosenzweigA.C. HoffmanB.M. Particulate methane monooxygenase contains only mononuclear copper centers.Science2019364644056657010.1126/science.aav2572 31073062
    [Google Scholar]
  23. SirajuddinS. RosenzweigA.C. Enzymatic oxidation of methane.Biochemistry201554142283229410.1021/acs.biochem.5b00198 25806595
    [Google Scholar]
  24. TomkinsP. MansouriA. BozbagS.E. KrumeichF. ParkM.B. AlayonE.M.C. RanocchiariM. van BokhovenJ.A. Isothermal cyclic conversion of methane into methanol over copper‐exchanged zeolite at low temperature.Angew. Chem. Int. Ed.201655185467547110.1002/anie.201511065 27010863
    [Google Scholar]
  25. BurnettL. RysakovaM. WangK. CarballoG.J. ToozeR.P. GarcíaG.F.R. Isothermal cyclic conversion of methane to methanol using copper-exchanged ZSM-5 zeolite materials under mild conditions.Appl. Catal. A Gen.201958711727210.1016/j.apcata.2019.117272
    [Google Scholar]
  26. PappasD.K. MartiniA. DyballaM. KvandeK. TeketelS. LomachenkoK.A. BaranR. GlatzelP. ArstadB. BerlierG. LambertiC. BordigaS. OlsbyeU. SvelleS. BeatoP. BorfecchiaE. The nuclearity of the active site for methane to methanol conversion in cu-mordenite: a quantitative assessment.J. Am. Chem. Soc.201814045152701527810.1021/jacs.8b08071 30346154
    [Google Scholar]
  27. IpekB. LoboR.F. Catalytic conversion of methane to methanol on Cu-SSZ-13 using N 2 O as oxidant.Chem. Commun.20165291134011340410.1039/C6CC07893A 27790665
    [Google Scholar]
  28. IpekB. WulfersM.J. KimH. GöltlF. HermansI. SmithJ.P. BookshK.S. BrownC.M. LoboR.F. Formation of [Cu 2 O 2] 2+ and [Cu 2 O] 2+ toward C–H bond activation in Cu-SSZ-13 and Cu-SSZ-39.ACS Catal.2017774291430310.1021/acscatal.6b03005
    [Google Scholar]
  29. NarsimhanK. IyokiK. DinhK. LeshkovR.Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature.ACS Cent. Sci.20162642442910.1021/acscentsci.6b00139 27413787
    [Google Scholar]
  30. DyballaM. PappasD.K. KvandeK. BorfecchiaE. ArstadB. BeatoP. OlsbyeU. SvelleS. On how copper mordenite properties govern the framework stability and activity in the methane-to-methanol conversion.ACS Catal.20199136537510.1021/acscatal.8b04437
    [Google Scholar]
  31. MahyuddinM.H. StaykovA. ShiotaY. MiyanishiM. YoshizawaK. Roles of zeolite confinement and cu–o–cu angle on the direct conversion of methane to methanol by [Cu 2 (μ-O)] 2+ -exchanged AEI, CHA, AFX, and MFI zeolites.ACS Catal.2017763741375110.1021/acscatal.7b00588
    [Google Scholar]
  32. MahyuddinM.H. TanakaT. ShiotaY. StaykovA. YoshizawaK. Methane partial oxidation over [Cu 2 (μ-O)] 2+ and [Cu 3 (μ-O) 3] 2+ active species in large-pore zeolites.ACS Catal.2018821500150910.1021/acscatal.7b03389
    [Google Scholar]
  33. NiF. RichardsT. SmithL.R. MorganD.J. DaviesT.E. LewisR.J. HutchingsG.J. Selective oxidation of methane to methanol via in situ H2O2 synthesis.ACS Organic & Inorganic Au20233417718310.1021/acsorginorgau.3c00001 37545660
    [Google Scholar]
  34. TomkinsP. RanocchiariM. van BokhovenJ.A. Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond.Acc. Chem. Res.201750241842510.1021/acs.accounts.6b00534 28151649
    [Google Scholar]
  35. SunL. WangY. WangC. XieZ. GuanN. LiL. Water-involved methane-selective catalytic oxidation by dioxygen over copper zeolites.Chem2021761557156810.1016/j.chempr.2021.02.026
    [Google Scholar]
  36. XiaoP. WangY. NishitobaT. KondoJ.N. YokoiT. Selective oxidation of methane to methanol with H 2 O 2 over an Fe-MFI zeolite catalyst using sulfolane solvent.Chem. Commun.201955202896289910.1039/C8CC10026H 30702094
    [Google Scholar]
  37. StarokonE.V. ParfenovM.V. PirutkoL.V. AbornevS.I. PanovG.I. Room-temperature oxidation of methane by α-oxygen and extraction of products from the FeZSM-5 surface.J. Phys. Chem. C201111552155216110.1021/jp109906j
    [Google Scholar]
  38. LiS. AhmedR. YiY. BogaertsA. Methane to methanol through heterogeneous catalysis and plasma catalysis.Catalysts202111559010.3390/catal11050590
    [Google Scholar]
  39. RhodaH.M. HeyerA.J. SnyderB.E.R. PlessersD. BolsM.L. SchoonheydtR.A. SelsB.F. SolomonE.I. Second-sphere lattice effects in copper and iron zeolite catalysis.Chem. Rev.202212214122071224310.1021/acs.chemrev.1c00915 35077641
    [Google Scholar]
  40. StarokonE.V. ParfenovM.V. ArzumanovS.S. PirutkoL.V. StepanovA.G. PanovG.I. Oxidation of methane to methanol on the surface of FeZSM-5 zeolite.J. Catal.2013300475410.1016/j.jcat.2012.12.030
    [Google Scholar]
  41. ParfenovM.V. StarokonE.V. PirutkoL.V. PanovG.I. Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite.J. Catal.2014318142110.1016/j.jcat.2014.07.009
    [Google Scholar]
  42. WangY. OtsukaK. Catalytic oxidation of methane to methanol initiated in a gas mixture of hydrogen and oxygen.J. Chem. Soc. Chem. Commun.199419192209221010.1039/c39940002209
    [Google Scholar]
  43. WoodB. ReimerJ.A. BellA.T. JanickeM.T. OttK.C. Methanol formation on Fe/Al-MFI via the oxidation of methane by nitrous oxide.J. Catal.2004225230030610.1016/j.jcat.2004.04.010
    [Google Scholar]
  44. FordeM.M. ArmstrongR.D. McVickerR. WellsP.P. DimitratosN. HeQ. LuL. JenkinsR.L. HammondC. SanchezL.J.A. KielyC.J. HutchingsG.J. Light alkane oxidation using catalysts prepared by chemical vapour impregnation: Tuning alcohol selectivity through catalyst pre-treatment.Chem. Sci.2014593603361610.1039/C4SC00545G
    [Google Scholar]
  45. WalkerG.S. LapszewiczJ.A. FouldsG.A. Partial oxidation of methane to methanol-comparison of heterogeneous catalyst and homogeneous gas phase reactions.Catal. Today1994212-351952610.1016/0920‑5861(94)80175‑4
    [Google Scholar]
  46. ZhangX. HeD. ZhangQ. XuB. ZhuQ. Comparative studies on direct conversion of methane to methanol/formaldehyde over La–Co–O and ZrO2 supported molybdenum oxide catalysts.Top. Catal.2005323-421522310.1007/s11244‑005‑2894‑5
    [Google Scholar]
  47. ZhenK. KhanM.M. MakC.H. LewisK.B. SomorjaiG.A. Partial oxidation of methane with nitrous oxide over V2O5$z.sbnd;SiO2 catalyst.J. Catal.198594250150710.1016/0021‑9517(85)90214‑3
    [Google Scholar]
  48. BarberoJ.A. AlvarezM.C. BañaresM.A. PeñaM.A. FierroJ.L.G. Breakthrough in the direct conversion of methane into c1-oxygenates.Chem. Commun.200211111184118510.1039/b202812n 12109073
    [Google Scholar]
  49. ChenS.Y. WillcoxD. Effect of vanadium oxide loading on the selective oxidation of methane over vanadium oxide (V2O5)/silica.Ind. Eng. Chem. Res.199332458458710.1021/ie00016a002
    [Google Scholar]
  50. KrisnandiY.K. PutraB.A.P. BahtiarM. ZaharaI.A. AbdullahI. HoweR.F. Partial oxidation of methane to methanol over heterogeneous catalyst Co/ZSM-5.Procedia Chem.20151450851510.1016/j.proche.2015.03.068
    [Google Scholar]
  51. YuanW. ZhangJ. ShenP.K. LiC.M. JiangS.P. Self-assembled CeO2 on carbon nanotubes supported Au nanoclusters as superior electrocatalysts for glycerol oxidation reaction of fuel cells.Electrochim. Acta201619081782810.1016/j.electacta.2015.12.152
    [Google Scholar]
  52. FanX. YuanW. ZhangD.H. LiC.M. Heteropolyacid-mediated self-assembly of heteropolyacid-modified pristine graphene supported pd nanoflowers for superior catalytic performance toward formic acid oxidation.ACS Appl. Energy Mater.20181241142010.1021/acsaem.7b00081
    [Google Scholar]
  53. LiZ. JiS. LiuY. CaoX. TianS. ChenY. NiuZ. LiY. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites.Chem. Rev.2020120262368210.1021/acs.chemrev.9b00311 31868347
    [Google Scholar]
  54. ValiS.A. MarkebA.A. VicoM.J. FontX. SánchezA. Recent advances in the catalytic conversion of methane to methanol: from the challenges of traditional catalysts to the use of nanomaterials and metal-organic frameworks.Nanomaterials20231320275410.3390/nano13202754 37887905
    [Google Scholar]
  55. ShanJ. LiM. AllardL.F. LeeS. StephanopoulosF.M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts.Nature2017551768260560810.1038/nature24640 29189776
    [Google Scholar]
  56. Ab RahimM.H. FordeM.M. JenkinsR.L. HammondC. HeQ. DimitratosN. SanchezL.J.A. CarleyA.F. TaylorS.H. WillockD.J. MurphyD.M. KielyC.J. HutchingsG.J. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles.Angew. Chem. Int. Ed.20135241280128410.1002/anie.201207717 23233432
    [Google Scholar]
  57. AgarwalN. FreakleyS.J. McVickerR.U. AlthahbanS.M. DimitratosN. HeQ. MorganD.J. JenkinsR.L. WillockD.J. TaylorS.H. KielyC.J. HutchingsG.J. Aqueous Au-Pd colloids catalyze selective CH 4 oxidation to CH 3 OH with O 2 under mild conditions.Science2017358636022322710.1126/science.aan6515 28882995
    [Google Scholar]
  58. JinZ. WangL. ZuidemaE. MondalK. ZhangM. ZhangJ. WangC. MengX. YangH. MestersC. XiaoF.S. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol.Science2020367647419319710.1126/science.aaw1108 31919221
    [Google Scholar]
  59. LustembergP.G. PalominoR.M. GutiérrezR.A. GrinterD.C. VorokhtaM. LiuZ. RamírezP.J. MatolínV. PirovanoG.M.V. SenanayakeS.D. RodriguezJ.A. Direct conversion of methane to methanol on ni-ceria surfaces: metal–support interactions and water-enabled catalytic conversion by site blocking.J. Am. Chem. Soc.2018140247681768710.1021/jacs.8b03809 29804460
    [Google Scholar]
  60. LiM. ShanJ. GiannakakisG. OuyangM. CaoS. LeeS. AllardL.F. StephanopoulosF.M. Single-step selective oxidation of methane to methanol in the aqueous phase on iridium-based catalysts.Appl. Catal. B202129212012410.1016/j.apcatb.2021.120124
    [Google Scholar]
  61. KwonY. KimT.Y. KwonG. YiJ. LeeH. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion.J. Am. Chem. Soc.201713948176941769910.1021/jacs.7b11010 29125746
    [Google Scholar]
  62. WangW. ZhouW. TangY. CaoW. DochertyS.R. WuF. ChengK. ZhangQ. CopéretC. WangY. Selective oxidation of methane to methanol over Au/H-MOR.J. Am. Chem. Soc.202314523129281293410.1021/jacs.3c04260 37267262
    [Google Scholar]
  63. HuangW. ZhangS. TangY. LiY. NguyenL. LiY. ShanJ. XiaoD. GagneR. FrenkelA.I. TaoF.F. Low‐temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate.Angew. Chem. Int. Ed.20165543134411344510.1002/anie.201604708 27717086
    [Google Scholar]
  64. SahooS. SuibS.L. AlpayS.P. Graphene supported single atom transition metal catalysts for methane activation.ChemCatChem201810153229323510.1002/cctc.201800465
    [Google Scholar]
  65. HeY. LuanC. FangY. FengX. PengX. YangG. TsubakiN. Low-temperature direct conversion of methane to methanol over carbon materials supported Pd-Au nanoparticles.Catal. Today2020339485310.1016/j.cattod.2019.02.043
    [Google Scholar]
  66. GuoX. FangG. LiG. MaH. FanH. YuL. MaC. WuX. DengD. WeiM. TanD. SiR. ZhangS. LiJ. SunL. TangZ. PanX. BaoX. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen.Science2014344618461661910.1126/science.1253150 24812398
    [Google Scholar]
  67. JothiL. NageswaranG. Plasma Modified Polymeric Materials for Biosensors/Biodevice ApplicationsNon-Thermal Plasma Technol. Polymeric Materials2019409437
    [Google Scholar]
  68. ZhangJ. XuQ. FengZ. LiM. LiC. Importance of the relationship between surface phases and photocatalytic activity of TiO2.Angew. Chem. Int. Ed.20084791766176910.1002/anie.200704788 18213667
    [Google Scholar]
  69. ChatelierH.L. On a general statement of the laws of chemical equilibrium.CR (East Lansing Mich.)188499786789
    [Google Scholar]
  70. LatimerA.A. KakekhaniA. KulkarniA.R. NørskovJ.K. Direct Methane to Methanol: The selectivity–conversion limit and design strategies.ACS Catal.2018886894690710.1021/acscatal.8b00220
    [Google Scholar]
  71. CastelliI.E. ManI.C. SorigaS.G. ParvulescuV. HalckN.B. RossmeislJ. Role of the Band Gap for the Interaction Energy of Coadsorbed Fragments.J. Phys. Chem. C201712134186081861410.1021/acs.jpcc.7b04974
    [Google Scholar]
  72. LiG. VassilevP. SanchezS.M. LercherJ.A. HensenE.J.M. PidkoE.A. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol.J. Catal.201633830531210.1016/j.jcat.2016.03.014
    [Google Scholar]
  73. KulkarniA.R. ZhaoZ.J. SiahrostamiS. NørskovJ.K. StudtF. Cation-exchanged zeolites for the selective oxidation of methane to methanol.Catal. Sci. Technol.20188111412310.1039/C7CY01229B
    [Google Scholar]
  74. RizzoR.C. AynechiT. CaseD.A. KuntzI.D. Estimation of absolute free energies of hydration using continuum methods: accuracy of partial charge models and optimization of nonpolar contributions.J. Chem. Theory Comput.20062112813910.1021/ct050097l 26626387
    [Google Scholar]
  75. LiangZ. LiT. KimM. AsthagiriA. WeaverJ.F. Low-temperature activation of methane on the IrO 2 (110) surface.Science2017356633529930310.1126/science.aam9147 28428421
    [Google Scholar]
/content/journals/ccat/10.2174/0122115447305839240430151004
Loading
/content/journals/ccat/10.2174/0122115447305839240430151004
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test