Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-5501
  • E-ISSN: 2211-551X

Abstract

Background

The global increase in the incidence of cancers, as well as neurotoxicity induced by cancer therapy, has necessitated research into agents that are neuroprotective without impeding cancer treatment.

Objective

The objective of this study is to investigate the neuroprotective effects of feed-added zinc on methotrexate-induced changes in rats.

Methods

Animals were grouped into normal control and methotrexate control, which were fed rodent chow and three groups fed zinc gluconate incorporated into the diet at 25, 50 and 100 mg/kg, respectively. Animals in the first group, in addition to normal diet, received intraperitoneal (i.p.) injections of saline at 2 ml/ kg, while rats in the four other groups were administered methotrexate i.p. at 20 mg/kg/day on the last three days (19-21) of the experiment. On day 22, rats were exposed to the behavioural paradigms, following which they were euthanised and blood was taken for biochemical assays. Sections of the hippocampus were homogenised for the assessment of neurotransmitters or processed for histological and immunohistochemical studies.

Results

Dietary zinc supplements at certain concentrations protected against the development of methotrexate-induced alteration in body weight, food intake, memory histomorphology, and neuron-specific enolase reactivity.

Conclusion

Dietary zinc supplementation was protective against neurotoxicity induced following methotrexate administration, with possible mechanisms being the down-regulation of oxidative stress, inflammation and neuron-specific enolase reactivity.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501305679240612095751
2024-09-01
2024-11-22
Loading full text...

Full text loading...

References

  1. KoźmińskiP. HalikP.K. ChesoriR. GniazdowskaE. Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers.Int. J. Mol. Sci.20202110348310.3390/ijms2110348332423175
    [Google Scholar]
  2. TahaM. EldemerdashO.M. ElshaffeiI.M. YousefE.M. SenousyM.A. Dexmedetomidine attenuates methotrexate-induced neurotoxicity and memory deficits in rats through improving hippocampal neurogenesis: The role of miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway modulation.Int. J. Mol. Sci.202324176610.3390/ijms2401076636614208
    [Google Scholar]
  3. SritawanN. SuwannakotK. NaewlaS. ChaisawangP. AranarochanaA. SirichoatA. PannangrongW. WigmoreP. WelbatJ.U. Effect of metformin treatment on memory and hippocampal neurogenesis decline correlated with oxidative stress induced by methotrexate in rats.Biomed. Pharmacother.202114411228010.1016/j.biopha.2021.11228034628167
    [Google Scholar]
  4. BhojwaniD. SabinN.D. PeiD. YangJ.J. KhanR.B. PanettaJ.C. KrullK.R. InabaH. RubnitzJ.E. MetzgerM.L. HowardS.C. RibeiroR.C. ChengC. ReddickW.E. JehaS. SandlundJ.T. EvansW.E. PuiC.H. RellingM.V. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia.J. Clin. Oncol.201432994995910.1200/JCO.2013.53.080824550419
    [Google Scholar]
  5. StoneJ.B. DeAngelisL.M. Cancer-treatment-induced neurotoxicity—focus on newer treatments.Nat. Rev. Clin. Oncol.20161329210510.1038/nrclinonc.2015.15226391778
    [Google Scholar]
  6. NaewlaS. SirichoatA. PannangrongW. ChaisawangP. WigmoreP. WelbatJ.U. Hesperidin alleviates methotrexate-induced memory deficits via hippocampal neurogenesis in adult rats.Nutrients201911493610.3390/nu1104093631027240
    [Google Scholar]
  7. MateosM.K. MarshallG.M. BarbaroP.M. QuinnM.C.J. GeorgeC. MayohC. SuttonR. ReveszT. GilesJ.E. BarbaricD. AlvaroF. MechinaudF. CatchpooleD. LawsonJ.A. Chenevix-TrenchG. MacGregorS. KotechaR.S. Dalla-PozzaL. TrahairT.N. Methotrexate-related central neurotoxicity: clinical characteristics, risk factors and genome-wide association study in children treated for acute lymphoblastic leukemia.Haematologica2021107363564310.3324/haematol.2020.26856533567813
    [Google Scholar]
  8. TahaM. EldemerdashO.M. ElshaffeiI.M. YousefE.M. SolimanA.S. SenousyM.A. Apigenin attenuates hippocampal microglial activation and restores cognitive function in methotrexate-treated rats: Targeting the miR-15a/ROCK-1/ERK1/2 pathway.Mol. Neurobiol.20236073770378710.1007/s12035‑023‑03299‑736943623
    [Google Scholar]
  9. SirichoatA. AnosriT. KaewngamS. AranarochanaA. PannangrongW. WigmoreP. WelbatJ.U. Neuroprotective properties of chrysin on decreases of cell proliferation, immature neurons and neuronal cell survival in the hippocampal dentate gyrus associated with cognition induced by methotrexate.Neurotoxicology202292152410.1016/j.neuro.2022.06.01035779630
    [Google Scholar]
  10. CavalcantiC.L. GonçalvesM.C.R. AlvesA.F. de AraújoE.V. CarvalhoJ.L.P. LinsP.P. AlvesR.C. SoaresN.L. PordeusL.C.M. AquinoJ.S. Antidepressant, anxiolytic and neuroprotective activities of two zinc compounds in diabetic rats.Front. Neurosci.202013141110.3389/fnins.2019.0141132038128
    [Google Scholar]
  11. FrancoC. CanzonieroL.M.T. Zinc homeostasis and redox alterations in obesity.Front. Endocrinol.202414127317710.3389/fendo.2023.127317738260166
    [Google Scholar]
  12. GrønliJ. SouléJ. BramhamC.R. Sleep and protein synthesis-dependent synaptic plasticity: Impacts of sleep loss and stress.Front. Behav. Neurosci.2014722410.3389/fnbeh.2013.0022424478645
    [Google Scholar]
  13. HagmeyerS. HaderspeckJ.C. GrabruckerA.M. Behavioral impairments in animal models for zinc deficiency.Front. Behav. Neurosci.2015844310.3389/fnbeh.2014.0044325610379
    [Google Scholar]
  14. PortburyS. AdlardP. Zinc signal in brain diseases.Int. J. Mol. Sci.20171812250610.3390/ijms1812250629168792
    [Google Scholar]
  15. Blanco-AlvarezV.M. Soto-RodriguezG. Gonzalez-BarriosJ.A. Martinez-FongD. BrambilaE. Torres-SotoM. Aguilar-PeraltaA.K. Gonzalez-VazquezA. Tomás-SanchezC. LimónI.D. EguibarJ.R. UgarteA. Hernandez-CastilloJ. Leon-ChavezB.A. Prophylactic subacute administration of zinc increases CCL2, CCR2, FGF2, and IGF-1 expression and prevents the long-term memory loss in a rat model of cerebral hypoxia-ischemia.Neural Plast.2015201511510.1155/2015/37539126355725
    [Google Scholar]
  16. Tomas-SanchezC. Blanco-AlvarezV.M. Martinez-FongD. Gonzalez-BarriosJ.A. Gonzalez-VazquezA. Aguilar-PeraltaA.K. Torres-SotoM. Soto-RodriguezG. LimónI.D. BrambilaE. Millán-Pérez-PeñaL. CebadaJ. Orozco-BarriosC.E. Leon-ChavezB.A. Prophylactic zinc and therapeutic selenium administration increases the antioxidant enzyme activity in the rat temporoparietal cortex and improves memory after a transient hypoxia-ischemia.Oxid. Med. Cell. Longev.2018201811710.1155/2018/941643230258527
    [Google Scholar]
  17. Aguilar-PeraltaA.K. Gonzalez-VazquezA. Tomas-SanchezC. Blanco-AlvarezV.M. Martinez-FongD. Gonzalez-BarriosJ.A. LimonI.D. Millán-Perez PeñaL. FloresG. Soto-RodriguezG. BrambilaE. CebadaJ. Vargas-CastroV. Leon-ChavezB.A. Prophylactic zinc administration combined with swimming exercise prevents cognitive-emotional disturbances and tissue injury following a transient hypoxic-ischemic insult in the rat.Behav. Neurol.2022202212010.1155/2022/538894435637877
    [Google Scholar]
  18. AliM. AzizT. The combination of zinc and melatonin enhanced neuroprotection and attenuated neuropathy in oxaliplatin-induced neurotoxicity.Drug Des. Devel. Ther.2022163447346310.2147/DDDT.S38591436217449
    [Google Scholar]
  19. TranC.D. SundarS. HowarthG.S. Dietary zinc supplementation and methotrexate-induced small intestinal mucositis in metallothionein-knockout and wild-type mice.Cancer Biol. Ther.20098171662166710.4161/cbt.8.17.929319633421
    [Google Scholar]
  20. MusaN.S. HowarthG.S. TranC.D. Zinc supplementation alone is effective for partial amelioration of methotrexate-induced intestinal damage.Altern. Ther. Health Med.201521Suppl. 2223126308757
    [Google Scholar]
  21. PradhanR. KoiralaS. AdhikariN. SannithiN. ThakurA. AdhikariB. AndkoiralaU. Protection against methotrexate induced hepato-renal toxicity in rats by zinc and its combination with vitamin C and vitamin E.Medical Safety & Global Health20165225740407
    [Google Scholar]
  22. HassaneinE.H.M. KamelE.O. AliF.E.M. AhmedM.A.R. Berberine and/or zinc protect against methotrexate-induced intestinal damage: Role of GSK-3β/NRF2 and JAK1/STAT-3 signaling pathways.Life Sci.202128111975410.1016/j.lfs.2021.11975434174323
    [Google Scholar]
  23. OnaolapoO.J. JegedeO.R. AdegokeO. AyindeM.O. AkeredoluO.M. OnaolapoA.Y. Dietary zinc supplement militates against ketamine-induced behaviours by age-dependent modulation of oxidative stress and acetylcholinesterase activity in mice.Pharmacol. Rep.2020a721556610.1007/s43440‑019‑00003‑232016846
    [Google Scholar]
  24. OnaolapoO.J. AdemakinwaO.Q. OlalekanT.O. OnaolapoA.Y. Ketamine-induced behavioural and brain oxidative changes in mice: An assessment of possible beneficial effects of zinc as mono- or adjunct therapy.Psychopharmacology2017234182707272510.1007/s00213‑017‑4666‑x28612134
    [Google Scholar]
  25. ElsawyH. AlzahraniA.M. AlfwuairesM. Abdel-MoneimA.M. KhalilM. Beneficial role of naringin against methotrexate-induced injury to rat testes: Biochemical and ultrastructural analyses.Redox Rep.202227115816610.1080/13510002.2022.210183235861275
    [Google Scholar]
  26. OnaolapoA.Y. OjoF.O. OnaolapoO.J. Biflavonoid quercetin protects against cyclophosphamide–induced organ toxicities via modulation of inflammatory cytokines, brain neurotransmitters, and astrocyte immunoreactivity.Food Chem. Toxicol.202317811387910.1016/j.fct.2023.11387937301500
    [Google Scholar]
  27. OnaolapoA.Y. OdetundeI. AkintolaA.S. OgundejiM.O. AjaoA. ObelawoA.Y. OnaolapoO.J. Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice.Biomed. Pharmacother.201910941742810.1016/j.biopha.2018.10.17230399577
    [Google Scholar]
  28. OjO. TA. OA. CA. AyO. Zinc tempers haloperidol-induced behavioural changes in healthy mice.Int. J. Neurosci. Behav. Sci.201642213110.13189/ijnbs.2016.040201
    [Google Scholar]
  29. OlofinnadeA.T. OnaolapoA.Y. OnaolapoO.J. Graded effects of dry-feed added sodium benzoate/ascorbic acid combination on neurobehaviour, oxidative stress, and markers of inflammation in mice.Curr. Bioact. Compd.2024201e06072321847410.2174/1573407219666230706145617
    [Google Scholar]
  30. OnaolapoA.Y. SulaimanH. OlofinnadeA.T. OnaolapoO.J. Antidepressant-like potential of silymarin and silymarin-sertraline combination in mice: Highlighting effects on behaviour, oxidative stress, and neuroinflammation.World J. Pharmacol.20221132747[DOI: 10.5497/wjp.v11.i3.27].10.5497/wjp.v11.i3.27
    [Google Scholar]
  31. OnaolapoO.J. OlofinnadeA.T. OjoF.O. FaladeJ. OnaolapoA.Y. Prepubertal continuous dietary folate fortification enhances the brain function of adult mice by modulating antioxidant status, inflammation, and brain neurotransmitter levels.Antiinflamm. Antiallergy Agents Med. Chem.202322319820910.2174/011871523024981423092506032537861002
    [Google Scholar]
  32. OlofinnadeA.T. OnaolapoT.M. OladimejiS. FatokiA.M. BalogunC.I. OnaolapoA.Y. OnaolapoO.J. An evaluation of the effects of pyridoxal phosphate in chlorpromazineinduced parkinsonism using mice.Cent. Nerv. Syst. Agents Med. Chem.2020b201132510.2174/187152492066620012014250831987026
    [Google Scholar]
  33. FaladeJ. OnaolapoA.Y. OnaolapoO.J. Evaluation of the behavioural, antioxidative and histomorphological effects of folic acid-supplemented diet in dexamethasone-induced depression in mice.Cent. Nerv. Syst. Agents Med. Chem.2021211738110.2174/187152492166621011412535533459248
    [Google Scholar]
  34. OnaolapoA.Y. OnaolapoO.J. NwohaP.U. Alterations in behaviour, cerebral cortical morphology and cerebral oxidative stress markers following aspartame ingestion.J. Chem. Neuroanat.201678425610.1016/j.jchemneu.2016.08.00627565676
    [Google Scholar]
  35. OnaolapoA.Y. OnaolapoO.J. NwohaP.U. Aspartame and the hippocampus: Revealing a bi-directional, dose/time-dependent behavioural and morphological shift in mice.Neurobiol. Learn. Mem.2017139768810.1016/j.nlm.2016.12.02128049023
    [Google Scholar]
  36. KhorsandiH. NikpayamO. YousefiR. ParandooshM. HosseinzadehN. SaidpourA. GhorbaniA. Zinc supplementation improves body weight management, inflammatory biomarkers and insulin resistance in individuals with obesity: A randomized, placebo-controlled, double-blind trial.Diabetol. Metab. Syndr.201911110110.1186/s13098‑019‑0497‑831827626
    [Google Scholar]
  37. ThoenR.U. BartherN.N. SchemittE. BonaS. FernandesS. CoralG. MarroniN.P. TovoC. GuedesR.P. PorawskiM. Zinc supplementation reduces diet-induced obesity and improves insulin sensitivity in rats.Appl. Physiol. Nutr. Metab.201944658058610.1139/apnm‑2018‑051930339765
    [Google Scholar]
  38. AbdollahiS. ToupchianO. JayediA. MeyreD. TamV. SoltaniS. Zinc supplementation and body weight: A systematic review and dose–response meta-analysis of randomized controlled trials.Adv. Nutr.202011239841110.1093/advances/nmz08431504083
    [Google Scholar]
  39. HasaniM. SaidpourA. IrandoostP. GolabF. KhazdouzM. QorbaniM. AghF. Mohammad SharifiA. VafaM. Beneficial effects of Se/Zn co-supplementation on body weight and adipose tissue inflammation in high-fat diet-induced obese rats.Food Sci. Nutr.2021973414342510.1002/fsn3.220334631042
    [Google Scholar]
  40. MoghadamA.R. TutunchiS. Namvaran-Abbas-AbadA. YazdiM. BonyadiF. MohajeriD. MazaniM. MarzbanH. ŁosM.J. GhavamiS. Pre-administration of turmeric prevents methotrexate-induced liver toxicity and oxidative stress.BMC Complement. Altern. Med.201515124610.1186/s12906‑015‑0773‑626199067
    [Google Scholar]
  41. BoukhettalaN. LeblondJ. ClaeyssensS. FaureM. Le PessotF. Bôle-FeysotC. HassanA. MettrauxC. VuichoudJ. LavoinneA. BreuilléD. DéchelotteP. CoëffierM. Methotrexate induces intestinal mucositis and alters gut protein metabolism independently of reduced food intake.Am. J. Physiol. Endocrinol. Metab.20092961E182E19010.1152/ajpendo.90459.200818984853
    [Google Scholar]
  42. OlechnowiczJ. TinkovA. SkalnyA. SuliburskaJ. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism.J. Physiol. Sci.2018681193110.1007/s12576‑017‑0571‑728965330
    [Google Scholar]
  43. SeigersR. SchagenS.B. CoppensC.M. van der MostP.J. van DamF.S.A.M. KoolhaasJ.M. BuwaldaB. Methotrexate decreases hippocampal cell proliferation and induces memory deficits in rats.Behav. Brain Res.2009201227928410.1016/j.bbr.2009.02.02519428645
    [Google Scholar]
  44. SuwannakotK. SritawanN. NaewlaS. AranarochanaA. SirichoatA. PannangrongW. WigmoreP. WelbatJ.U. Melatonin attenuates methotrexate-induced reduction of antioxidant activity related to decreases of neurogenesis in adult rat hippocampus and prefrontal cortex.Oxid. Med. Cell. Longev.2022202211310.1155/2022/159636235873801
    [Google Scholar]
  45. Cruz-CarrerasM.T. ChaftariP. ShamsniaA. Guha-ThakurtaN. GonzalezC. Methotrexate-induced leukoencephalopathy presenting as stroke in the emergency department.Clin. Case Rep.20175101644164810.1002/ccr3.111029026563
    [Google Scholar]
  46. ColeP.D. VijayanathanV. AliN.F. WagshulM.E. TanenbaumE.J. PriceJ. DalalV. GulinelloM.E. Memantine protects rats treated with intrathecal methotrexate from developing spatial memory deficits.Clin. Cancer Res.201319164446445410.1158/1078‑0432.CCR‑13‑117923833301
    [Google Scholar]
  47. WenJ. MaxwellR.R. WolfA.J. SpiraM. GulinelloM.E. ColeP.D. Methotrexate causes persistent deficits in memory and executive function in a juvenile animal model.Neuropharmacology2018139768410.1016/j.neuropharm.2018.07.00729990472
    [Google Scholar]
  48. OnaolapoO.J. OnaolapoA.Y. Subchronic oral bromocriptine methanesulfonate enhances open field novelty-induced behavior and spatial memory in male swiss albino mice.Neurosci. J.201320131510.1155/2013/94824126317106
    [Google Scholar]
  49. KelleyA.E. CadorM. StinusL. Behavioral analysis of the effect of substance P injected into the ventral mesencephalon on investigatory and spontaneous motor behavior in the rat.Psychopharmacology1985851374610.1007/BF004273192580328
    [Google Scholar]
  50. MinkJ.W. ThachW.T. Basal ganglia intrinsic circuits and their role in behavior.Curr. Opin. Neurobiol.19933695095710.1016/0959‑4388(93)90167‑W8124079
    [Google Scholar]
  51. OnaolapoO.J. OnaolapoA.Y. Sex differential effect of acute caffeine administration on open field novelty induced behaviour in Swiss albino mice.J. Neurosci. Behav. Health20113899106
    [Google Scholar]
  52. ChoiS. HongD.K. ChoiB.Y. SuhS.W. Zinc in the brain: Friend or Foe?Int. J. Mol. Sci.20202123894110.3390/ijms2123894133255662
    [Google Scholar]
  53. NgalaE.M. NinsiimaH.I. ValladaresM.B. AnatoleP.C. Zinc and linoleic acid protect against behavioural deficits in rat model of parkinsonism induced with rotenone Afr.J. Biomed. Res.202023247254
    [Google Scholar]
  54. SensiS.L. YinH.Z. CarriedoS.G. RaoS.S. WeissJ.H. Preferential Zn 2+ influx through Ca 2+ -permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production.Proc. Natl. Acad. Sci. USA19999652414241910.1073/pnas.96.5.241410051656
    [Google Scholar]
  55. LevensonC.W. Zinc supplementation: Neuroprotective or neurotoxic?Nutr. Rev.200563412212510.1111/j.1753‑4887.2005.tb00130.x15869126
    [Google Scholar]
  56. CopeE.C. MorrisD.R. ScrimgeourA.G. LevensonC.W. Use of zinc as a treatment for traumatic brain injury in the rat: Effects on cognitive and behavioral outcomes.Neurorehabil. Neural Repair201226790791310.1177/154596831143533722331212
    [Google Scholar]
  57. LiZ. LiuY. WeiR. YongV.W. XueM. The important role of zinc in neurological diseases.Biomolecules20221312810.3390/biom1301002836671413
    [Google Scholar]
  58. AmadaN. KakumotoY. FutamuraT. MaedaK. Prenatal methotrexate injection increases behaviors possibly associated with depression and/or autism in rat offspring; A new animal model for mental disorder, based on folate metabolism deficit during pregnancy.Neuropsychopharmacol. Rep.202242326327110.1002/npr2.1225535502620
    [Google Scholar]
  59. WenJ. PatelC. DiglioF. BakerK. MarshallG. LiS. ColeP.D. Cognitive impairment persists at least 1 year after juvenile rats are treated with methotrexate.Neuropharmacology202220610893910.1016/j.neuropharm.2021.10893934986414
    [Google Scholar]
  60. Gower-WinterS.D. LevensonC.W. Zinc in the central nervous system: From molecules to behavior.Biofactors201238318619310.1002/biof.101222473811
    [Google Scholar]
  61. PetrilliM.A. KranzT.M. KleinhausK. JoeP. GetzM. JohnsonP. ChaoM.V. MalaspinaD. The emerging role for zinc in depression and psychosis.Front. Pharmacol.2017a841410.3389/fphar.2017.0041428713269
    [Google Scholar]
  62. MadhyasthaS. SomayajiS.N. RaoM.S. NaliniK. BairyK.L. Effect of intracerebroventricular methotrexate on brain amines.Indian J. Physiol. Pharmacol.200549442743516579396
    [Google Scholar]
  63. MadhyasthaS. SomayajiS.N. RaoM.S. NaliniK. BairyK.L. Hippocampal brain amines in methotrexate-induced learning and memory deficit.Can. J. Physiol. Pharmacol.200280111076108410.1139/y02‑13512489927
    [Google Scholar]
  64. RyczkoD. DubucR. Dopamine and the brainstem locomotor networks: From lamprey to human.Front. Neurosci.20171129510.3389/fnins.2017.0029528603482
    [Google Scholar]
  65. BaldwinD. RudgeS. The role of serotonin in depression and anxiety.Int. Clin. Psychopharmacol.19959Suppl. 4414610.1097/00004850‑199501004‑000067622823
    [Google Scholar]
  66. SchetzJ.A. SibleyD.R. Zinc allosterically modulates antagonist binding to cloned D1 and D2 dopamine receptors.J. Neurochem.19976851990199710.1046/j.1471‑4159.1997.68051990.x9109525
    [Google Scholar]
  67. GillC.H. PetersJ.A. LambertJ.J. An electrophysiological investigation of the properties of a murine recombinant 5-HT 3 receptor stably expressed in HEK 293 cells.Br. J. Pharmacol.199511461211122110.1111/j.1476‑5381.1995.tb13335.x7620711
    [Google Scholar]
  68. CherasseY. UradeY. Dietary zinc acts as a sleep modulator.Int. J. Mol. Sci.20171811233410.3390/ijms1811233429113075
    [Google Scholar]
  69. Murawska-CiałowiczE. WiatrM. CiałowiczM. Gomes de AssisG. BorowiczW. Rocha-RodriguesS. Paprocka-BorowiczM. MarquesA. BDNF impact on biological markers of depression—role of physical exercise and training.Int. J. Environ. Res. Public Health20211814755310.3390/ijerph1814755334300001
    [Google Scholar]
  70. YangY. JingX.P. ZhangS.P. GuR.X. TangF.X. WangX.L. XiongY. QiuM. SunX.Y. KeD. WangJ.Z. LiuR. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.PLoS One201381e5538410.1371/journal.pone.005538423383172
    [Google Scholar]
  71. FamurewaA.C. UfebeO.G. EgedigweC.A. NwankwoO.E. ObajeG.S. Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats.Biomed. Pharmacother.20178743744210.1016/j.biopha.2016.12.12328068634
    [Google Scholar]
  72. AslankocR. SavranM. DoğuçD.K. SevimliM. TekinH. KaynakM. Ameliorating effects of ramelteon on oxidative stress, inflammation, apoptosis, and autophagy markers in methotrexate-induced cerebral toxicity.Iran. J. Basic Med. Sci.202225101183118910.22038/ijbms.2022.62955.1391336311194
    [Google Scholar]
  73. CutoloM. BissoA. SulliA. FelliL. BriataM. PizzorniC. VillaggioB. Antiproliferative and antiinflammatory effects of methotrexate on cultured differentiating myeloid monocytic cells (THP-1) but not on synovial macrophages from patients with rheumatoid arthritis.J. Rheumatol.200027112551255711093433
    [Google Scholar]
  74. PhillipsD.C. WoollardK.J. GriffithsH.R. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species.Br. J. Pharmacol.2003138350151110.1038/sj.bjp.070505412569075
    [Google Scholar]
  75. OlsenN.J. SpurlockC.F.III AuneT.M. Methotrexate induces production of IL-1 and IL-6 in the monocytic cell line U937.Arthritis Res. Ther.2014161R1710.1186/ar444424444433
    [Google Scholar]
  76. Abdel-DaimM.M. KhalifaH.A. AbushoukA.I. DkhilM.A. Al-QuraishyS.A. Diosmin attenuates methotrexate-induced hepatic, renal, and cardiac injury: A biochemical and histopathological study in mice.Oxid. Med. Cell. Longev.2017201711010.1155/2017/328167028819543
    [Google Scholar]
  77. Al-TaherA.Y. MorsyM.A. RifaaiR.A. ZenhomN.M. Abdel-GaberS.A. Paeonol attenuates methotrexate-induced cardiac toxicity in rats by inhibiting oxidative stress and suppressing TLR4-induced NF- κ B inflammatory pathway.Mediators Inflamm.2020202011010.1155/2020/864102632104151
    [Google Scholar]
  78. PrasadA.S. Zinc is an antioxidant and anti-inflammatory agent: Its role in human health.Front. Nutr.201411410.3389/fnut.2014.0001425988117
    [Google Scholar]
  79. JaroszM. OlbertM. WyszogrodzkaG. MłyniecK. LibrowskiT. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling.Inflammopharmacology2017251112410.1007/s10787‑017‑0309‑428083748
    [Google Scholar]
  80. MarreiroD. CruzK. MoraisJ. BeserraJ. SeveroJ. de OliveiraA. Zinc and oxidative stress: Current mechanisms.Antioxidants2017622410.3390/antiox602002428353636
    [Google Scholar]
  81. WelbatJ.U. NaewlaS. PannangrongW. SirichoatA. AranarochanaA. WigmoreP. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat.Biochem. Pharmacol.202017811408310.1016/j.bcp.2020.11408332522593
    [Google Scholar]
  82. OndruschkaB. PohlersD. SommerG. SchoberK. TeupserD. FrankeH. DresslerJ. S100B and NSE as useful postmortem biochemical markers of traumatic brain injury in autopsy cases.J. Neurotrauma201330221862187110.1089/neu.2013.289523796187
    [Google Scholar]
  83. SahuS. NagD.S. SwainA. SamaddarD.P. Biochemical changes in the injured brain.World J. Biol. Chem.201781213110.4331/wjbc.v8.i1.2128289516
    [Google Scholar]
  84. HaqueA. PolcynR. MatzelleD. BanikN.L. New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection.Brain Sci.2018823310.3390/brainsci802003329463007
    [Google Scholar]
  85. MiaoQ. CaiB. GaoX. SuZ. ZhangJ. The establishment of neuron-specific enolase reference interval for the healthy population in southwest China.Sci. Rep.2020101633210.1038/s41598‑020‑63331‑x32286436
    [Google Scholar]
  86. CoronaC. MasciopintoF. SilvestriE. ViscovoA.D. LattanzioR. SordaR.L. CiavardelliD. GogliaF. PiantelliM. CanzonieroL.M.T. SensiS.L. Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction.Cell Death Dis.2010110e9110.1038/cddis.2010.7321368864
    [Google Scholar]
  87. LiuH.Y. GaleJ.R. ReynoldsI.J. WeissJ.H. AizenmanE. The multifaceted roles of zinc in neuronal mitochondrial dysfunction.Biomedicines20219548910.3390/biomedicines905048933946782
    [Google Scholar]
  88. DuffeyC.A. NichollsS. MantillaC.B. FogartyM.J. SieckG.C. Effect of BDNF on mitochondrial morphology and protein expression in NSC-34 cells.FASEB J201843743746
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501305679240612095751
Loading
/content/journals/cbiot/10.2174/0122115501305679240612095751
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): chemotherapy; cognitive deficit; Methotrexate; neuron specific enolase; neurotoxicity; zinc
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test